
GLOBAL MODELS AND THE W3DS SPECIFICATION - CHALLENGES AND
SOLUTIONS

G. Misund∗, M. Granlund, H. Kol̊as

Østfold University College, Halden, Norway - (gunnar.misund, morten.granlund, herman.kolas)@hiof.no

KEY WORDS: W3DS, OGC, VRML, GeoVRML, X3D, 3D Navigation, Levels of Detail, Digital Earth, Heterogeneous Geodata
Integration

ABSTRACT:

The recently proposed Web 3D Service (W3DS) specification defines how to access and retrieve geospatial 3D scenes integrating terrain
data, textures and local content such as buildings and city furniture. In this paper we discuss some of the issues arising when using
W3DS to access huge models, potentially of the entire globe, where high resolution content is embedded. We claim that the only sound
approach to deploying such models is to generate the content on demand, based on the requested geographic area and other parameters.
Examples are presented, including constructing 3D buildings on-the-fly from the original 2D/2.5D sources, along with empirical results,
indicating that this is a feasible strategy. We also show that efficient content caching may reduce response times significantly. Based
on lessons learned, we propose a minor extension of the W3DS specification in order to assure seamless navigation in global models
assembled from distributed, autonomous data sources. The most crucial components of the proposed strategies are implemented and
tested on a real life model.

1 INTRODUCTION

The globe has for long been considered the most descriptive and
telling representation of Mother Earth, and the advent of high
performance computers and networks has paved the way for vir-
tual versions of the globe. In 1998 US Vice President Al Gore
launched the idea of the Digital Earth (DE), a“multiresolution,
three-dimensional representation of the planet, into which we can
embed vast quantities of geo-referenced data”(Gore, 1998).

Digital Earth was described as a common ground for both con-
sumers and providers of a wide variety of geospatial data:“The
Digital Earth would be composed of both the ‘user interface’ -
a browsable, 3D version of the planet available at various levels
of resolution, a rapidly growing universe of networked geospa-
tial information, and the mechanisms for integrating and dis-
playing information from multiple sources”. Gore also rekog-
nized the distributed and non-bureaucratic aspect of the Digital
Earth: “Obviously, no one organization in government, industry
or academia could undertake such a project. [...] Like the Web,
the Digital Earth would organically evolve over time, as technol-
ogy improves and the information available expands”. The snap-
shots in Figure 1 illustrates the experience of browsing the global
model used for testing some of the concepts presented later in the
paper.

The Digital Earth white paper spawned a set of promising projects,
where both academia, vendors, and political bodies participated,
see for instance (Foresman, 2003, DeVarco, 2004, Misund et al.,
2005) for overviews of past and present DE activities. However,
only few of the projects are, as we write, still active.

The recently proposed Web 3D Service specification (W3DS)
(Quadt and Kolbe, 2005) presents new opportunities for web based
deployment of 3D models generated from geospatial data. In
short, the user specifies a geographic area, viewing parameters
and layers, and then retrieves the content formatted according
to the VRML97 standard (Carey and Bell, 1997). GeoVRML

∗Corresponding author

Figure 1: Browsing a Digital Earth

(Reddy and Iverson, 2002) and X3D (X3D, 2005) are proposed
as optional, however more suitable, formats1.

In this paper we discuss certain aspects of the W3DS specification
in a Digital Earth context. Even though the specification at first
glance seems to target retrieval of smaller models covering lim-
ited areas, we think that the users, as soon as they start to explore
their models, would like to zoom out or pan around to investi-
gate neighborhood areas. They might even want to do a fly-over
from their residence to a vacation destination, several thousand
kilometers away. The main purpose of this paper is to investigate
the suitability of W3DS as the main mechanism for compiling
and browsing global models carrying scattered geospatial data of
varying categories and resolution.

Navigation from a satellite view down to street level obviously
calls for efficient methods for handling levels of detail (LOD).
Thus, we start our discussion in section 2 with a brief introduc-
tion to LOD management in VRML. In section 3 we promote the
concept of transient models, where the 3D content is generated
on demand from distributed data sources, based on the requested

1In the remainder of the paper, we use VRML as a generic term for
both VRML 97, GeoVRML and X3D and its components.



geographic area and geospatial content. However, this approach
imposes some challenges, and these constitute the main focus of
this paper. Many of these problems arise when integrating distrib-
uted, autonomous W3DS sources to compile global LOD hierar-
chies. We address some of these issues in section 4, and propose
a minor, but significant, extension of the current W3DS specifi-
cation as means to solve some of the LOD issues.

