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Abstract

Forest treatment planning and scheduling is an important part of for-
est resource management. It is a complex task requiring expertise and
integration of multi-disciplinary fields. In this paper, we outline a real
life problem from the ECOPLAN project called the Long Term Forest
Treatment Scheduling Problem (LTFTSP). A review of optimization tech-
niques applicable to forest treatment problems in general is presented, and
contrasted with our case. The review suggests that long term scheduling
is difficult because of the prohibitive size and complexity inherent to the
problem. Based on experience from the successful resolution of a simpli-
fied problem, we advocate the use of iterative improvement techniques as a
solution strategy. Iterative improvement techniques will in general benefit
from high quality initial solutions. We show how a Constraint Satisfac-
tion Problem formulation of the LTFTSP can be used to generate initial
solutions. A key element to success is the use of a forest simulator for
knowledge based definition of variable domains. The initial solution gener-
ator will be used as a module in an integrated forest treatment scheduling
system which is under development in the ECOPLAN project.
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1 Introduction

The amount of forest area that is managed worldwide is huge. United States
Department of Agriculture manages a forest area almost twice the size of Ger-
many. Forest treatment planning and scheduling is an important part of forest
resource management. Both official bodies and the public worldwide are demand-
ing sustainable forest harvesting practice that not only deals with economics, but
also with preservation of bio-diversity, esthetic values, public recreation areas
etc. Long term forest treatment scheduling allows all parties to see if sustainable
forestry is actually being practiced. Simplified, the problem is to assign forest
treatment actions to treatment units (often called stands) over time, in a given
forest area. The scheduling horizon is long, covering up to several centuries.
An optimization version of the problem is to optimize certain economical and
ecological objectives subject to various constraints.

Traditionally, mathematical programming has been extensively used to gen-
erate such schedules, and is still the most widely used technique [4, 28]. Artificial
Intelligence (AI) techniques such as rule-based and local search methods, have
also been applied to forest management [19, 3, 26]. Such techniques have diffi-
culty in modelling the wide variety of spatial, temporal, and visual constraints,
and optimizing upon several, usually conflicting criteria that pertain to adequate
formulations of the problem. In addition, the typical size of real life LTFTSPs is
often beyond the practical capacity of these methods.

Misund et al [24] have suggested integrated use of Geographic Information
Technology (GIT) and Al techniques (constraint reasoning and local search) to
model and solve such problems. They describe their approach applied to a simpler
version of the LTFTSP, called the Clear-Cut Scheduling Problem (CCSP), where
clear-cutting is the only type of treatment action allowed. They model it as
a Constraint Satisfaction Problem (CSP) [34], and the solution is iteratively
improved using Tabu search [5]. The study shows that this method can give
“good” solutions for CCSP in reasonable time. As an extension of this work,
SINTEF Applied Mathematics, in close collaboration with the Norwegian forest
owner organizations and the Norwegian Agricultural University, is developing an
integrated forest treatment scheduling system called ECOPLAN. Our paper is
based on problems and results from the ECOPLAN project.

The paper is organized as follows. As a general backdrop, we briefly outline
the ECOPLAN variant of the forest treatment scheduling, called the Long Term
Forest Treatment Scheduling Problem (LTEFTSP). Next we present a literature
review of optimization techniques used in forest treatment scheduling in general.
Then we take a closer look at the ECOPLAN LTFTSP, in particular the process of
generating initial solutions for the iterative improvement module. We introduce a
CSP model for the problem of generating a complete, good quality initial solution,
and suggest how constraint reasoning techniques can be applied to it. We then
report the design of an algorithm based on a min-conflicts heuristic [23], and



describe the results from empirical investigation on real-life ECOPLAN data. We
conclude with some remarks and suggest a few directions for future research.

2 The ECOPLAN Problem

Forest treatment scheduling problems come in variety of flavors and sizes, depend-
ing on the purpose of the harvesting, local criteria and constraints, governmental
regulations, biological regimes, climate, etc.

