
Integration of Geographical Information Technology andConstraint Reasoning -A Promising Approach to Forest ManagementGunnar Misund Bjørn Sigurd Johansen Geir HasleSINTEF Informatics, P.O. Box 124, Blindern, N-0314 Oslo, NorwayfGunnar.Misund, Bjorn.Johansen, Geir.Hasleg@si.sintef.noJørgen HauklandGjøvik College, P.O. Box 191, N-2801 Gjøvik, Norway Haukland@gih.noAbstractIn this paper we describe synergy e�ects of combining state-of-the-art GeographicInformationTechnology (GIT) with novel methods for planning and scheduling from the�eld of Constraint Reasoning (CR). An integrated problem solving strategy has beendeveloped for a problem arising in forest management. In particular, we have developeda method for solving what we have called the Clear-Cut Scheduling Problem (CCSP),where the task is to assign clear-cutting times to regions in a given forest area over a longterm horizon. The schedule must satisfy certain ecological, recreational and economicalconstraints, and, in addition, optimise on a number of partially con�icting criteria. Ourapproach is based on the combination of advanced spatial analysis with an IterativeImprovement Technique in tandem with the Tabu Search meta heuristic. We havedeveloped a software prototype called ECOPLAN with functionality for generation,presentation and modi�cation of harvest schedules in an integrated decision-supportenvironment. Empirical experiments have been carried out using a real-life test caseconsisting of a forest property subdivided in approximately 500 stands.Keywords: Forest harvesting, Scheduling, GIS, Optimisation, Tabu Search.1 IntroductionThis article presents some results from a research project at SINTEF Informatics carriedout in 1994. The main objective was to explore the assumed synergy in combining two sep-arate R&D �elds: Geographic Information Technology (GIT), and planning and schedulingbased on Constraint Reasoning (CR). Forest management was chosen as an interesting andchallenging application area.GIS and computer aided scheduling and planningThe research project was initiated by the observation that many planning and schedulingactivities incorporates spatial information, and vice versa that users of geographical in-formation systems (GIS) often demand advanced analysis functionality to solve problemsassociated with planning or scheduling problems.Brief surveys and market analyses, and common experience, showed that existing sys-tems for computer aided planning and scheduling have none or very limited capabilities1



to handle problems incorporating a spatial component, and that existing GIS o�er veryprimitive facilities for planning and scheduling, if any at all. A technical report on the�eld of route planning and �eet management was prepared in the project [Gje94], and thereport clearly demonstrates the lack of integration of GIT and planning in this particularproblem domain.New challenges in forest managementTo study the e�ects of integrating GIT and CR, we selected forest management as an appli-cation area. NORSKOG, a Norwegian association of forest owners, provided the problemformulations and the data needed to design, implement and test a software prototype fordecision support in long term forest scheduling.During the past decade, the forest trade has faced a set of new challenges, both inNorway and in other parts of the world. Authorities and market segments demand ac-complishment and documentation of sustainable forest harvesting. In addition to reachingeconomical objectives, the trade also has to take care of ecological concerns, such as wildlifepreservation and biological diversity, and occasionally also have to achieve recreational ob-jectives.To document that external restrictions are being followed, and to actually carry througha sustainable forest harvest, long term treatment schedules are considered one of the mainvehicles. Based on Norwegian legislation in general, and, in particular restrictions on forestharvest in the near-city areas of Oslo, a case example was constructed in collaboration withNORSKOG:Given a forest subdivided into a set of stands, i.e. regions that are considered homogeneouswith respect to certain parameters such as soil fertility, wood species, average age and soforth, the goal is to compute a schedule that for each year in a the planning period speci�esa set of stands to be clear-cut. The schedule should satisfy certain constraints and besatisfactory according to a set of associated criteria:� 2�m constraint: All neighbour sites of a clear-cut stand have to be higher than 2�m.