
Distributed GML Management with SVG Tools

Keywords: SVG editor, Web mapping, Collaborative work, Geodata, XML

Gunnar Misund

Associate Professor

Østfold University College

Halden

Norway

gunnar.misund@hiof.no

http://www.ia.hiof.no/~gunnarmi/

Biography

Gunnar is teaching and researching at Østfold University College, Halden, Norway. His

main research interests are digital (web) mapping and distributed computing. He is the

founder of Project OneMap.

Henning Kristiansen

M.Sc. Student

Østfold University College

Halden

Norway

henning.kristiansen@hiof.no

Biography

Henning is studying computer science at Østfold University College, Halden, Norway.

He is especially interested in game programming and design and implementation of

complex user interfaces. He is a member of the Project OneMap Team.

Mats Lindh

M.Sc. Student

Østfold University College

Halden

Norway

mats.s.lindh@hiof.no

Distributed GML Management with SVG Tools

1 of 18

Biography

Mats is studying computer science at Østfold University College, Halden, Norway.

Among his interests are algorithm design, game programming, web computing and

component based systems. He is a member of the Project OneMap Team.

Abstract

We present a browser based GML (Geographic Markup Language) editor implemented

with SVG (Scalable Vector Graphics) and DOM (Document Object Model) scripting.

The editor is able to treat GML 2.1 compliant data. The geometric editing is based on

moving, deleting and inserting points and groups of points. Thematic properties are edited

in tables. The editor is designed, within certain limits, to be a multi purpose editor.

However, the main target application is data management in Project OneMap. We outline a

client/server based peer review submission process using the editor as the main tool.

Table of Contents

1. Background

2. Editor

 2.1 Functionality

 2.2 Implementation

 2.2.1 Window management

3. Application

 3.1 Project OneMap

 3.1.1 Repository

 3.1.2 Gateway

 3.1.3 ClearingHouse

 3.2 Data Submission by Peer Review

4. Further Work

5. Final Remarks

Footnotes

Acknowledgements

Bibliography

Distributed GML Management with SVG Tools

2 of 18

1. Background

The work presented in this paper [1] is part of an ongoing long term effort named Project OneMap

[MIS1] . The main objective of this project is to incrementally build a large, distributed global online

map. The intention is to provide free access to a repository of geographic information that may be

used as base data for a wide variety of applications, such as GIS (Geographic Information Systems)

analyses, environmental planning, tourist guides, transportation management and the like. Project

OneMap is an open project in every respect, as it is based on Open Source [OSR] and Open

Content [OCN] principles, and also adopts a distributed management model. The project is currently

hosted by and coordinated from Østfold University College, School of Computer Science. In

addition, all major software components are completely platform independent.

Much of the work was carried out as parts of student projects in the Digital Map course at Østfold

University College in the spring of 2003 [DM] . The authors of the paper were all connected to the

course, as supervisor and students.

The first part of the paper describes the GML editor, and the last part gives a conceptual view of a

client/server based peer review process, supporting submissions of new geodata and modifications

of existing data in the OneMap system. We close the paper by pointing out directions for future

development and presenting some conclusions.

2. Editor

The main rationale for designing and developing the GML editor was to provide a flexible and

efficient tool for presenting and editing data represented on the XML (eXtensible Markup

Language) format GML, as defined by the OGC (Open GIS Consortium) specification GML 2.1

[GML2] . This version of GML has recently been replaced by the the more complex set of GML 3.0

schemas [GML3] (which are backwards compatible with 2.1). GML 3.0 is expected to be adapted

and adopted as an ISO (International Standardization Organization) standard, ISO TC211/19136,

hopefully some time during 2004 [ISO] . The main target application is the Clearinghouse part of

Project OneMap, as described later in the paper. A fully working demo of a standalone version

(without server connection) of the editor is presented in Figure 1 (See [HLP] help on using the

interface).