To gain the necessary focus, we base our work on a specific problem identified
and formalized in the ECOPLAN project. The problem will be referred to as the
Long Term Forest Treatment Scheduling Problem (LTFTSP), or, plainly as the
ECOPLAN problem.

Sustainable forest management requires that forest treatment actions sched-
uled for a long period of time must obey a variety of constraints. For management
purposes, a forest landscape is divided into basic treatment units, often equivalent
to stands, which is the forestry term for a forested area considered homogeneous
with respect to a selected set of properties.

We will restrict our study to even-aged stands, i.e., stands containing trees
of same or almost same age. We will call the time period of the schedule the
scheduling horizon. It is common practice to divide the scheduling horizon into
a number of time periods, each period equivalent to, say, 5 — 10 years.

Definition 1 (Forest, Stand) A stand S; is a an area which is considered ho-
mogeneous with respect to certain properties. The set of n stands comprises a
forest F, such that:

1. F=U S
2. 5NS; =0, foralli,j, i#j
For each stand S; we have certain stand specific information':
o time of most recent treatment
o minimum duration between treatments
o mazimum duration between treatments
o optimal time between treatments
o time required by trees to grow from 0 to a certain threshold height

e area of the stand

LParts of this information is only available through a stand simulator system.



o volume that may be harvested after a specified number of years after the last
harvest

Definition 2 (Treatment) A treatment unit (stand) is given a number of man-
agement options over the scheduling horizon. We will call an individual manage-
ment option a treatment. A set of treatments T = {To,...,T;} is available for
each stand. We define Ty to be the null treatment or “let grow”, i.e., the stand
s left without any treatment. We define Ty to be the clear-cut treatment.

Definition 3 (Scheduling Horizon) A scheduling horizon H is a contiguous
set of p periods { Py, ..., Py}, where each P; is of a certain length in years.

Definition 4 (Long Term Forest Treatment Scheduling Problem) Given
a forest F with n stands, {S1...S.}, find a schedule S = {Ty,...,T,}, T, € T,
such that for each period in the horizon a corresponding treatment assignment
ts made. Furthermore, the schedule has to satisfy a set of constraints C =

(C),....C.}.

The Clear-Cut Scheduling Problem (CCSP), as defined and treated in [24], is a
special case of LTFTSP. Only one treatment type, clear-cutting, is allowed. Each
stand 1s assigned this treatment only once, i.e., the remaining periods are assigned
the trivial treatment. In Figure 1, an example of a forest area divided into stands
is shown. Two stands sharing a common border are defined as adjacent, or
netghbors.

Definition 5 (Clear-Cut Scheduling Problem (CCSP)) The CCSP is a re-
stricted LTFTSP. Only two treatment types are allowed, Ty and Ty (“let grow”
and clear-cut). Clear-cutting is scheduled only once for each stand during the
entire scheduling horizon, and period length is 1 year.

In the following, we outline the constraints and objective criteria associated

with the ECOPLAN problem.

Constraints Constraints can generally be divided into two categories - hard
and soft constraints. Hard constraints are defined as those constraints that must
be satisfied, whereas soft constraints can be relaxed to satisfy hard constraints
or to adjust the objective function value.

Hard Constraint: X-m constraint All the neighbors of the stand to be har-
vested must have an average tree height of at least X meters.

Soft Constraint: Harvest Time Bounding times between each harvest, based
on forestry knowledge and economical and ecological considerations. A
lower and upper threshold is given for each stand, as well as the optimal
harvest time relative to the last clear-cut.



Figure 1: An example of a forest area divided into stands.

Optimization Criteria An optimization version of the CCSP arises when var-
ious criteria are to be maximized (or minimized) in the solution. Similarly, there
are optimization versions of the LTFTSP.

Optimal Harvest Time The actual time between harvests should be as close
to optimal time as possible.

Even Consumption Estimated harvested volume for any period should be as
close to a specified consumption volume. In other words, the variance of
the harvested volumes should be minimized. In a more refined model, the
deviation from a predefined harvesting profile should be minimized.