� Even Consumption: The total volume of harvested forest should be as even aspossible from one year to another.� Old Forest: The total area of �old� forest should be kept above a given level over theentire period.� Optimal Harvest Time: The harvested forest should be as �ripe� as possible, nottoo old, nor too young.� Visual Impact: Given a set of prede�ned viewpoints in the landscape, the spatialdistribution of the clearings should minimise the reduction of the aesthetically qualityof the sceneries.The planning period is typically 100 years, and the forest properties may consist of from 50to 5,000 individual stands.Long term forest harvesting schedules are commonly used in the management of about70% of the total productive forest area in Norway. Currently, there is no software availableto support scheduling under the new constraints and criteria imposed by the authoritiesand the market.The remainder of the paper is organised as follows: In section 2 we de�ne and discuss theCCSP from a scheduling point of view. We outline some of the traditional approaches anddescribe the chosen CR-strategy, the Iterative Improvement Technique (IIT). The designand implementation of an experimental prototype called ECOPLAN is described in section2



3. A speci�c test case is presented in section 4, within which we describe the experimentsthat have been carried out in order to study the behaviour and performance of ECOPLAN.In section 5 we discuss brie�y some of the results and suggest further research in the �eld.2 The Clear-Cut Scheduling Problem (CCSP)We de�ne the Clear-Cut Scheduling Problem (CCSP) as the assignment of clear-cut a yearto individual stands in a forest area. Given a forest area and its subdivision in stands,the task in CCSP is to generate a harvesting schedule for a horizon of, say, 100 yearswhich a) satis�es a number of constraints, and, b) strikes a careful balance between severalcriteria. Adequate models of the CCSP will represent a complex combinatorial optimisationproblem.In this section, we shall discuss the successful solution of an instance of the CCSP,which has a speci�c set of constraints and optimisation criteria.2.1 A Semi�Formal De�nition of the CCSPOur semi�formal de�nition of the CCSP consists of a topological description with a parti-tioning of a forest area into regions (stands), individual parameters for regions, a descriptionof the problem variables, a description of the hard and soft constraints1, a description ofthe criteria that de�ne the quality of a harvest schedule.The goal of the CCSP is to �nd a complete, consistent, and optimised clear-cut harvest-ing schedule s. By complete we understand that each region must be assigned a time forfuture treatment. By consistent we mean that the schedule s must not violate any hardconstraints. By optimised, we understand that s must optimise certain criteria, e.g., byminimising or maximising the value of a de�ned objective function, and, s must satisfy allsoft constraints to as large degree as possible. Time granularity is 1 year and there is onlyone type of forest treatment.Topological description. The considered forest area F contains n non-overlappingregions R1; : : : ; Rn in such a way that, when regarding the forest area and the regionsas point sets in the plane, R1 [ : : : [ Rn � F and 8i; j 2 [1; n]; i 6= j : Ri \ Rn = ;.The underlying assumption is that each region is homogeneous with respect to the forestproperties that are relevant to harvest scheduling (i.e., regions are stands). For every regionRi; i 2 [1; n] a set of neighbours N(Ri) is de�ned. N(Ri) � fR1; : : : ; Rng. In a similarway, we de�ne I(i) � [1; n] as the index set for the neighbours of Ri.Individual parameters/functions. For every region R 2 fR1; : : : ; Rng, several pa-rameters/functions are given:LH(R) denotes the time of the most recent harvesting.EARLY (R) denotes the minimum duration between harvests.LATE(R) denotes the maximum duration between harvests.OPT (R) denotes the optimal time between harvests.TM(R;H) denotes the time it takes for trees to grow from 0 to a certain height H .AREA(R) simply denotes the area of R.GROWTH(R; y) is the volume that may be harvested y years after the last harvesting.The CCSP variables. Let hi denote the scheduled harvesting year for regionRi. fhig; i =1A hard constraint is a relation which must be satis�ed. A soft constraint may be relaxed.3