Building content on demand may slow down response times, and
in order to reduce these types of delay, we introduce a server side
caching strategy in section 5. We also present some empirical
results from applying the method on real life data. In section
6 we describe a method for on-the-fly generation of buildings,
along with a study of the overhead incurred by this technique.
The paper is closed with some final remarks in section 7.

The presented work is part of Project OneMap (OneMap, n.d.,
Misund, 2002). Some of the case models are available online
(OneMap, 2005).

2 LEVELS OF DETAIL IN VRML

LOD mechanisms are crucial for efficient management of huge
3D gespatial models. As a backdrop for the discussions in this
paper, we give a brief outline of Quad Tree LOD hierarchies,
which is the VRML strategy for efficient management of huge
3D gespatial models. We also point to some issues arising when
accessing LOD hierarchies with W3DS.

2.1 Quad Tree LOD Hierarchies

In the original VRML97 documentation (Carey and Bell, 1997),
little or no information is provided on effective use of LOD in
large scale models or terrain visualizations in general. Example
code is limited to relatively small objects that can be presented
by single VRML nodes, for instance an airplane with 5000, 1000,
250 and 50 polygons respectively. However, available literature,
regardless of underlying technology, seems to agree on the fact
that a hierarchical data structure, in particular the Quad Tree, is
the most appropriate structure for terrain applications (Falby et
al., 1993, Hitchner and McGreevy, 1993, Leclerc and Lau, 1995,
Reddy et al., 1999a). Both GeoVRML, the geospatial extension
to VRML, and the geospatial module in X3D, provides Quad Tree
LOD constructs by default.

Unfortunately, the memory management of many VRML browsers
prevents efficient utilization of Quad Tree data structures in vi-
sualization of large models. The VRML97 specification states
“Exactly when [referenced resources]2 are read and displayed
is not defined”. This means that it is left to those who imple-
ment a VRML browser to decide when to download external re-
sources, typically a representation of an object with higher level
of detail. Several of the available VRML viewers are optimized
for visualization of relatively small objects, such as cars or en-
gines. They prepare and load every representation of an object
on startup, hence, making browsing of global multiresolution ter-
rain models infeasible. Both the GeoVRML and X3D specifica-
tions clearly state that a rational loading of referenced resources
is imperative. In addition, the specifications also emphasize the
importance ofunloadingthe resources from memory whenever
they are not rendered. To the authors’ knowledge, none of the
freely available VRML clients have implemented a purging strat-
egy that prevents exhaustion of internal memory after prolonged
navigation in large LOD scenes.

2In VRML, external resources are referenced using theInline node.

VRML is modular in the sense that one may incorporate other
resources into any model simply by specifying their URIs. These
resources do not need to be static files, and can even be services
delivering dynamic content. This opens for a distributed approach
to the Digital Earth concept, where topography with embedded
objects is regarded as a set of chained web services, preferably
W3DS services, rather than a set of static files distributed on the
Internet or in local repositories.

Figure 2: Traversals of a quad tree hierarchy with three levels of
detail

LOD hierarchies have typically been implemented asone-way,
top-down Quad Trees in VRML models. This is a very efficient
and easy-to-implement solution, but it inflicts certain limitations.
Currently, there are no way of replacing a high-resolution model
automatically and seamlessly by a larger and less detailed model
when zooming out, if the less detailed tile has not been previously
loaded. As a result, the initially loaded tile is locked as the root
tile, and isolates it and its descendant tiles. This is illustrated in
Figure 2. While the client is able to retrieve any representation
of the model as long as the root tile is being loaded initially (the
upper hierarchy), the client is, after loading a level 1 tile initially
(the lower hierarchy), locked to this particular tile and its descen-
dants.

2.2 W3DS Access To LOD Hierarchies

Let us assume that we have a W3DS provider capable of pro-
viding a global LOD hierarchy. A user would pass aGetScene
request to retrieve the wanted content, and one of the mandatory
parameters is the bounding box of the requested scene. View pa-
rameters may optionally be specified, for instance to simulate the
view from a certain viewpoint.