Old Forest A specified minimum area of old forest, i.e., stands with average age
above a certain threshold, should be maintained over the schedule horizon.

Visual Impact One of the objectives is to minimize the visual impact of clear
cutting relative to a set of viewpoints.

For more detailed specifications of the ECOPLAN problem, confer [24].

The X-m constraint is enforced so that large areas are not clear-cut simulta-
neously causing damage to the regeneration process and wildlife habitats. It is
also referred to as the adjacency constraint because cutting adjacent stands at
the same time is prohibited. The restriction is usually valid for a certain number
of specified periods such that the harvested area will have regenerated properly.
These periods are commonly referred to as exclusion periods. Recently, adjacency



constraints and exclusion periods have been given special consideration in most
research dealing with forest harvest scheduling. This will also be our main focus
when generating initial solutions of the ECOPLAN problem.

3 Review on Optimized Forest Harvest Schedul-
ing

There are two major classes of forest harvest scheduling algorithms. One is
based on mathematical programming and the other on heuristic techniques (with
or without using simulation in both cases). The former is a global procedure
attempting to output an optimal solution of the forest management model. The
latter is usually a local procedure which iteratively optimizes the model without
any guarantee of finding an optimal solution. Mathematical Programming is the
technique that is commonly used in practice and consequently a large percentage
of research activity is devoted to it. There are some algorithms which do not fall
under these two categories which we will mention under miscellaneous techniques.

3.1 Mathematical Programming

The general forest planning problem, where harvesting is an important process,
has been studied for some time. Early forest management models (Navon 71 [27],
Johnson and Crim 86 [10]) were developed using linear programming (LP). Well
known LP-based scheduling packages in use are FORPLAN (Johnson and Rose
86 [12]) and MUSYC (Johnson and Jones 79 [11]). Johnson and Scheurman 77
[13] reviewed and analyzed many LP-based forest planning systems. In the paper,
the authors group LP models into Model T and Model II, which is frequently used
in forest planning. Later, Garcia in his excellent review of LP in forest planning
(Garcia 90 [4]) revises the classification. All these models are geared towards
LP-based solution strategies.

Since LP models use continuous variables, the solution is non-integral. Largely
because of this, spatial relationships are not defined in the model. Consequently,
LP-based solutions are not readily acceptable because they are difficult to inter-
pret and may be impossible to implement.

Since LP-based models were not able to express spatial relationship, re-
searchers began to study and apply mixed integer programming (MIP) models
(Kirby et al 86 [15], Jones et al 91 [14]). An integer decision variable is used to
express a particular harvesting decision. This allows the model to express spatial
relationships in the form of adjacency constraints. Since the MIP model uses a
large number of integer variables, it is restricted to small-sized problems.

One technique to keep the MIP model to manageable size is the use of efficient
representation of adjacency constraints (Meneghinet al 88 [22], Torres-Roho and

Brodie 90 [33], Jones et al 91 [14], Yoshimoto and Brodie 94 [37]). Researchers



have been steadily solving larger and larger MIP problems using improved con-
straint formulation and various heuristic algorithms. Weintraub et al 94 [36]
solved a MIP forest harvesting model with adjacency constraints for multiple
time periods using column generation technique, linear programming, and cut
constraints as heuristic. A LP relaxation of the MIP model is solved and passed
on to the MIP solver which attempts to assign integer values using heuristic
algorithms.

The LP model is also sometimes used together with simulation models. Growth
and yield simulations are used to find appropriate treatment schedule for individ-
ual stands. In most cases, each stand is treated independently and the necessary
information is provided as the simulation proceeds unlike in LP models where all
the information has to be encoded beforehand in the model. Some researchers
have tried to combine these two techniques. Hoen’s GAYA-LP (1992) [7] and
Lappi’s JLP (1992) [18] are good examples. In both cases, growth and treatment
simulators are used to define allowable treatments to each stand. Then the out-
put is fed to an LP solver which optimizes the net present value of the forest as a
whole in every period. Net present value is calculated using input economic and
forest data.

