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1 IntroductionThe amount of forest area that is managed worldwide is huge. United StatesDepartment of Agriculture manages a forest area almost twice the size of Ger-many. Forest treatment planning and scheduling is an important part of forestresource management. Both o�cial bodies and the public worldwide are demand-ing sustainable forest harvesting practice that not only deals with economics, butalso with preservation of bio-diversity, esthetic values, public recreation areasetc. Long term forest treatment scheduling allows all parties to see if sustainableforestry is actually being practiced. Simpli�ed, the problem is to assign foresttreatment actions to treatment units (often called stands) over time, in a givenforest area. The scheduling horizon is long, covering up to several centuries.An optimization version of the problem is to optimize certain economical andecological objectives subject to various constraints.Traditionally, mathematical programming has been extensively used to gen-erate such schedules, and is still the most widely used technique [4, 28]. Arti�cialIntelligence (AI) techniques such as rule-based and local search methods, havealso been applied to forest management [19, 3, 26]. Such techniques have di�-culty in modelling the wide variety of spatial, temporal, and visual constraints,and optimizing upon several, usually con
icting criteria that pertain to adequateformulations of the problem. In addition, the typical size of real life LTFTSPs isoften beyond the practical capacity of these methods.Misund et al [24] have suggested integrated use of Geographic InformationTechnology (GIT) and AI techniques (constraint reasoning and local search) tomodel and solve such problems. They describe their approach applied to a simplerversion of the LTFTSP, called the Clear-Cut Scheduling Problem (CCSP), whereclear-cutting is the only type of treatment action allowed. They model it asa Constraint Satisfaction Problem (CSP) [34], and the solution is iterativelyimproved using Tabu search [5]. The study shows that this method can give\good" solutions for CCSP in reasonable time. As an extension of this work,SINTEF Applied Mathematics, in close collaboration with the Norwegian forestowner organizations and the Norwegian Agricultural University, is developing anintegrated forest treatment scheduling system called ECOPLAN. Our paper isbased on problems and results from the ECOPLAN project.The paper is organized as follows. As a general backdrop, we brie
y outlinethe ECOPLAN variant of the forest treatment scheduling, called the Long TermForest Treatment Scheduling Problem (LTFTSP). Next we present a literaturereview of optimization techniques used in forest treatment scheduling in general.Then we take a closer look at the ECOPLAN LTFTSP, in particular the process ofgenerating initial solutions for the iterative improvement module. We introduce aCSP model for the problem of generating a complete, good quality initial solution,and suggest how constraint reasoning techniques can be applied to it. We thenreport the design of an algorithm based on a min-conflicts heuristic [23], and



describe the results from empirical investigation on real-life ECOPLAN data. Weconclude with some remarks and suggest a few directions for future research.2 The ECOPLAN ProblemForest treatment scheduling problems come in variety of 
avors and sizes, depend-ing on the purpose of the harvesting, local criteria and constraints, governmentalregulations, biological regimes, climate, etc.To gain the necessary focus, we base our work on a speci�c problem identi�edand formalized in the ECOPLAN project. The problem will be referred to as theLong Term Forest Treatment Scheduling Problem (LTFTSP), or, plainly as theECOPLAN problem.Sustainable forest management requires that forest treatment actions sched-uled for a long period of timemust obey a variety of constraints. For managementpurposes, a forest landscape is divided into basic treatment units, often equivalentto stands, which is the forestry term for a forested area considered homogeneouswith respect to a selected set of properties.We will restrict our study to even-aged stands, i.e., stands containing treesof same or almost same age. We will call the time period of the schedule thescheduling horizon. It is common practice to divide the scheduling horizon intoa number of time periods, each period equivalent to, say, 5 { 10 years.De�nition 1 (Forest, Stand) A stand Si is a an area which is considered ho-mogeneous with respect to certain properties. The set of n stands comprises aforest F , such that:1. F = Sni=1 Si2. SiTSj = ;; for all i; j; i 6= jFor each stand Si we have certain stand speci�c information1:� time of most recent treatment� minimum duration between treatments� maximum duration between treatments� optimal time between treatments� time required by trees to grow from 0 to a certain threshold height� area of the stand1Parts of this information is only available through a stand simulator system.