1; : : : ; n are the problem variables. We shall also use hi(s) to denote the scheduled har-vesting year for region Ri relative to a particular schedule s. The variables have domainsthat represent a part of the time line. We have selected an integer interval representation:Di = [0;M ], where 0 represents current year, and M is typically the scheduling horizon.Hard constraints. Before a region may be harvested, it is required that every neighbour-ing region has an average tree height of say at least 2 meters. Thus, for a feasible schedules, the following must hold:8i 2 [1; n] : 8j 2 I(i) : (hi(s) < hj(s)) _ (hi(s) � hj(s) + TM(Rj)):We shall denote these hard constraints the 2�m constraints.Soft constraints. For economic and quality reasons, there are bounds on times betweenharvesting: 8i 2 [1; n] : EARLY (Ri) � hi �LH(Ri) � LATE(Ri). These constraints maybe relaxed in order to ful�ll the 2�m constraint.Criteria for an optimised schedule s. Below we shall describe and suggest formalde�nitions for the four major optimisation criteria identi�ed by forestry experts for theCCSP.C1: Optimal Harvesting Time. For every regionRi, the harvesting time should be as close aspossible to its optimal harvesting time. E.g., the value Pni=1(j OPT (Ri)� (hi�LH(Ri)) j)should be minimised.C2: Even Consumption. The estimated harvesting volumes for each year EHVy(s); y 2[0;M ] should be as close as possible to the average harvested volume AVH(s). E.g., thevalue PMy=0(j EHVy(s)�AVH(s) j) should be minimised.C3: Old Forest. It is desired that the schedule maintains a minimum area of old forest AOFover the schedule horizon. Let OLD(y; s) denote the area of old forest in year y 2 [0;M ]resulting from the schedule s. We then want to minimise for instance PMy=0max(0; AOF �OLD(y; s)).C4: Visual Impact. The schedule should minimise visual damage relative to a given set ofviewpoints. For instance, we may want to minimise the maximum sum of projections ofclear-cuts from a given set of critical viewpoints over all years. Assuming one viewpointV , and denoting a quanti�cation of the visual impact from region R in year y relative toviewpoint V as V IS(R; y; V ), the schedule should minimise: maxMy=0(Pni=1 V IS(Ri; y; V )).2.2 Properties of the CCSPFocusing on the hard 2�m constraints, the CCSP may be regarded as a Constraint Sat-isfaction Problem (CSP) [Tsa93]. In particular, there are strong similarities between theCCSP and the Graph Colouring Problem (GCP). Informally, the task in the GCP is toassign colours (from a given set of colours) to the nodes in a graph in such a way thatno neighbours is given the same colour. The GCP belongs to the class of NP�completeproblems [GJ79], for which there probably does not exist any e�cient (polynomial) algo-rithm. In practical terms, this means that we cannot expect to �nd the optimal solution forlarge problem instances as this would require too much computation due to combinatorialexplosion.Although there are additional constraints and objectives, our conjecture is that theCCSP is NP�hard2. We must therefore lower our expectations and concentrate on �ndinghigh�quality solutions in limited time. To illustrate the size of the search space, assuming an2A proof is beyond the scope of this paper. 4



e�ective domain size of 50 for a typical number of 500 regions, the total number of schedules(counting both feasible and infeasible solutions) is 50500 � 10850. A current estimate forthe total number of atoms in the Universe is only 10120. Returning to the optimisationaspects, it is clear from the above description that the CCSP involves the balancing ofseveral potentially con�icting criteria. This problem characteristic also contributes to thecomplexity of the CCSP, a complexity which calls for e�ciency, robustness and �exibilityin optimisation techniques to be selected for CCSP decision�support tools.2.3 Problem Solving Techniques for the CCSPFor constrained combinatorial optimisation problems (such as the CCSP), alternative prob-lem solving techniques exist. Our selection of technique has been