3.2 Heuristic Optimization

There has been several studies exploring the use of heuristic optimization tech-
niques with or without mathematical programming. One of the approaches that
is regarded as successful is the sampling heuristic called Monte Carlo Integer Pro-
gramming (MCIP) (Nelson and Brodie 90 [28]). It is a biased sampling scheme
that generates feasible solution alternatives. The more number of samples, the
better the solution. Therefore, optimal or near optimal solutions may only be
possible if very large number of samples are generated. Unfortunately, large
samples significantly increase the time taken to find a solution.

Lockwood and Moore (1993) [20] use simulated annealing to generate har-
vest schedules with spatial constraints. Simulated annealing (SA) is a stochastic
optimization technique that has been successfully used to solve combinatorial
optimization problems (Kirkpatrick 83,84 [16, 17]). The authors report to have
solved a large harvest scheduling problem with adjacency constraints.

Kangas and Pukkala (1993) [29] present another heuristic optimization tech-
nique. Their method uses a growth simulator as the first step to produce several
alternative treatment schedules for each stand. The second step is the actual
heuristic optimization where optimal schedules are sought by maximizing the
total utility, where utility is calculated by adding the values of the objective
function. This method was tested on a data of a small forest area and was found
to be successful. It is claimed to be better than LP-based methods because of its
ability to express nonlinear objectives. The drawback of this method is that it
does not take care of adjacency constraints and therefore the schedules generated



may be of poor quality.

A recent study compares three heuristic solution approaches to forest plan-
ning problems, harvest scheduling being a part of it (Murray and Church 95
[26]). The authors model the problem as a MIP which allows the representa-
tion of adjacency constraints. The only objective used is maximization of net
revenue. They develop a method which improves upon the solution produced
by Monte Carlo sampling process using Artificial Intelligence heuristic methods
such as hill climbing (HC), simulated annealing (SA), and Tabu search (TS). In
all three approaches, an initial solution produced by Monte Carlo sampling is lo-
cally improved by generating new neighborhood solutions. In HC, only improved
solutions are accepted in each step and therefore it is more likely to get stuck in
local optima. SA and TS accept worse solutions (with some probability) in hope
of escaping local optima. These methods were tested using data from Nelson
and Brodie 90 [28]. It was found that TS performed better overall than than SA
or HC. However, this does not mean that TS will always produce better solu-
tions than the other two. The authors confirmed this using Friedman analysis
(Coonover 1980 [2]) on the solution results. This means that given any initial
solution, it is equally likely that a high quality solution is reached by any one of
the three processes.

Almost all of the above methods have an underlying mathematical program-
ming model for forest harvesting problem. One interesting study is Misund et
al 95 [24], where the problem is modelled as a constraint satisfaction problem
(CSP) for the first time (to our knowledge). The authors used a CSP model and
Tabu search as iterative improvement technique to solve the CCSP, a restricted

version of the LTFTSP.

3.3 Miscellaneous

There are a few other studies that do not fall under above categories. One study
uses 0-1 integer programming to determine patterns for forest harvesting with
adjacency restrictions and forbidden regions modelled as a grid-packing problem
(Snyder and ReVelle 95 [31]). Another recent study suggests a method based on
Bayesian statistical concepts (Van Deusen 96 [35]) to schedule a large number of
stands over a long period of time. This method also allows adjacency constraint
to be satisfied. However, the method only uses economic criteria as objectives.

Other techniques worth mentioning here are those based on control theory,
non-linear programming, and dynamic programming (Roise 86 [30, 8]). Most of
this research also deals with the problem of habitat scheduling along with harvest
scheduling. However, the size of problems actually solved is very small because
of the enormous size of the model.