� volume that may be harvested after a speci�ed number of years after the lastharvestDe�nition 2 (Treatment) A treatment unit (stand) is given a number of man-agement options over the scheduling horizon. We will call an individual manage-ment option a treatment. A set of treatments T = fT0; : : : ; Ttg is available foreach stand. We de�ne T0 to be the null treatment or \let grow", i.e., the standis left without any treatment. We de�ne T1 to be the clear-cut treatment.De�nition 3 (Scheduling Horizon) A scheduling horizon H is a contiguousset of p periods fP1; : : : ; Ppg, where each Pi is of a certain length in years.De�nition 4 (Long Term Forest Treatment Scheduling Problem) Givena forest F with n stands, fS1 : : : Sng, �nd a schedule S = fT1; : : : ; Tpg, Ti 2 T ,such that for each period in the horizon a corresponding treatment assignmentis made. Furthermore, the schedule has to satisfy a set of constraints C =fC1; : : : ; Ccg.The Clear-Cut Scheduling Problem (CCSP), as de�ned and treated in [24], is aspecial case of LTFTSP. Only one treatment type, clear-cutting, is allowed. Eachstand is assigned this treatment only once, i.e., the remaining periods are assignedthe trivial treatment. In Figure 1, an example of a forest area divided into standsis shown. Two stands sharing a common border are de�ned as adjacent, orneighbors.De�nition 5 (Clear-Cut Scheduling Problem (CCSP)) The CCSP is a re-stricted LTFTSP. Only two treatment types are allowed, T0 and T1 (\let grow"and clear-cut). Clear-cutting is scheduled only once for each stand during theentire scheduling horizon, and period length is 1 year.In the following, we outline the constraints and objective criteria associatedwith the ECOPLAN problem.Constraints Constraints can generally be divided into two categories - hardand soft constraints. Hard constraints are de�ned as those constraints that mustbe satis�ed, whereas soft constraints can be relaxed to satisfy hard constraintsor to adjust the objective function value.Hard Constraint: X-m constraint All the neighbors of the stand to be har-vested must have an average tree height of at least X meters.Soft Constraint: Harvest Time Bounding times between each harvest, basedon forestry knowledge and economical and ecological considerations. Alower and upper threshold is given for each stand, as well as the optimalharvest time relative to the last clear-cut.



Figure 1: An example of a forest area divided into stands.Optimization Criteria An optimization version of the CCSP arises when var-ious criteria are to be maximized (or minimized) in the solution. Similarly, thereare optimization versions of the LTFTSP.Optimal Harvest Time The actual time between harvests should be as closeto optimal time as possible.Even Consumption Estimated harvested volume for any period should be asclose to a speci�ed consumption volume. In other words, the variance ofthe harvested volumes should be minimized. In a more re�ned model, thedeviation from a prede�ned harvesting pro�le should be minimized.Old Forest A speci�ed minimum area of old forest, i.e., stands with average ageabove a certain threshold, should be maintained over the schedule horizon.Visual Impact One of the objectives is to minimize the visual impact of clearcutting relative to a set of viewpoints.For more detailed speci�cations of the ECOPLAN problem, confer [24].The X-m constraint is enforced so that large areas are not clear-cut simulta-neously causing damage to the regeneration process and wildlife habitats. It isalso referred to as the adjacency constraint because cutting adjacent stands atthe same time is prohibited. The restriction is usually valid for a certain numberof speci�ed periods such that the harvested area will have regenerated properly.These periods are commonly referred to as exclusion periods. Recently, adjacency



constraints and exclusion periods have been given special consideration in mostresearch dealing with forest harvest scheduling. This will also be our main focuswhen generating initial solutions of the ECOPLAN problem.3 Review on Optimized Forest Harvest Schedul-ingThere are two major classes of forest harvest scheduling algorithms. One isbased on mathematical programming and the other on heuristic techniques (withor without using simulation in both cases). The former is a global procedureattempting to output an optimal solution of the forest management model. Thelatter is usually a local procedure which iteratively optimizes the model withoutany guarantee of �nding an optimal solution. Mathematical Programming is thetechnique that is commonly used in practice and consequently a large percentageof research activity is devoted to it. There are some algorithms which do not fallunder these two categories which we will mention under miscellaneous techniques.3.1 Mathematical ProgrammingThe general forest planning problem, where harvesting is an important process,has been studied for some time. Early forest management models (Navon 