motivated by the require-ments for end user forest management systems outlined above.Mathematical Programming. Linear Programming, in particular, Mixed IntegerProgramming (MIP) and Goal Programming (GP) has been applied to the CCSP andsimilar problems[WMMK94]. Our initial attempts to formulate the CCSP as a MIP haslead us to conclude that this approach is not well suited, for the following reasons:� their lack of �exibility in expressing constraints and objective criteria� their lack of support for mixed-initiative problem solving� their lack of repositories for heuristics to guide combinatorial searchSystematic Tree Search (STS). Taking a Constraint Satisfaction Problem perspec-tive on the CCSP, several backtracking tree search and consistency techniques are viable.Standard Backtracking (SB) may be seen as the basis for these techniques. SB will itera-tively construct a solution by successively assigning values to the problem variables (i.e.,assign a harvesting year to one region, then to another, and so on) while checking whetherconstraints are satis�ed. If no value is possible for the current variable due to constraintviolations, the algorithms will backtrack and try a new value for the previously instantiatedvariable. STS is complete, i.e., it e�ectively enumerates all solutions.Due to its exponential time complexity, STS is not an alternative for the CCSP withoutthe addition of strong heuristics, i.e., knowledge, general or problem speci�c, that mayrapidly guide search towards a solution. Examples are variable ordering and value orderingheuristics that will decide the sequences of variables and values in the instantiation process.In addition, consistency techniques may be used to prune the search space by removingvalues that may not be included in a solution. Except for questions about adequate responseperformance, STS suits the above requirements for forest management decision�support.If the more �intelligent� variants of STS fail, one may have to sacri�ce completeness3for response time and employ more powerful heuristics in a non-systematic search regime.We have evaluated STS with several variable and value ordering heuristics in the contextof �nding a 2�m feasible solution. In initial empirical investigations it was not possible toobtain a solution within acceptable response limits, even for small CCSP problem instances.More recent investigations using alternative variants of STS have shown promising results,but more work remains to be done.Iterative Improvement Techniques (IIT). The initial failure of systematic searchtechniques pointed us to IIT, which, over the past few years, have shown remarkable perfor-mance in providing high quality solutions to scheduling problems in limited time [Dor95].The basic idea is neighbourhood search, i.e., given a complete (but possibly non-feasible3I.e., the guarantee that the algorithm will �nd a solution if there is one.5



and sub-optimal) solution, generate a neighbourhood for this solution by applying a setof modi�cation operators. The search for a better (i.e., more optimal and more feasible)solution then proceeds iteratively by selecting the best neighbour as the new current so-lution. In this basic form, IIT is a hill-climbing algorithm which tends to get stuck inlocal optima. To remedy this, so-called meta-heuristics may be employed, e.g., SimulatedAnnealing (SA) [Kir83] or Tabu Search (TS) [Glo90]. IIT may at �rst glance seem mostappropriate for problems where a feasible solution is known to exist (and is relatively easyto �nd). However, one may apply a strategy similar to Goal Programming to add robust-ness and automatic constraint relaxation facilities. An initial solution may be generatedrandomly, by greedy heuristics, or even by STS.A particularly nice feature of IIT in the context of decision�support is their anytimecharacteristic. The iterative problem solving process may be interrupted at any time, andthe best solution so far is available for presentation. Moreover, a candidate solution maybe modi�ed by the user and used as the seed for a new iterative improvement process.IIT has earlier been applied to forest management problems, e.g., to solve the a�orestationproblem[MJTVV92].2.4 IIT - The Selected Search StrategyOur selected search strategy for the CCSP is IIT with the Tabu�Search (TS) meta�heuristic[Glo90]. TS