3.4 Summary

Most of the techniques and methods mentioned in this paper have been tested
with very small problems compared to the practical problems that exist. One
reason is the use of MIP models which tend to combinatorially explode in size
with the number of stands involved. However, some studies have devised and
used various heuristics solving larger and larger problems. Furthermore, in most
experiments, the scheduling horizon is kept very small to keep the number of
constraints under control. However, these methods do not deal with various other
constraints and objectives simultaneously, such as the ones we have illustrated in
Section 2.

It would be intuitive to use recent advancements in simulation modelling,
both growth and yield, and treatment simulation, and geographic information
technology to generate and visualize forest harvesting schedules. Many times it
is helpful to visualize the solution to see if any improvement can be made, for
example in the visual effect of a schedule. It is therefore imperative that models
are designed such that these technologies can also be easily incorporated.

4 Treatment Scheduling as a CSP Model

The standard Constraint Satisfaction Problem (C'SP) can be represented as a 3-
tuple (X, D, C) where X = {a1,...,2,} is a set of variables, D = {Dy,..., D, } is
a set of associated domains and C' is a set such that each member C;; C D; x D,
specifies the consistent values for variables x; and z;. We can formulate the
LTFTSP as a CSP if we consider the adjacency (X — meter) constraint. The
nodes and edges in the constraint graph represent the stands {Si,...,S5,} and
the adjacency constraint, respectively. The domain of a node is a combination of
treatment types and periods in the scheduling horizon (see Figure 2).

In this formulation, the problem is to assign the nodes as a particular sequence
of treatment types and corresponding periods such that the adjacency constraints
are satisfied.

It should also be mentioned that we are interested in an optimized solution,
not just any feasible solution. In general, the standard CSP definition lacks
power to express important aspects of real-life problems such as soft constraints,
constraint and tuple priorities, constraint relaxation, and optimization criteria.
Recently, the CSP community has turned to richer, non-standard, CSP formula-
tions and corresponding resolution methods in order to address real-life problems
more adequately. Examples are the max-CSP, the Maximum Utility Problem,
the semiring-based CSP, and the hierarchical CSP formulation [9]. The standard
CSP formulation is often adequate for subproblems of real-life problems, e.g., the
problem of finding an X-m constraint feasible solution for the LTFTSP.

There are well-studied Al search methods that can be used to solve CSPs [34].
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Figure 2: Part of constraint graph associated with forest in Figure 1.

These methods can be classified into constructive and iterative search methods.
Constructive search, e.g. standard backtracking [1], starts with a particular or-
dering of the variables and instantiates them one at a time. Thus it works with
a partial solution and tries to extend it to a full solution. This method of search
suffers from a phenomenon called thrashing whereby the same variable-value pair
that leads to no solution is instantiated over and over again. The algorithm has
exponential time complexity. The benefit of this search technique is that it is
complete, i.e., all possible solutions will be found, and the optimal solution can
be identified if optimization criteria are given.

The alternative to constructive search is to start with an initial solution and
use local search based on operators that perform small modifications to a given
solution, in tandem with a meta-heuristic to avoid local optima. Examples of
meta-heuristics are Tabu search [5] and Simulated Annealing [17]. These socalled
Iterative Improvement Techniques (IITs) have proven to be effective for a variety
of large and complex search problems. IITs are reasonably fast, and, the best
solution so far is available virtually at any time. Fairly large problems can be
“solved” from a pragmatic point of view, i.e., the method will be able to return
a high quality solution even under strong response requirements. In general,
very little can be guaranteed in terms of performance, such as the distance to
optimum as a function of the number of iterations. However, this may be due to
the inherent complexity of the problem at hand.

5 Construction of Initial Solutions

Based upon our research [24], including the previous review of existing methods,
we believe that large size LTFTSPs are best handled by IITs, using a meta



heuristic selected from the variety of heuristics available [34]. In particular, we
performed initial investigations on a 500 stand CCSP using a LP formulation, a
CSP formulation using backtracking search with arc consistency techniques, and
IIT. IIT clearly outperformed the competition in these studies.