71 [27],Johnson and Crim 86 [10]) were developed using linear programming (LP). Wellknown LP-based scheduling packages in use are FORPLAN (Johnson and Rose86 [12]) and MUSYC (Johnson and Jones 79 [11]). Johnson and Scheurman 77[13] reviewed and analyzed many LP-based forest planning systems. In the paper,the authors group LP models into Model I and Model II, which is frequently usedin forest planning. Later, Garcia in his excellent review of LP in forest planning(Garcia 90 [4]) revises the classi�cation. All these models are geared towardsLP-based solution strategies.Since LP models use continuous variables, the solution is non-integral. Largelybecause of this, spatial relationships are not de�ned in the model. Consequently,LP-based solutions are not readily acceptable because they are di�cult to inter-pret and may be impossible to implement.Since LP-based models were not able to express spatial relationship, re-searchers began to study and apply mixed integer programming (MIP) models(Kirby et al 86 [15], Jones et al 91 [14]). An integer decision variable is used toexpress a particular harvesting decision. This allows the model to express spatialrelationships in the form of adjacency constraints. Since the MIP model uses alarge number of integer variables, it is restricted to small-sized problems.One technique to keep the MIP model to manageable size is the use of e�cientrepresentation of adjacency constraints (Meneghinet al 88 [22], Torres-Roho andBrodie 90 [33], Jones et al 91 [14], Yoshimoto and Brodie 94 [37]). Researchers



have been steadily solving larger and larger MIP problems using improved con-straint formulation and various heuristic algorithms. Weintraub et al 94 [36]solved a MIP forest harvesting model with adjacency constraints for multipletime periods using column generation technique, linear programming, and cutconstraints as heuristic. A LP relaxation of the MIP model is solved and passedon to the MIP solver which attempts to assign integer values using heuristicalgorithms.The LP model is also sometimes used together with simulationmodels. Growthand yield simulations are used to �nd appropriate treatment schedule for individ-ual stands. In most cases, each stand is treated independently and the necessaryinformation is provided as the simulation proceeds unlike in LP models where allthe information has to be encoded beforehand in the model. Some researchershave tried to combine these two techniques. Hoen's GAYA-LP (1992) [7] andLappi's JLP (1992) [18] are good examples. In both cases, growth and treatmentsimulators are used to de�ne allowable treatments to each stand. Then the out-put is fed to an LP solver which optimizes the net present value of the forest as awhole in every period. Net present value is calculated using input economic andforest data.3.2 Heuristic OptimizationThere has been several studies exploring the use of heuristic optimization tech-niques with or without mathematical programming. One of the approaches thatis regarded as successful is the sampling heuristic called Monte Carlo Integer Pro-gramming (MCIP) (Nelson and Brodie 90 [28]). It is a biased sampling schemethat generates feasible solution alternatives. The more number of samples, thebetter the solution. Therefore, optimal or near optimal solutions may only bepossible if very large number of samples are generated. Unfortunately, largesamples signi�cantly increase the time taken to �nd a solution.Lockwood and Moore (1993) [20] use simulated annealing to generate har-vest schedules with spatial constraints. Simulated annealing (SA) is a stochasticoptimization technique that has been successfully used to solve combinatorialoptimization problems (Kirkpatrick 83,84 [16, 17]). The authors report to havesolved a large harvest scheduling problem with adjacency constraints.Kangas and Pukkala (1993) [29] present another heuristic optimization tech-nique. Their method uses a growth simulator as the �rst step to produce severalalternative treatment schedules for each stand. The second step is the actualheuristic optimization where optimal schedules are sought by maximizing thetotal utility, where utility is calculated by adding the values of the objectivefunction. This method was tested on a data of a small forest area and was foundto be successful. It is claimed to be better than LP-based methods because of itsability to express nonlinear objectives. The drawback of this method is that itdoes not take care of adjacency constraints and therefore the schedules generated