is composed of a neighbourhood operator, an evaluation function for neigh-bours, a tabu criterion, and an aspiration criterion. A method for generating an initialcandidate solution is needed to initiate the iterative improvement process. Below, we dis-cuss these elements of TS in the context of the CCSP and our concrete implementation.The Evaluation Function assigns goodness values to candidate schedules. The eval-uation function is critical as it is used to guide search. We have selected a relatively simpleapproach where the evaluation function is a weighted sum of the 4 optimisation criteriacomponents described above. In addition, a penalty function for violations of the 2�mconstraints is introduced as an evaluation function component4. Hence, the selected eval-uation function may be expressed as: P4k=0 wiCi. For decision�support our approach isattractive because it allows end users to interactively experiment with di�erent weightsand thus overcome the rigidity of static optimisation functions. However, the selection ofappropriate weights may be non-trivial.Neighbourhood Operator. We have selected a neighbourhood operator which simplygenerates the neighbourhood by modifying exactly one harvesting year. Let �(s) denotethe neighbourhood of schedule s. The operator is de�ned by:�(s) = fs0 : 90i 2 [1; n] : (hi(s) 6= hi(s0) ^ (8j 2 [i; n]; j 6= i : hj(s) = hj(s0))g:(We have taken the liberty to use a modi�ed existence quanti�er 90 which has themeaning �there exists one and only one�). Moreover, we have chosen to let � only generatelocal-feasible harvesting years to the selected modi�ed region, i.e., we have added thecondition: EARLY (Ri) � hi(s0)� LH(Ri) � LATE(Ri)5. The size of the neighbourhoodis: j �(s) j = Pni=1 j LATE(Ri)�EARLY (Ri) j. Hence, we have a simple operator whichgenerates a large neighbourhood.4The approach is similar to Goal Programming.5This condition may be relaxed in order to increase the probability of satisfying the 2�meter constraints.6



Initial Schedule. We have selected a greedy algorithm for generating the initialschedule s0. It simply consists of assigning the local�optimal harvesting time to everyregion, where possible. More precisely, we have: 8i 2 [1; n] : hi(s0) = max(0; LH(Ri) +OPT (Ri)).The Tabu Criterion speci�es moves that are tabu and thus will not be executed. InTS, the iterative improvement basically consists of movement to the neighbour with thebest value of the evaluation function. To escape from local optima, neighbours with certainde�ned properties are de�ned as tabu. Currently, we use a simple criterion, stating thatwe are not allowed to move to a neighbour which had its harvesting year changed within acertain number of iterations.The Aspiration Criterion. In TS, a move which is de�ned as tabu may (on secondthoughts) be performed if allowed by an aspiration criterion. Our current choice of aspi-ration criterion simply checks for global improvement. If a move is deemed tabu, but willresult in the best schedule encountered so far, the move will be performed anyway.3 Design and Implementation of ECOPLANAs suggested by Pukkala and Kangas [PK93], there are several requirements for forestmanagement planning systems to be accepted by end users. They mention user friend-liness, optimisation capabilities, and su�cient level of detail. On our own account, and,particularly relevant to CCSP tools, we would like to add representational adequacy (i.e.that the underlying problem model is adequate), heuristic adequacy (i.e. that high-qualitysolutions will be presented in reasonable time), and �exibility towards modi�cation of data,constraints, and criteria. These requirements, as well as the overall CCSP characteristics,strongly suggest a decision-support approach. Moreover, tight integration with GIS, as wellas an excellent user interface for controlling the scheduling process, are needed. Previousattempts to solve the CCSP have generally failed to address the full set of requirements.The ECOPLAN prototype is designed as a synthesis of four modules. The core of thesystem is a close integration of a scheduling engine called the IIT Kernel and a set ofGIT Services. These two modules are embedded in an interface environment to facilitateinteraction with the operator and communication with data sources, as illustrated in �gure1.