Folklore says that, for IITs to work well, the initial solution has to be reason-
ably “good”. The remainder of this paper focuses on the important subtask of
generating a “good quality” initial solution for the LTFTSP. We present a method
for generating an initial solution that uses a simple min-conflicts heuristic [23]
to remove adjacency conflicts.

The method also uses stand simulation to generate the search space for the
problem. For real-life cases, the search space is huge. Given our CSP encoding,
a scheduling horizon of 200 years, 10 different treatment types the theoretical
domain size of each variable will be 102°°. Just a tiny fraction of the domains will
consist of local treatment schedules that are realistic from a forestry perspective.
With a typical problem size of 5,000 variables, there is clearly a need to apply
forestry knowledge to drastically reduce domain size and focus search towards a
high quality initial solution. Our strategy is to let a stand simulator, which is a
repository of forestry knowledge, create a reasonably sized domain. Each domain
consists of a set of local schedules, i.e., a treatment schedule for a given stand.
The local schedules in the domain will thus be consistent and sound according
to forestry practice. The task of finding a good quality initial solution to the
LTFTSP is hence reduced to finding a near-feasible and optimized combination
of local schedules over the total forest area. For large problem instances, this
subproblem is still formidable.

5.1 Stand Simulation and CSP Domain Values
In the ECOPLAN project, one of the stand simulators to be used is GAYA

[7]. GAYA generates a number of alternative local schedules for each stand.
Depending upon the scheduling horizon used, the number of schedules can be as
large as 1000 per stand [32]. In our CSP encoding, each of these local schedules
becomes a value in the domain of the corresponding variable (cf. definition of CSP
in Section 4). That is, only the schedules from the stand simulator generated
domain can be chosen as a value for the variable. Hence, stand simulation is
used to reduce the search space for our problem. The total search space for the
LTFTSP increases exponentially with the selected domain size.

One simple algorithm to assign a domain value (a schedule) to a variable (a
stand) is as follows:

Algorithm 1

1. start instantiating the variables in some static ordering xy,...,x,. =1
v; € .Dl.



2. for 1 = 2 to n, z; < d; € D, such that adjacency constraints are satisfied
as much as possible with xq...x;_;.

3. if not all consistent, use local repair heuristic, min-conflicts [23], or tree
search [1] to generate an initial feasible solution

In the general case, it is obvious that it will not be fruitful to include all local
schedules generated from stand simulation®. A restricted set, i.e., subset of all
generated local schedules has to be used. We can then construct a constraint
graph and start instantiation (step 1 from above). To take care of the adjacency
constraints in an efficient way, each schedule will also have its exclusion period
available, that is, the time intervals when the stand has an average height below
X — meters. Instead of using a repair method in step 3, one may use tree search

and consistency techniques. This approach needs to be investigated further.

5.2 Min-Conflicts Heuristic

It is often the case that while solving a CSP using iterative techniques, an initial
trial solution is generated randomly or greedily. This solution in most cases is
infeasible, violating various constraints. One way to make this a feasible solution
1s to repair 1t iteratively by changing the value assigned to some variable. Which
variable to choose for the change is a research issue and often depends upon
the problem. One of the methods of choosing the variable to change is the
min-conflicts heuristic [23]. The heuristic is very simple-minded, yet proven
to be effective on large scheduling problems, particularly problems that are loosely
constrained. An algorithm using it may be described as follows:

Algorithm 2
1. create initial trial solution
2. pick a variable, x;, in conflict
3. assign value v; € D; to x; such that the conflicts created by it is minimal
4. if no variables in conflict, exit
5. else goto step 2

Step 1 of the algorithm can be implemented either greedily or randomly. We
have chosen the greedy approach in our experiments. This step also creates two
sets of variables, VarsDone and VarsLeft - the former containing consistent
and the latter containing inconsistent variables. Step 2 picks a variable from the
set VarsDone. In step 3, all the values for variable picked are checked and the

2This is depending on characteristics of the particular stand simulator used.
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Figure 3: Function used to calculate height

one that minimizes conflicts with other variables is assigned to it. Then, the two
sets are updated. Step 4 checks for the terminating condition. The number of
iterations can also be included as the terminating condition.