may be of poor quality.A recent study compares three heuristic solution approaches to forest plan-ning problems, harvest scheduling being a part of it (Murray and Church 95[26]). The authors model the problem as a MIP which allows the representa-tion of adjacency constraints. The only objective used is maximization of netrevenue. They develop a method which improves upon the solution producedby Monte Carlo sampling process using Arti�cial Intelligence heuristic methodssuch as hill climbing (HC), simulated annealing (SA), and Tabu search (TS). Inall three approaches, an initial solution produced by Monte Carlo sampling is lo-cally improved by generating new neighborhood solutions. In HC, only improvedsolutions are accepted in each step and therefore it is more likely to get stuck inlocal optima. SA and TS accept worse solutions (with some probability) in hopeof escaping local optima. These methods were tested using data from Nelsonand Brodie 90 [28]. It was found that TS performed better overall than than SAor HC. However, this does not mean that TS will always produce better solu-tions than the other two. The authors con�rmed this using Friedman analysis(Coonover 1980 [2]) on the solution results. This means that given any initialsolution, it is equally likely that a high quality solution is reached by any one ofthe three processes.Almost all of the above methods have an underlying mathematical program-ming model for forest harvesting problem. One interesting study is Misund etal 95 [24], where the problem is modelled as a constraint satisfaction problem(CSP) for the �rst time (to our knowledge). The authors used a CSP model andTabu search as iterative improvement technique to solve the CCSP, a restrictedversion of the LTFTSP.3.3 MiscellaneousThere are a few other studies that do not fall under above categories. One studyuses 0-1 integer programming to determine patterns for forest harvesting withadjacency restrictions and forbidden regions modelled as a grid-packing problem(Snyder and ReVelle 95 [31]). Another recent study suggests a method based onBayesian statistical concepts (Van Deusen 96 [35]) to schedule a large number ofstands over a long period of time. This method also allows adjacency constraintto be satis�ed. However, the method only uses economic criteria as objectives.Other techniques worth mentioning here are those based on control theory,non-linear programming, and dynamic programming (Roise 86 [30, 8]). Most ofthis research also deals with the problem of habitat scheduling along with harvestscheduling. However, the size of problems actually solved is very small becauseof the enormous size of the model.



3.4 SummaryMost of the techniques and methods mentioned in this paper have been testedwith very small problems compared to the practical problems that exist. Onereason is the use of MIP models which tend to combinatorially explode in sizewith the number of stands involved. However, some studies have devised andused various heuristics solving larger and larger problems. Furthermore, in mostexperiments, the scheduling horizon is kept very small to keep the number ofconstraints under control. However, these methods do not deal with various otherconstraints and objectives simultaneously, such as the ones we have illustrated inSection 2.It would be intuitive to use recent advancements in simulation modelling,both growth and yield, and treatment simulation, and geographic informationtechnology to generate and visualize forest harvesting schedules. Many times itis helpful to visualize the solution to see if any improvement can be made, forexample in the visual e�ect of a schedule. It is therefore imperative that modelsare designed such that these technologies can also be easily incorporated.4 Treatment Scheduling as a CSP ModelThe standard Constraint Satisfaction Problem (CSP ) can be represented as a 3-tuple (X;D;C) whereX = fx1; : : : ; xng is a set of variables, D = fD1; : : : ;Dng isa set of associated domains and C is a set such that each member Cij � Di �Djspeci�es the consistent values for variables xi and xj. We can formulate theLTFTSP as a CSP if we consider the adjacency (X � meter) constraint. Thenodes and edges in the constraint graph represent the stands fS1; : : : ; Sng andthe adjacency constraint, respectively. The domain of a node is a combination oftreatment types and periods in the scheduling horizon (see Figure 2).In this formulation, the problem is to assign the nodes as a particular sequenceof treatment types and corresponding periods such that the adjacency constraintsare satis�ed.It should also be mentioned that we are interested in an optimized solution,not just any feasible solution. In general, the standard CSP de�nition lackspower to express important aspects of real-life problems such as soft constraints,constraint and tuple priorities, constraint relaxation, and optimization criteria.Recently, the CSP community has turned to richer, non-standard, CSP formula-tions and corresponding resolution methods in order to address real-life problemsmore adequately. Examples are the max-CSP, the Maximum Utility Problem,the semiring-based CSP, and the hierarchical CSP formulation [9]. The standardCSP formulation is often adequate for subproblems of real-life problems, e.g., theproblem of �nding an X-m constraint feasible solution for the LTFTSP.There are well-studied AI search methods that can be used to solve CSPs [34].