If the user specifies a small (relative to the geographic extent of
the LOD hierarchy) bounding box, the W3DS might handle this
in the following way: first, locate the smallest tile covering the
requested area, then crop the tile to fit the bounding box, and fi-
nally adjust the LOD references to be consistent with the position
and extent of the served root tile. The user will receive a chunk
of the main model, and (if not already at the highest resolution
level) it would be possible to zoom in at more detailed levels.
However, when zooming out, the model just becomes a small is-
land in a void. Likewise, panning to neighborhood areas will not
be possible.

However, if the user wants to get access to the complete model,
but still start at street level, the solution would be to specify a
large bounding box, for instance encompassing the entire globe,



but keep the view parameters for local examination. The result of
this is that the root tile would be returned, however along with the
view parameters from the request translated to the corresponding
position of the avatar3. The viewer would then recursively load
the appropriate LOD references, until the correct level of detail
is reached. In this case the user would be free to move around in
the LOD hierarchy. The two solutions are illustrated in Figure 3.

Figure 3: Zooming out from a local viewpoint

The drawback with the last mentioned strategy is that consider-
able processing resources may be required to drill down in the
levels of detail, and without sophisticated memory management,
this approach might turn out infeasible applied to large models
and deep LOD hierarchies. We will return to issues concerning
VRML LOD management in Section 4.

3 TRANSIENT GLOBAL MODELS

The conceptual view of a transient global 3D model is a VRML
representation of the entire Earth provided in a range of levels of
detail (LOD), starting with a global view and ending up at street
level. In practice, with an approximately doubling of the accu-
racy for each level, this results in 20 - 25 levels. Such a model
represents an incomprehensive amount of data4. It is obviously
not possible to preprocess and explicitly generate all the needed
files, hence the only feasible approach is to generate the tiles on
demand, a fact also alluded to in (Reddy et al., 1999b).

A tile in a transient geospatial LOD hierarchy is constructed from
basically three types of data: 1) Terrain data, 2) Image textures
and 3) 3D objects. The needed content could preferably be re-
trieved using the family of the Open Geospatial Consortium (OGC)
(OGC, n.d.) Web Services family, respectively the Web Cover-
age Service (WCS) (Evans, 2003), the Web Map Service (WMS)
(de La Beaujardiere, 2004) and the proposed W3DS specification.
In addition, the Web Feature Service (WFS) specification (Vre-
tanos, 2002) could serve as a basis for generating 3D objects on-
the-fly from traditional map data sources (see section 6). Com-
piling 3D scenes from heterogenous geospatial sources is treated
in more detail in for instance (Schilling and Zipf, 2003, Altmaier
and Kolbe, 2003), and the concept is illustrated in Figure 4.

Although there is rising number of providers of various OGC web
services, in particular WMS’s, there is a general problem of locat-
ing and integrating these heterogeneous data sources. This chal-
lenge is the main rationale for introducing the concept of the Fed-
erating Geodata Service, treated in more detail in the following

3The avatar is a construct representing the user’s view of the 3D scene.
425 levels of tiles with an average size of 250 KB would yield approx-

imately 100 Exabyte, or1014 MB.

Figure 4: Compiling a 3D scene from distributed sources

section. In this paper we are primarily concerned with Federating
Web3D Services (FW3DS), but the principle is applicable to all
of the OGC geodata services.

3.1 Federating Geodata Services

A Federating Geodata Service (FGS) is basically an OGC com-
pliant service, with some additional internal functionality, how-
ever hidden from the requesting clients. The main purpose with
an FGS is to facilitate service level federation of a set of distrib-
uted and autonomous data sources. To enable this, it must imple-
ment a Federation Module, whose main component is a dynamic
registry of relevant service providers. This is indeed a challeng-
ing task. However, specifications and tools have been proposed,
implemented and tested in order to support discovery and descrip-
tion of geospatial web services based on the WSDL/UDDI para-
digm (Lieberman et al., 2003).