5.3 Experimental Results

We have a data generator that takes the following input parameters and produces
stand specific data suitable for the routines generating an initial solution. The
data file used (first argument) was the ECOPLAN prototype data [24].

In this case, the growth simulation which estimates the average height is
based on a simple linear function as shown in Figure 3. In the final versions, a
full integration with the stand simulator will be implemented.

Data Sets Two basic data sets were used, both generated using the ECOPLAN
prototype data. However, these sets are not comparable to the sets used with the
CPLEX MIP solver in Chapter 3. The latter does not have treatments other than
the clear-cut and are restricted to one treatment per stand. These restrictions
were primarily placed due to the inefficiency of general integer programming algo-
rithms. The two data sets generated for this experiment with the min-conflicts
heuristic have multiple treatments, and a stand may have various treatments dur-
ing the scheduling horizon.

The difference between the parameters used to generate these two data sets
was the value of parameters MIN_AGE and M AX_AGE. which determined the
legal interval (in years) for the clear-cut treatment. For DataSet;, and Datasets,
the intervals were [35,90] and [30,100], respectively. From each set, further test
sets were generated using different values for the number of alternative schedules,
n, and the number of scheduling periods, p. The domain for p was {10, 15,20},
and the domain for n was {5,10,15,20}.

Datasety was tested with 10,100, and 500 iterations. At this point, it was
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Figure 4: Variables left inconsistent and iterations (each stand has 5 schedules)

observed that some of the consistent assignments were the schedules that had no
treatment for all of the periods. This was because of the legal treatment interval
which prohibited some stands from having treatments®. Since this should not
happen when using a simulator, the data generator was modified such that all
the schedules generated had at least one valid treatment. This was done by
randomly picking one period in which to allow the treatment. Datasety was
generated in such a way and used for further experiments. For clarity, we divided
Datasety into 3 sets, Sety, Sety, and Sets, with p = 10, p = 15, and p = 20 with
n from the sets {5,10}, {5,10,15}, and {5, 10,20}, respectively.

Figure 4 shows the result of running our algorithm for instances in which each
stand has 5 schedules in its domain, from each of the three sets. Figure 5 is a
similar plot but with instances where each stand has 10 schedules in its domain.
In Figure 6, results from instances of Sety and Sets only are plotted, with each
stand having 15 or 20 (only in Sets) schedules in their domains.

5.4 Results

Figure 4 shows the result of running our algorithm for instances in which each
stand has 5 schedules in its domain, from each of the three sets. Figure 5 is a
similar plot but with instances where each stand has 10 schedules in its domain.

3For example, there are some stands with current age greater than 100.
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In Figure 6, results from instances of Sety and Sets only are plotted, with each
stand having 15 or 20 (only in Sets) schedules in their domains.

The figures show that after some iterations the number of inconsistent vari-
ables starts to fluctuate within a small interval. The position of this interval
depends upon the number of schedules initially available to each stand. In Fig-
ure 4 and Figure 5, this interval is [30,60] and [5,10] respectively. In Figure 6,
all the variables are consistent within 60 iterations. In fact, this interval is the
largest for instances with the least number of schedules as domain. This is as
expected - the larger the size of the domain, the greater the chances of finding a
consistent solution with a lower number of iterations.

Furthermore, all the instances in Figure 4 and Figure 5 were allowed to run
for 10,000 iterations in hope of finding a complete and consistent instantiation.
However, the number of inconsistent variables remained within a constant interval
throughout the run. Either, our algorithm was trapped in local minima, or there
were no better solution to be found.

The results show that this method can be used to find the an initial solution
to the LTFTSP. It also suggests that for the ECOPLAN prototype data, if 10 or
more local schedules are generated for each stand using a simulator, chances are
that the method will converge to a complete or almost complete and consistent
instantiation. This is not a very demanding requirement since a stand treatment
simulator such as GAYA [7] can be easily modified to output such schedules.
However, it is still to be seen whether the schedules generated by such a simulator
behave as the randomly generated ones in our experiment.