USER  INTERFACE

IIT  KERNEL GIT  SERVICES

DATA  INTERFACEFigure 1: Conceptual view of ECOPLAN architecture.The functionality of the four components is brie�y outlined below.User Interface: Information on and access to input data. Control of the optimi-sation process (parameter settings, manual interruptions). Modi�cation of existing con-straints/criteria and addition of new ones. Selections of output presentations.7



Data Interface: Communication with external data sources. Conversion of inputdata.GIT Services: Generation of customised terrain models from scattered data, such aselevation contours, 3D data on road and stream networks and geodetic points. Generationof consistent topological models from spaghetti data of site polygons. Spatial calculationsof for example area, perimeter and distance. Visual viewpoint analysis. Preparation ofcolour coded digital maps. Preparation of data for 3D visualisation.IIT Kernel: Modeling and management of all information relevant to the schedulingoptimisation. Methods and algorithms for iterative schedule improvement.Please note that the list refers to the design of a full-blown version of ECOPLAN. Thecurrent prototype is developed with emphasis on the IIT Kernel and the GIT Services.Thus, the user and data interfaces have been only rudimentary implemented.The IIT Kernel was implemented from scratch in the object-oriented language C++.Special attention was paid to achieve a �exible structure, easy to modify, enhance andextend. The interfaces to user, the data sources and the GIT Services module were imple-mented with well de�ned parameter descriptions. The modularity of the Kernel makes iteasy to plug in new iterative improvements methods (see section 2.3). The constraints andcriteria are implemented as specialisations of a generic class, thus it is straightforward tode�ne and implement new ones.The GIT services is a package composed of a diversity of public domain tools and a suiteof spatial analysis methods designed and developed particularly for the ECOPLAN module.The terrain generation and analysis, e.g. the Visual Impact analysis, is implemented byextensive use of the SISCAT library [sis95], [ADH95]. SISCAT is a comprehensive C++based toolkit for construction of surfaces from various kinds of scattered data.Currently, the user interface is implemented exclusively with development and evalua-tion of the IIT Kernel and the GIT Services in mind. The user may control the behaviour ofthe ECOPLAN module by means of an input �le with a set of well documented parameters.The results from the schedule optimisation may be presented in various ways (See section4 for some examples of di�erent ECOPLAN outputs):� Alpha-numerical tables with statistics and other key �gures.� Colour coded maps for each year in the optimised schedule.� Map animation (mpeg) of all years in the plan.� 3D vista rendering from a given viewpoint.� 3D vista animation (mpeg) of all years.� Graphs of goodness development of constraints and criteria over the iterative im-provement sequence.� Animated graphs of some of the key �gures from the consecutively improving sched-ules.Input of data, e.g. digital maps of stands (geometry) and site-speci�c information suchas average age, soil fertility and growth functions, are currently only performed by meansof �at ASCII �les.4 A Case and Some ResultsTo enable the investigation of behaviour and performance of the ECOPLAN prototype, wewere provided data on a forest area in the South-Eastern part of Norway. The area is about16km2, of which roughly speaking 85% is considered productive. The forest is subdivided8



into approximately 500 stands, i.e. homogeneous units with respect to wood species, ageclasses and site quality. The average size of a stand is 28; 000m2, varying from 200m2 to148; 000m2. A map of the geometry of the individual stands is presented in �gure 2.
Figure 2: Geometry of the stands.The ECOPLAN prototype handles site-speci�c information, but still some simpli�ca-tions have been made:� All stands consist of only one single wood species.� All stands are considered equal with respect to site quality.� The volume growth function is designed as simply as possible, i.e. as linear growthup to a given threshold age and stagnation thereafter.� The only treatment considered is clear-cutting.� �Old� forest is de�ned to be older than 60 years for all stands.The forest is relatively young, about 60% of the total area consists of forest which isless than 30 years old. A part of the forest is presented in �gure 3, where we have dividedthe stands into �ve age categories.
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experimental runs of ECOPLAN with di�erent parameter settings. We focus on one singleconstraint/criterion at the time. However, the examples are generated with all constraintssimultaneously active (i.e. that all weights in the objective function are non-zero).4.1 2�m constraintThe 2�m constraint implies that all neighbour stands of a clear cut region must be higheror equal to 2 meters. Experiments showed that the neighbour constraint is totally satis�edafter a relatively low number of iterations. The number of violated neighbour relationstypically dramatically decreases during the �rst hundred rounds, and it takes equally manyiterations to resolve the last few con�icts.Figure 4 shows a typically development of the goodness of the 2�m constraint. Foreach iteration we have plotted the accumulated sum of broken neighbourhood relations,weighted with how �grave� the violations are, i.e. how large (in years) the di�erence isbetween the clearing and its illegal neighbours.