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Figure 2: Part of constraint graph associated with forest in Figure 1.These methods can be classi�ed into constructive and iterative search methods.Constructive search, e.g. standard backtracking [1], starts with a particular or-dering of the variables and instantiates them one at a time. Thus it works witha partial solution and tries to extend it to a full solution. This method of searchsu�ers from a phenomenon called thrashing whereby the same variable-value pairthat leads to no solution is instantiated over and over again. The algorithm hasexponential time complexity. The bene�t of this search technique is that it iscomplete, i.e., all possible solutions will be found, and the optimal solution canbe identi�ed if optimization criteria are given.The alternative to constructive search is to start with an initial solution anduse local search based on operators that perform small modi�cations to a givensolution, in tandem with a meta-heuristic to avoid local optima. Examples ofmeta-heuristics are Tabu search [5] and Simulated Annealing [17]. These socalledIterative Improvement Techniques (IITs) have proven to be e�ective for a varietyof large and complex search problems. IITs are reasonably fast, and, the bestsolution so far is available virtually at any time. Fairly large problems can be\solved" from a pragmatic point of view, i.e., the method will be able to returna high quality solution even under strong response requirements. In general,very little can be guaranteed in terms of performance, such as the distance tooptimum as a function of the number of iterations. However, this may be due tothe inherent complexity of the problem at hand.5 Construction of Initial SolutionsBased upon our research [24], including the previous review of existing methods,we believe that large size LTFTSPs are best handled by IITs, using a meta



heuristic selected from the variety of heuristics available [34]. In particular, weperformed initial investigations on a 500 stand CCSP using a LP formulation, aCSP formulation using backtracking search with arc consistency techniques, andIIT. IIT clearly outperformed the competition in these studies.Folklore says that, for IITs to work well, the initial solution has to be reason-ably \good". The remainder of this paper focuses on the important subtask ofgenerating a \good quality" initial solution for the LTFTSP. We present a methodfor generating an initial solution that uses a simple min-conflicts heuristic [23]to remove adjacency con
icts.The method also uses stand simulation to generate the search space for theproblem. For real-life cases, the search space is huge. Given our CSP encoding,a scheduling horizon of 200 years, 10 di�erent treatment types the theoreticaldomain size of each variable will be 10200. Just a tiny fraction of the domains willconsist of local treatment schedules that are realistic from a forestry perspective.With a typical problem size of 5; 000 variables, there is clearly a need to applyforestry knowledge to drastically reduce domain size and focus search towards ahigh quality initial solution. Our strategy is to let a stand simulator, which is arepository of forestry knowledge, create a reasonably sized domain. Each domainconsists of a set of local schedules, i.e., a treatment schedule for a given stand.The local schedules in the domain will thus be consistent and sound accordingto forestry practice. The task of �nding a good quality initial solution to theLTFTSP is hence reduced to �nding a near-feasible and optimized combinationof local schedules over the total forest area. For large problem instances, thissubproblem is still formidable.5.1 Stand Simulation and CSP Domain ValuesIn the ECOPLAN project, one of the stand simulators to be used is GAYA[7]. GAYA generates a number of alternative local schedules for each stand.Depending upon the scheduling horizon used, the number of schedules can be aslarge as 1000 per stand [32]. In our CSP encoding, each of these local schedulesbecomes a value in the domain of the corresponding variable (cf. de�nition of CSPin Section 4). That is, only the schedules from the stand simulator generateddomain can be chosen as a value for the variable. Hence, stand simulation isused to reduce the search space for our problem. The total search space for theLTFTSP increases exponentially with the selected domain size.One simple algorithm to assign a domain value (a schedule) to a variable (astand) is as follows:Algorithm 11. start instantiating the variables in some static ordering x1; : : : ; xn. x1  vi 2 D1.