The repair algorithm took 5-7 minutes of processing time on a SUN Sparc-10
workstation for each of the instances.

5.5 Further Improvements and Suggestions

There are many ways to improve the performance of the initial solution generator.
The min-conflicts heuristic implementation requires the programmer to make
certain choices while implementing the trial solution maker, conflict set builder
etc. Some of these are outlined below.

1. Right now the constraint graph class is minimally used. However, it can be
used to order the variable set using some other heuristic. The rationale for
not using it now is that it creates an overhead that is not useful in our test
case. If the test case is complicated and large, then it may be beneficial to
cluster the nodes of graph according to their degree, neighbors, topology
(e.g. cliques) etc. to order the variables before starting repair.

2. The initial trial solution can be constructed randomly instead of greedily
if the number of solutions are large. It is so because picking greedily adds
overhead that may not be necessary.



3. Introduce some optimization, e.g. area harvested, volume harvested, net
present value etc., instead of just performing constraint satisfaction.

6 Concluding Remarks

Long term forest treatment scheduling is a very large and complex industrial
optimization problem. It typically contains a large number of variables, both
hard and soft constraints of various types, and several criteria to be optimised.
Earlier work by the authors, including a review of existing approaches for solving
forest treatment scheduling problems (e.g., mathematical programming) has lead
us to believe that these approaches are not capable of solving adequate models
of LTFTSPs of realistic size. A successful systems solution not only requires
the application of sophisticated search techniques, but also active use of forestry
knowledge and geographical information technology in an integrated decision
support solution.

In this paper, a Constraint Satisfaction Problem (CSP) model for the LTF'TSP
has been presented. We have advocated the use of Iterative Improvement Tech-
niques based on local search and meta-heuristics as a viable approach for solving
even large size problem instances. In particular, we have focused on algorithms
for building initial LTFTSP solutions to be further improved via IIT.

Results from empirical investigations indicate that real life case problems can
be solved efficiently when only hard (adjacency) constraints are considered, i.e.,
the goal of the initial phase is to generate of an X-m feasible solution. Soft
constraints that are disregarded in the first phase may be formulated as objec-
tive components to be optimized during the subsequent iterative improvement
phase. Our experiments also verified the intuitive fact stating that the size and
precise values of the initial domain, i.e., the alternative schedules available for
each stand, directly affects speed performance and quality of the initial solution.
If the simulator is robust and has the ability to provide a reasonable number of
high quality local schedules with some variation for each stand, then the initial
solution generator described here will provide good starting points for iterative
improvement.

In the near future, we shall develop techniques that will improve an initial solu-
tion in an “anytime” fashion. Our initial approach will be iterative improvement
based on local search, repair heuristics (such as the min-conflicts heuristic),
and meta-heuristics (such as tabu search and simulated annealing). We refer to
[6, 21] for a discussion of search strategies in the optimization phase. A key to
success is to strike the right balance between exploiting the knowledge captured
in a stand simulator, and the achievement of maximum search performance. For
a treatment of the interface between the search kernel and a stand simulator, we
refer to [25]. An integral part of our future work will be to conduct experimental
studies on real-life data, taking into account all relevant constraints and objec-



tives. In particular, we shall empirically study how quality of the initial solution
affects performance of the improvement phase.

The LTFTSP problem has a significant spatial component. Consider for ex-
ample, the adjacency constraints. Recent advances in geographical information
technology (GIT) should be exploited to handle, analyze, and visualize data as
well as results. This is particularly the case when evaluating the visual impact
of a schedule, and in general, while handling ecological, recreational, and es-
thetic constraints. In the ECOPLAN project, we are currently working on the
development of a framework that will support efficient and flexible integration of
iterative improvement optimization modules, spatial analysis software, and stand
simulators [25].
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