In addition, for performance purposes, an FGS should implement
a Content Cache which provides mechanisms for pre-fetching,
caching and purging of content. An example of a caching im-
plementation is given in section 5. The general structure of a
Federating Geodata Service is illustrated in Figure 5.

Figure 5: Federating Geodata Service

By using the well defined OGC services, which again relies on
well known and widely adopted formats and specifications, syn-
tactic integration of content from various providers is a relatively
trivial task. However, semantic heterogeneity remains a serious
challenge. A common way to address this problem is to use on-
tologies5, see for instance (Klien et al., 2004) for details on search
and retrieval of geographic information using this approach.

Based on the available ontology, or perhaps a more simple feature
catalog, the capabilities documents6 retrieved from the contribut-

5An ontology may be defined as an explicit formal specification of a
shared conceptualization.

6TheGetCapabilites request is common to all OGC web services
and returns capabilites document providing crucial information such as
geographic extent, layer information and spatial reference systems.



ing sources should be analyzed, transformed and aggregated into
a single capabilities document, which again the requesting clients
can use to formulate their requests. With this approach, the FGS
will hide the underlying semantic heterogeneity and enable effi-
cient search and retrieval.

The federating W3DS is the most complex of the federating geo-
data services, as it uses other OGC services to retrieve and adjust
content for consistent integration. It would also have to deal with
LOD issues, which we discuss in section 4.

4 INTEGRATING DISTRIBUTED W3DS SOURCES

There are essentially two ways to realize large geospatial mod-
els with W3DS. The first strategy is to build a monolithic and
centralized solution, in practice based on a single provider with
knowledge and control over all the required data. For each gen-
erated tile, the reference to the four LOD tiles with higher resolu-
tion may be “hard-coded”, either as file locations or dynamic ser-
vices generating the content on-the-fly. The advantage with this
model is that the provider has complete control of the process,
and will be able to utilize a variety of optimization techniques
to ensure good response times. However, the drawbacks are nu-
merous, the most prominent being the fact that the sheer size of
the data volumes involved would render the approach infeasible
when speaking of huge Digital Earth like models.

The other approach is to consistently make use of federating W3DS
requests as LOD references. For each generated tile, the FW3DS
would use the dynamic registry to select appropriate providers
for the four LOD URIs. The drawback is that the initial service
would have no control of the cascading process of building the
hierarchy. The main advantage is that the approach is inherently
scalable, and would be fault tolerant in the sense that the W3DS
would be able to detect off-line services and pass the the request
on to an active service. Needless to say, this concept requires a
fairly high number of distributed (F)W3DS providers. Consider-
ing the rapidly growing supply of WMS servers around the world,
this might not be as unrealistic as it may seem at first glance.

Obviously, real life applications would probably use a mix of the
two approaches, typically passing FW3D requests to build the
coarser levels, and then trust the local providers to take care of
the high resolution part of the LOD hierarchy.

The fully distributed strategy will, however, require some addi-
tional functionality in the current W3DS specification. First of
all, we need to know if a provider can serve quad tree based LOD
content. The natural way of doing this, is to extend the response
from theGetCapabilites request to incorporate information on
the LOD aspects of the served content, typically the number of
levels (from zero and up), and preferrably some additional meta-
data, such as measures of the accuracy of each level. It is impor-
tant to note that the size of the served LOD tiles must be adjusted
to ensure consistency with the size of the initially requested tile.

On the other hand, it should be possible to specify if the re-
sponse should incorporate LOD references (if applicable) or not.
This could easily be accomplished by adding the appropriate (op-
tional) parameters to theGetScene request.

One could argue that it is not strictly necessary to implement
these addition to the specification, since it would be possible
for the FW3DS to replace the served LOD references with other
pointers. However, extending the specification is probably a cleaner
approach, making it it easier to implement more efficient appli-
cations.

5 CONTENT CACHING

Transient and distributed models are subject to delays due to sev-
eral factors. As terrain meshes, textures, and local content like
buildings, forest, roads, or power lines, may all be retrieved from
physically separated servers, delay caused by data transfer is in-
evitable. In addition, on-demand generation of content, as de-
scribed in section 6, will also slow down response times, as will
calculations and transformations in order to adjust and assem-
ble heterogeneous geospatial data. In this section we describe a
server side caching mechanism to compensate for lag.