2. for i = 2 to n, xi  dj 2 Di such that adjacency constraints are satis�edas much as possible with x1 : : : xi�1.3. if not all consistent, use local repair heuristic, min-conflicts [23], or treesearch [1] to generate an initial feasible solutionIn the general case, it is obvious that it will not be fruitful to include all localschedules generated from stand simulation2. A restricted set, i.e., subset of allgenerated local schedules has to be used. We can then construct a constraintgraph and start instantiation (step 1 from above). To take care of the adjacencyconstraints in an e�cient way, each schedule will also have its exclusion periodavailable, that is, the time intervals when the stand has an average height belowX �meters. Instead of using a repair method in step 3, one may use tree searchand consistency techniques. This approach needs to be investigated further.5.2 Min-Con
icts HeuristicIt is often the case that while solving a CSP using iterative techniques, an initialtrial solution is generated randomly or greedily. This solution in most cases isinfeasible, violating various constraints. One way to make this a feasible solutionis to repair it iteratively by changing the value assigned to some variable. Whichvariable to choose for the change is a research issue and often depends uponthe problem. One of the methods of choosing the variable to change is themin-conflicts heuristic [23]. The heuristic is very simple-minded, yet provento be e�ective on large scheduling problems, particularly problems that are looselyconstrained. An algorithm using it may be described as follows:Algorithm 21. create initial trial solution2. pick a variable, xi, in con
ict3. assign value vj 2 Di to xi such that the con
icts created by it is minimal4. if no variables in con
ict, exit5. else goto step 2Step 1 of the algorithm can be implemented either greedily or randomly. Wehave chosen the greedy approach in our experiments. This step also creates twosets of variables, V arsDone and V arsLeft - the former containing consistentand the latter containing inconsistent variables. Step 2 picks a variable from theset V arsDone. In step 3, all the values for variable picked are checked and the2This is depending on characteristics of the particular stand simulator used.
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Figure 4: Variables left inconsistent and iterations (each stand has 5 schedules)observed that some of the consistent assignments were the schedules that had notreatment for all of the periods. This was because of the legal treatment intervalwhich prohibited some stands from having treatments3. Since this should nothappen when using a simulator, the data generator was modi�ed such that allthe schedules generated had at least one valid treatment. This was done byrandomly picking one period in which to allow the treatment. Dataset2 wasgenerated in such a way and used for further experiments. For clarity, we dividedDataset2 into 3 sets, Set1, Set2, and Set3, with p = 10, p = 15, and p = 20 withn from the sets f5; 10g, f5; 10; 15g, and f5; 10; 20g, respectively.Figure 4 shows the result of running our algorithm for instances in which eachstand has 5 schedules in its domain, from each of the three sets. Figure 5 is asimilar plot but with instances where each stand has 10 schedules in its domain.In Figure 6, results from instances of Set2 and Set3 only are plotted, with eachstand having 15 or 20 (only in Set3) schedules in their domains.5.4 ResultsFigure 4 shows the result of running our algorithm for instances in which eachstand has 5 schedules in its domain, from each of the three sets. Figure 5 is asimilar plot but with instances where each stand has 10 schedules in its domain.3For example, there are some stands with current age greater than 100.