Distributed GML Management with SVG Tools

3 of 18

Figure 1: Working Demo

2.1 Functionality

The GML Editor is designed as a lightweight client application able to run in a standard Web

browser, such as the MS Internet Explorer. The server side of the system takes care of translating

GML compliant documents into carefully structured SVG instances. After modifying the SVG

document with a DOM supporting plug-in (e.g. Adobe SVG Viewer 3.0 [ADO]), the changes are

transferred back to the server, which applies the modifications to the original GML file. As indicated

in Figure 2 , currently two schemas [PAC] are accepted as defining the valid input formats for the

editor.

Distributed GML Management with SVG Tools

4 of 18

Packet2SVG

OMPacket

GMLPacket

SVG2Packet

OMPacket

GMLPacket

Editor

Figure 2: Architecture

A GML document is essentially structuring geodata according to a simple feature approach, as

specified in OGC Simple Feature Specification [SIM] . A feature is a geographic entity, such as a

road, building or lake. A feature is defined by a set of properties. A feature property may fall in one

of two categories, either as geometry or thematic (non-geometric) information. The editor is capable

of treating modifications of both types of information.

GML geometry is piecewise linear, in the sense that is is based on linear interpolation of point sets

of coordinates, e.g. polygons. Hence, the main modifications to such geometries may be

decomposed to moving, deleting or inserting a point or set of points. The editor supports both these

operations, as illustrated in Figure 3 .

Figure 3: Geometry Editing

The non-geometric information in a GML file can be generalized to a list of an arbitrary number of

property-value tuples. More precisely, we are dealing with triples, since the data type (string, integer,

Distributed GML Management with SVG Tools

5 of 18

double, etc.) of the property may be specified. The editor is able to modify the values of these

properties. By clicking on a the geometry of the feature, a editable property window pops up (see

Figure 4).

Figure 4: Properties Editing

In the main modus the editor handles a GML file where the modifications and the original data are

embedded as separate layers. The editor treats the layers independently, and is able to perform

locking and visibility operations on each layer. In Figure 5 the layers are visible: the new one is

locked, and the old is editable. When dragging out the selection rectangle, only points from the old

layer are highlighted.

Distributed GML Management with SVG Tools

6 of 18

Figure 5: Layer Management

All modifications are recorded in a history list, and it is possibly at any point in the editing process

to revert to an arbitrary point in the process and undo/redo the corresponding changes of the

document. The history list is scrollable, and each event is labeled with the type of change, as

illustrated in Figure 6 .

Distributed GML Management with SVG Tools

7 of 18

Figure 6: History Window

To facilitate zooming and panning, a navigator window has been added, displaying the current area

of the main window related to the original view. Zooming may only be performed in the main

window (both by zoom rectangle and mouse click). Panning may be done either in the main window

(the standard panning tool) or by dragging the location rectangle in the navigator window (Figure 7

).

Figure 7: Navigator Window

Finally, the editor is fully resizeable in order to support different combinations of display sizes and

resolutions combined with the user's preferences. Some examples are shown in Figure 8 . Note that

the resizing takes proper care of relative positions and sizes of the menu windows.

Distributed GML Management with SVG Tools

8 of 18

Figure 8: Resizing

2.2 Implementation

The editor has been realized by taking full advantage of the SVG DOM, which is a slight extension

of the DOM level 2 interface defined by the W3C (World Wide Web Consortium) [DOM2] .

Interaction with the DOM interfaces are implemented with ECMAscripts (java) [ECM] . The editor

is based on inspiration and solutions from a growing number of SVG based web mapping

solutions, such as the Vienna project [VIE] and the Cleopatra scripts [CLE] , and general purpose

SVG authoring tools, e.g. the SVG editor from Peto [PET] .

One of the design goals was to make the editor reasonably independent of both the browser and the

plug-in. This is not easily achieved due to differences in browser support for ECMAscripting and

differences in the plug-in implementations of the SVG DOM. However, the editor currently runs on

the most common combinations of browsers and plug-ins.

During implementation of the editor, several challenges surfaced. We briefly outline some of the

encountered problems and their solutions.

2.2.1 Window management

Distributed GML Management with SVG Tools

9 of 18

The editor is designed according to the widespread model with a main working window and several

smaller widget windows to facilitate different operations. Some of the windows are permanent, and

some are of pop-up/closable kind. All the auxiliary windows are dragable and transparent.