5.1 Likelihood of Utilization (LoU)

We have called our chosen strategyLikelihood of Utilization(LoU).
The main idea is to perform qualified guesswork on how the user
is going to navigate in the model, thus being able to maintain a
dynamic cache of tiles that is estimated to be requested in the near
future.

LoU is, in short, thevalue of the tiles in the cache, where the
term value refers to how likely it is that the tiles will be requested
in relatively near future. The goal is try to keep LoU as high as
possible for the cache content at all times. Several factors play a
role when estimating the LoU of a tile, e.g. the distance between
the topography and the client’s current viewpoint, or the number
of times a tile has been requested. Since the distance between
topography and the client’s viewpoint is continuously in alter-
ation, we need some means to periodically update the values of
the tiles, and keep them organized in a priority queue. This way,
we can maintain a sound cache by purging the tiles with lowest
LoU every time a new tile is inserted into the cache. In addi-
tion, we introduce a background process that tries to generate 3D
content in advance, before the client requests it. If the daemon
generates content a relatively long time in advance, it will have to
take into consideration that the newly generated 3D content may
be considered to have a low LoU (because there may be a long
distance between the client’s viewpoint and the content). One
possible solution to this is to let the time since a tile was created
be one of the factors when estimating a tile’s LoU.

5.2 Effects of Server-Side LoU Caching

A prototype implementation, along with a set of test cases, have
been carried out in order to get some empiricism on the sug-
gested LoU Caching. The prototype focuses on the generation
of a global terrain, and is a transient, quad tree LOD model with
16 levels, returning random terrain for 1.4E09 potential tiles. The
size of the tiles was varied from approximately 300 to 350 kilo-
bytes. The model is implemented as a web service, accessed
through a server which accepts highly simplified W3DS requests,
and returns VRML content. The process of generating the ran-
dom terrain is deliberately designed to take somewhat more than
two seconds per tile. This is done by adding an artificial delay of
two seconds to the tile building process.

A test case performed with 18 different types of LoU Cache setup
is shown in Figure 6. A static, predefined fly-through, taking 300
seconds, is run through for each of the setups. This takes the
client through the model, visiting arbitrary tiles of all the sixteen
levels. By repeating exactly the same navigation for all the setups,
we end up with results suitable for direct comparison. The three
first bars show the average response time (the time between the
server received the HTTP request from the client, until it was
able to respond with the VRML file) for servers with little, or no,
LoU Caching. The difference between these three setups is that
the first one utilizes no cache at all, the second setup has a cache



capacity of 2,000 tiles, whereas the third has a capacity of 15,000.
However, no daemon is predicting which tiles will be requested in
advance in these setups. The average response time was, rounded
off to one decimal, 2.1 seconds for all. For all these setups, 0%
of the requested tiles were fetched directly from the cache, which
implies that the client memory never had to be flushed. These
three setups will function as a basis, to which the more intelligent
LoU Cache setups can be compared.

Figure 6: Average response times with and without LoU Caching

Different approaches have been tested when it comes to predict-
ing which tiles should be built in advance. Although pre-caching
is a common strategy in client-server applications, it proves dif-
ficult to find literature about similar implementations, where the
optimization mechanisms are located on the server-side. Com-
plex approaches, such as using extrapolation of recent navigation,
did not tend to result in better performance than the more simple
approach of pre-building one or more neighbors of the tiles ac-
tually being requested. Often, the extra workload introduced by
more complex heuristics, results in equally high, if not higher,
response times than that of more simple ones. Which tiles are
defined to be neighboring tiles depends solely on how many tiles
the server are allowed to prepare in advance, which in the end is
a matter of resource allocation. Figure 7 shows a rather extensive
definition of neighboring tiles. One way to dynamically control
the amount of neighboring tiles to be prepared is to select only a
selection of the neighboring tiles, depending on the current work-
load on the server.