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In Figure 6, results from instances of Set2 and Set3 only are plotted, with eachstand having 15 or 20 (only in Set3) schedules in their domains.The �gures show that after some iterations the number of inconsistent vari-ables starts to 
uctuate within a small interval. The position of this intervaldepends upon the number of schedules initially available to each stand. In Fig-ure 4 and Figure 5, this interval is [30,60] and [5,10] respectively. In Figure 6,all the variables are consistent within 60 iterations. In fact, this interval is thelargest for instances with the least number of schedules as domain. This is asexpected - the larger the size of the domain, the greater the chances of �nding aconsistent solution with a lower number of iterations.Furthermore, all the instances in Figure 4 and Figure 5 were allowed to runfor 10,000 iterations in hope of �nding a complete and consistent instantiation.However, the number of inconsistent variables remained within a constant intervalthroughout the run. Either, our algorithm was trapped in local minima, or therewere no better solution to be found.The results show that this method can be used to �nd the an initial solutionto the LTFTSP. It also suggests that for the ECOPLAN prototype data, if 10 ormore local schedules are generated for each stand using a simulator, chances arethat the method will converge to a complete or almost complete and consistentinstantiation. This is not a very demanding requirement since a stand treatmentsimulator such as GAYA [7] can be easily modi�ed to output such schedules.However, it is still to be seen whether the schedules generated by such a simulatorbehave as the randomly generated ones in our experiment.The repair algorithm took 5{7 minutes of processing time on a SUN Sparc-10workstation for each of the instances.5.5 Further Improvements and SuggestionsThere are many ways to improve the performance of the initial solution generator.The min-conflicts heuristic implementation requires the programmer to makecertain choices while implementing the trial solution maker, con
ict set builderetc. Some of these are outlined below.1. Right now the constraint graph class is minimally used. However, it can beused to order the variable set using some other heuristic. The rationale fornot using it now is that it creates an overhead that is not useful in our testcase. If the test case is complicated and large, then it may be bene�cial tocluster the nodes of graph according to their degree, neighbors, topology(e.g. cliques) etc. to order the variables before starting repair.2. The initial trial solution can be constructed randomly instead of greedilyif the number of solutions are large. It is so because picking greedily addsoverhead that may not be necessary.



3. Introduce some optimization, e.g. area harvested, volume harvested, netpresent value etc., instead of just performing constraint satisfaction.6 Concluding RemarksLong term forest treatment scheduling is a very large and complex industrialoptimization problem. It typically contains a large number of variables, bothhard and soft constraints of various types, and several criteria to be optimised.Earlier work by the authors, including a review of existing approaches for solvingforest treatment scheduling problems (e.g., mathematical programming) has leadus to believe that these approaches are not capable of solving adequate modelsof LTFTSPs of realistic size. A successful systems solution not only requiresthe application of sophisticated search techniques, but also active use of forestryknowledge and geographical information technology in an integrated decisionsupport solution.In this paper, a Constraint Satisfaction Problem (CSP) model for the LTFTSPhas been presented. We have advocated the use of Iterative Improvement Tech-niques based on local search and meta-heuristics as a viable approach for solvingeven large size problem instances. In particular, we have focused on algorithmsfor building initial LTFTSP solutions to be further improved via IIT.Results from empirical investigations indicate that real life case problems canbe solved e�ciently when only hard (adjacency) constraints are considered, i.e.,the goal of the initial phase is to generate of an X-m feasible solution. Softconstraints that are disregarded in the �rst phase may be formulated as objec-tive components to be optimized during the subsequent iterative improvementphase. Our experiments also veri�ed the intuitive fact stating that the size andprecise values of the initial domain, i.e., the alternative schedules available foreach stand, directly a�ects speed performance and quality of the initial solution.If the simulator is robust and has the ability to provide a reasonable number ofhigh quality local schedules with some variation for each stand, then the initialsolution generator described here will provide good starting points for iterativeimprovement.In the near future, we shall develop techniques that will improve an initial solu-tion in an \anytime" fashion. Our initial approach will be iterative improvementbased on local search, repair heuristics (such as the min-conflicts heuristic),and meta-heuristics (such as tabu search and simulated annealing). We refer to[6, 21] for a discussion of search strategies in the optimization phase. A key tosuccess is to strike the right balance between exploiting the knowledge capturedin a stand simulator, and the achievement of maximum search performance. Fora treatment of the interface between the search kernel and a stand simulator, werefer to [25]. An integral part of our future work will be to conduct experimentalstudies on real-life data, taking into account all relevant constraints and objec-



tives. In particular, we shall empirically study how quality of the initial solutiona�ects performance of the improvement phase.The LTFTSP problem has a signi�cant spatial component. Consider for ex-ample, the adjacency constraints. Recent advances in geographical informationtechnology (GIT) should be exploited to handle, analyze, and visualize data aswell as results. This is particularly the case when evaluating the visual impactof a schedule, and in general, while handling ecological, recreational, and es-thetic constraints. In the ECOPLAN project, we are currently working on thedevelopment of a framework that will support e�cient and 
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