The movable windows are implemented as SVG in SVG components with their own coordinate

systems. This reduces the complexity of performing various operations within a auxiliary window,

independent of it's parent SVG window, and also makes dragging easier to implement, as illustrated

in Figure 8 .

Figure 9: Coordinate Systems in Main and

Auxiliary Windows

Figure 9 illustrates the set of SVG windows and their corresponding coordinate systems. The red

rectangles represent the SVG windows for the widget windows. All of the graphical objects inside

each window are defined in the corresponding coordinate system, indicated by the red text. The main

window coordinates are in blue. When resizing the main window, the coordinates for each widget

do not change. However, the position of the upper right corner and the length and width will be

scaled accordingly.

All windows share a common set of JavaScript functions [JSC] , briefly described in the Table 1 .

Distributed GML Management with SVG Tools

10 of 18

Function Description

init Initiates the menu and points to elements in the SVG DOM

setMenu
Usually called in the init method and calculates the values needed for

that window

moveMenu Moves the menu and keeps track of the current position

scaleMenu Scales the menu according to the resized main window

startClickMenu Called on a mouse-over-window event and prepares potential actions

stopClickMenu Called on mouse-up-inside-window and initiates proper actions

Table 1

What the different functions actually do is specific to the menu item it is applied to. This is however

an outline of the basic steps performed on every mouse event in the windows.

3. Application

The editor may be used in a variety of applications, but some of the features have been implemented

with a specific application in mind. We give a brief outline of this application, the Clearinghouse

component of Project OneMap.

3.1 Project OneMap

OneMap is functionally comprised by three main components: Repository, Gateway and

Clearinghouse. The alpha version has been up and running for a year, and the beta version will be

released later this year.

3.1.1 Repository

The Repository is a distributed storage infrastructure. This is basically a (huge) set of GML files

Distributed GML Management with SVG Tools

11 of 18

structured to efficiently support retrieval and updating of the geodata comprising the world map. The

total amount of base data is currently in the magnitude of 50 M points, and is expected to expand to

around 500 M points within the end of the year. The data is structured in levels of detail to facilitate

global overviews as well as street level inspections. The files are distributed redundantly on a set of

servers. This facilitates both storage scaleability and parallel processing of retrieval queries and

updating procedures.

Currently we use a straight forward directory based management of the distributed data. However,

work is in progress to implement a peer-2-peer infrastructure to avoid bottlenecks and single-points-

of-failure. The communication within the OneMap infrastructure is based on Web Services

paradigms and technologies. The main interface to the repository is defined as an OGC WFS (Web

Feature Service) [WFS] implemented with a (slightly modified) open source framework from

Deegree [DEG] . The services are based on Java Servlet technology.

3.1.2 Gateway

The Gateway is a browser based user interface for retrieval of OneMap data. We are currently using

an SVG/Javascript implementation, which provides simple but sufficient navigation and query

possibilities. In addition to the SVG view, the users may download the GML formatted version of

the response. The GateWay is based on the same principles as the GML Editor, and is presented in

more detail in [MIS2] .

3.1.3 ClearingHouse

One of the main objectives of OneMap is to make it possible to build a huge map in an incremental

and uncoordinated manner with contributions from a wide variety of parties, but still guarantee a

reasonable level of reliability and quality. The main problem is to integrate submissions with the

existing geodata. We address the problem by using a framework based on the well known principles

of peer review. The process of contributing new geodata or updating existing data is outlined in the

next section.

3.2 Data Submission by Peer Review

Each submission to the OneMap Repository is "owned" by the contributing person or party. The

submission process supports a bottom-up quality control. It is built upon the assumption that the

owners of already submitted data are the most competent to assess the quality of data submitted in

the vicinity of their own data.