Figure 7: Simple neighborhood pre-fetching

All of the remaining setups have implemented both a mecha-
nism that builds/prepares tiles in advance (based on neighboring
tiles), and a periodically updated priority queue (implemented as
a heap) which keeps track of the dynamically changing LoU of
the already cached tiles. This priority queue enhances the content
of the cache because it ensures that the least valuable tiles are
the first ones to be purged from the cache. Four different crite-
rions, ormeasures, are used in order to calculate the LoU of the
tiles in the content cache, viz.Distance, Reuse, IdleTime, and
CreationTime. TheDistance measure is the distance between
the last registered viewpoint and the tile,Reuse is the number
of times that the tile has been requested,IdleTime is the time
passed since the tile was last requested, andCreationTime is
the time since it was inserted in the cache.

Setup 4 to 8 all have a cache with a capacity of 15,000 tiles,

but have tweaked the weight of the four LoU measures differ-
ently. We see that while the tweaking of the measures have no
significant effect on the response time, the introduction of the
pre-building/caching of the neighbor tiles reduces the response
time by 34%. This is a reduction by a factor of three. The server
was on average, able to retrieve 65% of all requested tiles from
the tile cache.

The next four bars in the figure (9 to 13) show the response times
when reducing the cache capacity from 15,000 to 500. The sur-
prisingly small increase in the average response time (726 to 864
milliseconds, which is only a 19% increase) shows that the con-
cept of LoU Caching is scalable, and easily portable to multiuser,
session-based applications.

Bar 14 to 16 show the relative increase in performance as the in-
terval between each time the LoU priority queue is updated (to
reflect the new avatar position, number of times the tiles have
been requested, and the current time). The setups represented
by these bars are identical to setup 9, except for the following
increase in the update interval from 1.5 seconds to 3, 4.5 and 9
seconds respectively. The increase in performance is not remark-
able, probably due to the reduced workload on the server.

Setup 17 emphasizes the importance of a sound and semi-intelligent
flushing mechanism, as it is equal to setup 9 except that it ex-
punges the tiles in the cache after the FIFO queue (First in - First
out) principle. The removal of the priority queue based flushing
results in a 63% increase in the response time (from 878 to 1,402
milliseconds).

Finally, the last setup does not use the Distance measure in its
LoU estimations; only the three other measures described above.
This results in an insignificant change in the performance, prov-
ing that the choice of measure is not one of the major performance
factors.

The main lesson learned in the experiments, was that in order to
gain significant reduction in response times, it suffices to apply
a simple neighborhood pre-fetching method along with a simple
LoU metric. In addition, the cache size should be kept at a moder-
ate level. For more detailed information about the tests performed
on this prototype, see (Granlund, 2004).

6 ON-DEMAND CONSTRUCTION OF 3D OBJECTS

Some types of 2D and 2.5D geospatial data may be used to gen-
erate 3D objects automatically. As an example, a 3D building
may be constructed by extruding the footprint according to its
given height (Harvey et al., 1999). This obviously yields rela-
tively coarse models, but may still be useful in various applica-
tions, for instance city planning. There are three main reasons for
considering this approach:

• 2D geodata is much more available than corresponding 3D
content.

• 2D data is maintained in various scales, generated by well
developed and proven map generalization techniques. 3D
generalization if far more complicated and computational
intensive (Kada, 2002).

• Many types of geodata are subject to frequent updates. By
accessing the original sources, the generated 3D model is
guaranteed to be as valid as possible.



We have investigated the feasibility of this approach, in particular
focusing on the response times overhead. This was done through
a prototype server, offering 3D buildings on the VRML format.
The source data was footprint polygons and height for all build-
ings (approximately 8000) in downtown Halden, Norway. Figure
8 shows two snapshots from the test case, where the buildings
are integrated with an elevation model draped with high resolu-
tion aerial imagery. The model is a transient quad tree structure,
as described in section 3. In the lower picture, buildings in the
background are only represented by the texture, but when mov-
ing closer, more buildings will be constructed on-the-fly by ex-
trusion and incorporated in the current scene (the upper image).
See (Kol̊as, 2004) for more information on the case model and a
detailed discussion on the construction of the buildings.

Figure 8: Creating buildings on-demand

In our experiment, 1000 requests were sent to the server. Each re-
quest included a bounding box, defining a random size and loca-
tion within the model. The size of the bounding box was selected
from one out of five predefined sizes: level 0, covering 1,920,000
square meters, to level 4, covering 7,000 square meters. Further-
more, each request was sent twice to the server (making a total
of 2000 requests), first time with a parameter that told the server
to create the building on-the-fly and store the resulting VRML
representation to a temporary file. Then, a few seconds later, the
second request, with the exactly same bounding box, was sent,
this time with a parameter that told the server to fetch the VRML
representation from the temporary file. This way, the response
times for each request could easily be stored and the on-the-fly
requests could be directly compared with the equivalent direct-
access requests.