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Figure 4: Iterative improvement of 2�m constraint.In �gure 5 we see how a neighbourhood con�ict is resolved (see also �gure 3). Theleft map focus on the illegal situation, which is taken from the �rst year in the scheduledevised in iteration no. 254. The right map is from the optimised plan from the 255thimprovement, where the 2�m constraint is satis�ed.
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4.2 Optimal Harvest TimeThe initial solution is de�ned as a schedule where the Optimal Harvest Time criterion ismaximised, i.e. that every stand is clear-cut exactly in the year when the forest is consideredto be as �ripe� as possible, not unripe, nor overripe. In this context, the criterion maybe regarded as a soft constraint. However, the optimisation schema prevents harvesting ofregions below or above certain threshold ages (see section 2.1). Thus, the harvest time alsoacts as a hard constraint.In �gure 6 we have plotted the number of clear-cut stands according to how many yearstheir harvest date deviate from the local optimum6. We observe that in the �rst schedulea large number of regions are harvested at optimal time. Since the initial state imply thatwe have a number of very old stands, these must be harvested in the �rst year in additionto the optimal regions.
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1200 iterationsFigure 6: Development of the Optimal Harvest Time criterion.In contrast with the other criteria, the Harvest Time goodness decreases during theoptimisation process when all constraints/criteria are active. The negative developmentis an unavoidable consequence of the fact that the initial solution is optimal with respectto this criterion, but produces very low goodness values for all the other constraints andcriteria. However, we observe that after 1200 iterations about 25% of the regions are stilloptimally harvested, many stands are clear-cut at near-optimal time, and relatively fewsites are distributed in the sub-optimal part of the legal interval.4.3 Even ConsumptionThe Even Consumption criterion implies that the optimisation process seeks to distributeharvesting volume over the scheduling period in an even manner. The total volume ofconsumed forest should not vary to much from one year to another.In �gure 7, we show how this criterion is gradually improving by plotting the harvestedvolume each year for three di�erent schedule, the initial greedy solution and the schedulesresulting from 600 respectively 1200 improvement iterations.6The y-axis interval is truncated in order to focus on the interesting parts of the graphs. This also appliesto �gure 7. 11
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Figure 7: Development of the Even Consumption criterion.The initial solution is, as described in section 2.4 and 4.2, generated by cutting theforest at the local optimal harvest time. Due to the structure of the input data (the standsare classi�ed according to �ve year intervals), we get large consumed volumes every 5thyear and no activity in the intermediate years. The schedule is considerably improvedafter 600 iterations, and after 1200 rounds the yearly consumption seems to stabilise at anapproximately even level.4.4 Old ForestDue to ecological considerations, the areal percentage of old forest should be kept abovea certain threshold level. In our case, we de�ne old forest to be 60 years or older, and wewant 40% or more of the total area to be occupied be stands of this age class.In �gure 8, we see how the greedy strategy of the initial schedule diminishes the areaof old forest in the �rst years. This is due to the initial state of the forest, with a relativelylarge amount of young stands, and that regions with higher age than optimal will be cutin the �rst year. Then the forest is allowed to gradually age, before we enter a period ofintensive harvesting which drastically lowers the number of old regions.
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old forest is reached. Note that it would not be possible to reach equilibrium at an earlierstage of the plan, due to the history of harvesting expressed by the initial state.4.5 Visual ImpactIn �gure 9, we have simulated the visual impact from a given viewpoint in a certain year ofa good respectively bad schedule. In the 3D views, clearings and young stands are renderedlight grey, while older forest is darker. The left vista present a landscape which may becharacterised as totally demolished, while the right one is more aesthetically satisfactory.