There are two main user roles in the submission process, the submitter and the peers. Note that the

following description is based on geodata submission. However, a similar process covers

Distributed GML Management with SVG Tools

12 of 18

management of the OneMap Featuretype Catalogue. This is essentially a database of the existing

featuretypes, say river, highway, school etc., which may be modified by the users in a similar way

as the geodata. The featuretype management falls outside the scope of this paper.

Verify and
fetch data

Integrate
submission

into repository

Has complete
consensus been

reached?

EndStart
Data locked or

uneditable?

No

Yes

No

Yes

Peer Review
Process

Case Consensus Reached2

1

Figure 10: Submission Process

The overall geodata submission process is outlined in Figure 10 . The submitter uses the

ClearingHouse browser based interface and uploads a submission. A submission may be an

addition to the data repository, i.e. in the form of new feature instances, or it may define changes,

such as updates and refinements of existing data. The submission must be represented as a GML file

conforming to the relevant XML schemas [PAC] . The ClearingHouse server then identifies a set of

peers, i.e. owners of data that is affected by the submission. Then an interactive peer review process

is initiated and is terminated when consensus is reached. Finally, the submission is integrated in the

OneMap Repository.

Distributed GML Management with SVG Tools

13 of 18

Figure 11: Main Review Cycle

The peer review process consists of a number of main iteration cycles Figure 11 . Each main cycle

starts with a review process between the submitter and the first peer in the peer group list.

Suggestions of modifications of the submission is passed back and forth until the submitter and peer

both are satisfied Figure 12 . Then the (possibly) modified submission is subject to a review

between the submitter and the second peer, ... and on it goes until the complete peer group finds that

the submission is OK. The criterion for consensus may vary depending on the type of data

submitted, from complete majority to some partial agreement.

Active Peer
reviews current

submission

Submitter
reviews

Are all peers OK on
the current data?

Both submitter
and peer are OK?

The next peer
becomes the
active peer

No

No

YesNo

Yes

1

2

Both submitter
and peer are OK?

Yes

Distributed GML Management with SVG Tools

14 of 18

Figure 12: Submitter - Peer Process

The main tool in the review process is the integration maps. These maps are presented in the GML

Editor, and focus on regions with zero or more conflicts or inconsistencies between the submitted

and existing data. Figure 13 shows how a submission has been broken down in two integration

maps, which both are subject to their own review processes. The review process is terminated when

all integration maps have been agreed upon.

Figure 13: Integration Maps

4. Further Work

Three main extensions are planned. First we would like to make the editor more robust with regard

to the kind of GML documents it is able to treat. We are in the process of designing a method that

will remove the step where GML files have to be transformed to a predefined packet format. This

method will map the GML structure more or less in a 1-to-1 manner to a corresponding SVG

document and back again.

If the above approach proves successful, we will be able (with minor adjustments) to also treat

GML 3 documents.

The second extension will make it possible to interactively build completely new features, including

both geometric and thematic information.

Distributed GML Management with SVG Tools

15 of 18

5. Final Remarks

The development of the GML Editor has proved that lightweight client side browsers and editors

may very well be implemented with the combination of SVG plug-ins and scripting.

The open nature of this programming approach makes it easy to learn, borrow and modify from a

wide variety of existing applications. In addition, the XML based development environment makes it

possible to choose from a large number of low cost (or free) and high quality tools. All in all,

relatively small efforts were put into the project. The main bulk of the implementation has been

carried out by a team of students, in short time, with no or little prior knowledge of SVG, digital

mapping or even XML technologies, but with a solid foundation in traditional computer science and

programming in general.

Footnotes

This paper is part of the OneMap Documentation Series (OMD 00303). The OneMap

publications serve two purposes: 1) To disseminate knowledge and experiences that might be

useful for other parties and applications, and 2) To encourage feedback and discussion in a

broad setting. The presented results are not to be regarded as "final solutions", rather as a

starting points for further discussions and developments.

1.

Acknowledgements

The author is grateful for the financial support offered by Østfold University College, which made it

possible to finalize and refine results from the Digital Maps course. It also made it possible for part

of the OneMap Team to attend the SvgOpen conference.

Bibliography

[ADO]

Adobe SVG Viewer 3.0. Adobe Systems Incorporated. http://www.adobe.com/svg/overview

/whatsnew.html.