Figure 9 shows the response times difference between fetching
static 3D content from the server (direct file access) and using the

Figure 9: Overhead incurred by on-demand construction of 3D
objects

dynamic on-the-fly generation approach. Depending on the size
of the bounding box (level 0 to level 4), we see that the overhead
is, on average, 55%, 65%, 44%, 30%, and 17% respectively. The
average overhead for all levels is, roughly calculated, 50%. In
the experiment, the client and the server were connected to the
same high performance local area network. In a more realistic
setting, where the client is accessing a truly remote server, the
relative overhead caused by on-the-fly generation would decrease
as the transfer delay would constitute more of the total response
delay. Hence, the results clearly indicate that dynamic generation
of 3D content is a feasible strategy. In addition, by leveraging
LoU caching as described in section 5, one can expect to reduce
the response times to a third. This means that a W3DS server
building houses on-demand by using LoU Caching, would yield
better response times than an equivalent server using direct file
access and no caching.

7 CONCLUSION

The authors believe that the W3DS specification is a good can-
didate for a standardized and simple way to access and browse
global 3D models with local content. However, there are some
remaining issues, of which some have been addressed in this pa-
per.

First of all, we have argued that it not possible to realize huge
geospatial 3D models as static, completely pre-processed data
sets. The proposed and demonstrated concept is to build transient
models, were partial models are assembled on demand based on
current user parameters. It is also our opinion that the content,
mainly terrain grids, textures and 3D objects such as buildings
and artifacts, should be, if possible, generated on-the-fly directly
from the source data.

Obviously, this approach requires new types of server side func-
tionality. We have presented some proof-of-concept solutions,
more precisely caching methods and on-demand generation of
buildings by accessing and processing the original 2D source
data. However, a remaining challenge, far from trivial, is to
develop methods for content sources management, for instance
components acting as dynamic registries able to point to the ap-
propriate data providers. Our proposed framework, the Federat-
ing Geodata Services, is a contribution in this direction.

In order to release the full potential of the concept of the Feder-
ating Web 3D Service, we have proposed a minor extension of
the current W3DS specification. This allows Federating W3DW
providers to either use the LOD hierarchy offered by the remote
service, or generate an alternative one. However, it would require
a substantial effort to test the concept to the full extent, requiring
a realistic assortment of varied (F)W3DS servers complying to
the recommended extension of the specification.

The requirements imposed by deploying transient models also
call for new functionality on the client side. Current VRML view-
ers are not able to handle huge LOD models properly. The main
problem is a general lack of sophisticated memory management.
There are several open-source viewers, for instance the XJ3D
browser (Hudson, 2003), that could be used as a starting point
to solve this problem.



REFERENCES

Altmaier, A. and Kolbe, T. H., 2003. Applications and Solutions
for Interoperable 3D Geo-Visualization. In: D. Fritsch (ed.), Pro-
ceedings of the Photogrammetric Week 2003 in Stuttgart, Wich-
mann Verlag.

Carey, R. and Bell, G., 1997. The Annotated VRML97 Reference
Manual. Addison-Wesley Professional.

de La Beaujardiere, J., 2004. Web Map Service (WMS) Imple-
mentation Specification. 1.3 edn, Open Geospatial Consortium,
Inc.

DeVarco, B., 2004. Earth as a Lens: Global Collaboration, Geo-
Communication, and the Birth of EcoSentience. PlaNetwork.

Evans, J. D., 2003. Web Coverage Service (WCS) Implementa-
tion Specification. 1.0.0 edn, Open Geospatial Consortium, Inc.

Falby, J. S., Zyda, M. J., Pratt, D. R. and Mackey, R. L., 1993.
NPSNET: Hierarchical Data Structures for Real-Time Three-
Dimensional Visual Simulation. Computer and Graphics 17(1),
pp. 65–69.

Foresman, T., 2003. Digital Earth: the Status and the Challenge.
In: Proceedings of the Global Mapping Forum.