Figure 9: Visual Impact criterion, bad and good vistas.The optimisation procedure will favour a schedule were many of the vistas are visuallypleasant, and punish heavily solutions which contain visually unpleasant harvest patterns.4.6 PerformanceTo facilitate interaction between the the ECOPLAN module and the operator(s), the perfor-mance of the system in terms of speed is crucial. Our prototype is implemented in a UNIXenvironment, and the tests have been conducted on standard mid-range work-stations.To establish the values of the various parameters, an optimisation session typicallystarted with test-runs with a low number of iterations, and perhaps with only one or twoactive constraints. Finally, an optimisation process involving a high number of iterationshas been executed to gain a satisfactory solution.One single pass involves a preprocessing phase (see section 3) and a number of im-provement steps. The preprocessing typically lasts from 20 to 30 seconds up to a coupleof minutes, depending on the input data. The ECOPLAN prototype generates from tento hundred new schedules per minute. Quite intuitively, the performance has shown to berelative to the number of active constraints.The ECOPLAN prototype has been implemented with little attention to CPU perfor-mance requirements. However, the obtained performance has proven quite su�cient forexperimental use with problems of size and complexity equal to the case described in thelast sections. Clearly, there is a signi�cant potential in optimising the implementation.13



5 Discussion and Further WorkAs mentioned in section 1, the primary objective in the research project was to explore theintegration of GIT and scheduling in general. Secondarily, we wanted to speci�cally studythe case of long term forest treatment scheduling under multiple objectives and constraints.The ECOPLAN prototypeAs documented in section 4, the scheduling strategy for the CCSP reported in this paperhas shown excellent performance on real data. The 2�m constraint was initially expectedto be hard to satisfy, but the con�icts were relatively easily resolved. The yearly harvestvolume provided by the optimised schedules turned out to be remarkably even. The visualimpact was considerably reduced, and the deviation from optimal harvest time was keptinside acceptable limits. In addition, the overall performance of the prototype in terms ofspeed proved to be satisfactory for experimental use.However, more work is needed to further improve performance, both in terms of speedand schedule quality. Apart from further re�nements of TS components, we intend to per-form comparative experiments with alternative IIT meta�heuristics as well as �intelligent�backtracking search algorithms. These experiments will be conducted with the purpose ofdeveloping search strategies that are able to handle CCSPs with a number of regions whichis an order of magnitude larger than in the case data described above.In addition, further work is required to re�ne the underlying model from a forestrypoint of view. More realistic growth models are crucial for reliable results, and it would bedesirable to include other types of treatment than clear-cutting, for example thinning andsparse cutting. Naturally, it is important to allow for a mixture of wood species in eachstand. However, the most important challenge would probably be to provide mechanismsfor modi�cation of existing constraints and criteria and introduction of new ones.To enhance the ECOPLAN prototype into an operational tool for forest managers,special attention has to be paid to develop a simple, intuitive, and e�cient user interface.Finally, an �industrial strength� version should include �exible and e�cient methods forintegration with external information repositories and possible external services such asadvanced growth simulation.GIT and schedulingFor generalised versions of the CCSP, one might use a similar approach. Examples are areaplanning in local government, agricultural management, campaign planning in marketingand advertising etc. These application domains may be characterised by the term Spatio-Temporal Decision Support. This category encompasses problems which involve discretesets of: Spatial objects, moments in time, and possible actions. In general, the task isto decide when to assign what kind of action to which spatial entity. The broadness andsigni�cance of applications of Spatio-Temporal Decision Support makes this �eld of researchand development highly interesting and attractive, and it certainly deserves more attentionin the years to come.The extra e�orts needed to establish and maintain the multi-disciplinary pro�le of theproject proved to be highly rewarding, and a necessary condition to achieve our goals. Thedesign and implementation of ECOPLAN strengthened our initial synergy thesis. The sup-ply of well-known methods and techniques for management and analysis of spatial informa-tion is large and varying, and this is also the fact in constraint based planning. However, by14
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