[CLE]

Distributed GML Management with SVG Tools

16 of 18

Cleopatra GIS Data Plug-in. SchemaSoft, Vancouver, Canada http://www.schemasoft.com

/cleopatra/index.shtml.

[DEG]

deegree 1.0.11. Project Deegree. http://deegree.sourceforge.net/index.html.

[DM]

Digital Maps. Gunnar Misund, Østfold University College http://www.ia.hiof.no/digmap/.

[DOM2]

Document Object Model (DOM) Level 2 Specification. W3C Recommendation 13 November,

2000 http://www.w3.org/TR/DOM-Level-2-Core/.

[ECM]

ECMAScript Language Specification, Standard ECMA-262. ECMA International Standard,

3rd edition (December 1999) http://www.ecma-international.org/publications/files/ecma-

st/Ecma-262.pdf.

[GML2]

OpenGIS® Geography Markup Language (GML) Implementation Specification, version

2.1.2 . Open GIS Consortium, Inc., 2003-17-09 (OpenGIS Project Document Number

02-069) http://www.opengis.net/gml/02-069/GML2-12.html.

[GML3]

OpenGIS® Geography Markup Language (GML) Implementation Specification, version 3.0.

Open GIS Consortium, Inc., 2003-01-29 (OGC 02-023r4) http://www.opengis.org/techno

/documents/02-023r4.pdf.

[HLP]

GML Editor Help. Henning Kristiansen and Mats S. Lindh help.html.

[ISO]

Geographic information - Geography Markup Language. International Organization for

Standardization http://www.isotc211.org/scope.htm#19136.

[JSC]

GML Editor Java scripts. http://www.ia.hiof.no/~gunnarmi/svgopen03/editor_script_files.zip.

[MIS1]

The One Map Project. Gunnar Misund and Knut-Erik Johnsen. In online proceedings from

GML Dev Days, Vancouver, July 2002 http://www.gmldev.org/GMLDev2002/presentations

/MakingMapsfromGML/johnsen/one_map_misund_johnsen.html.

[MIS2]

The OneMap Gateway - An SVG/WFS Interface To Distributed Geodata. Gunnar Misund,

Henning Kristiansen, Mats Lindh, Knut-Erik Johnsen. Student poster, SVG Open 2003

Conference and Exhibition, Vancouver, Canada, July 13-18, 2003 http://www.svgopen.org

/2003/paperAbstracts/TheOneMapGatewayAnSvgWfsInterface.html.

[OCN]

Distributed GML Management with SVG Tools

17 of 18

XHTML rendition created by gcapaper Web Publisher v2.0, © 2001-3 Schema Software Inc.

OpenContent License (OPL). OpenContent, Version 1.0, July 14, 1998.

http://opencontent.org/opl.shtml.

[OSR]

The Open Source Definition. Open Source Initiative (OSI), Version 1.9

http://www.opensource.org/docs/definition.php.

[PAC]

GML Editor XML schemas. http://www.ia.hiof.no/~gunnarmi/svgopen03/editor_scemas.zip.

[PET]

SVG Editor. Christopher B. Peto http://resource-solutions.de/svgeditor/.

[SIM]

OpenGIS Simple Features Specification For SQL Revision 1.1. Open GIS Consortium,

Inc.,OpenGIS Project Document 99-049, May 5, 1999 http://www.opengis.org/techno/specs

/99-049.pdf.

[SVG]

Scalable Vector Graphics (SVG) 1.1 Specification. W3C Recommendation 14 January 2003

http://www.w3.org/TR/SVG11/.

[VIE]

Vienna - Social Patterns and Structures. Andreas Neumann, Version 1.1 (12.3.2000)

http://www.karto.ethz.ch/neumann/cartography/vienna/.

[WFS]

Web Feature Service Implementation Specification. Open GIS Consortium, Inc.,

19-September-2002 (OGC 02-058) http://www.opengis.org/techno/specs/02-058.pdf/.

Distributed GML Management with SVG Tools

18 of 18