Gore, A., 1998. The Digital Earth: Understanding our planet in
the 21st Century.

Granlund, M., 2004. Perspective Based Level of Detail Manage-
ment of Topographical Data. Masters Thesis in Computer Sci-
ence, Østfold University College, Halden, Norway.

Harvey, F., Kuhn, W., Pundt, H., Bishr, Y. and Riedemann, C.,
1999. Semantic Interoperability: A Central Issue for Sharing
Geographic Information. Annals of Regional Science 33(2),
pp. 213–232.

Hitchner, L. E. and McGreevy, M. W., 1993. Methods for User-
Based Reduction of Model Complexity for Virtual Planetary Ex-
ploration. Proceedings of the SPIE: the International Society for
Optical Engineering 1913, pp. 622–36.

Hudson, A. D., 2003. An introduction to the Xj3D toolkit. In:
Web3D/Virtual Reality Modeling Language Symposium, p. 190.

Kada, M., 2002. Automatic Generalisation of 3D Building Mod-
els. In: Proceedings of the Joint International Symposium on
Geospatial Theory, Processing and Applications. University of
Stuttgart : Special Research Area SFB 627, Ottawa, Canada.

Klien, E., Einspanier, U., Lutz, M. and Ḧubner, S., 2004. An
Architecture for Ontology-Based Discovery and Retrieval of Ge-
ographic Information. In: F. Toppen and P. Prastacos (eds), 7th
Conference on Geographic Information Science (AGILE 2004),
pp. 179–188.

Kolås, H., 2004. 3D visualisering av kartdata. Master’s thesis,
Østfold University College. In Norwegian.

Leclerc, Y. G. and Lau, S. Q., 1995. TerraVision: A Terrain
Visualization System. Technical Note.

Lieberman, J., Reich, L. and Vretanos, P. (eds), 2003. OWS1.2
UDDI Experiment. Open GIS Consortium, Inc.

Misund, G., 2002. One Map. HØit. ISSN 0805-6692 / 0805-
7486.

Misund, G., Granlund, M. and Kolås, H., 2005. Oneglobe - Build-
ing and Browsing a Transient Digital Earth from Distributed, Het-
erogeneous Sources. In: Accepted to ScanGIS 2005.

OGC, n.d. Open Geospatial Consortium.
www.opengeospatial.org.

OneMap, 2005. Online OneGlobe Models. www.ia-
stud.hiof.no/ hermanko/onemap/onlineGlobalModels.html.
Project website.

OneMap, n.d. Project OneMap. www.onemap.org. Project web-
site.

Quadt, U. and Kolbe, T. H., 2005. Web 3D Service (W3DS).
Discussion Paper edn, Open Geospatial Consortium, Inc.

Reddy, M. and Iverson, L., 2002. GeoVRML 1.1 Specification.
1.1 edn, SRI International, http://www.geovrml.org/1.1/doc/.

Reddy, M., Leclerc, Y. G., Iverson, L., Bletter, N. and Vidimce,
K., 1999a. Modeling the Digital Earth in VRML. The Interna-
tional Society for Optical Engineering 3905, pp. 114.

Reddy, M., Leclerc, Y., Iverson, L. and Bletter, N., 1999b. Ter-
raVision II: Visualizing Massive Terrain Databases in VRML.
IEEE Computer Graphics and Applications 19(2), pp. 30–38.

Schilling, A. and Zipf, A., 2003. Generation of VRML city mod-
els for focus based tour animations: integration, modeling and
presentation of heterogeneous geo-data sources. In: Web3D Con-
ference, pp. 39–48.

Vretanos, P. A., 2002. Web Feature Service (WFS) Implementa-
tion Specification. 1.0.0 edn, Open Geospatial Consortium, Inc.

X3D, 2005. X3D International Specification Standards.


	Introduction
	Levels Of Detail in VRML
	Quad Tree LOD Hierarchies
	W3DS Access To LOD Hierarchies

	Transient Global Models
	Federating Geodata Services

	Integrating Distributed W3DS sources
	Content Caching
	Likelihood of Utilization (LoU)
	Effects of Server-Side LoU Caching

	On-Demand Construction of 3D Objects
	Conclusion

