
Working with Generic GML through
Schema Analysis

Master of Science Thesis

Harald Vålerhaugen

Østfold University College, Halden Norway

Working with Generic GML through Schema Analysis

Summary

Geography Markup Language (GML) is a markup language used to describe geograph-

ic objects. These objects can be represented with location, extent and possibly also oth-

er geographic data describing their physical relation to the world. Additionally, they

can contain non-geographic information that further describes the purpose of the ob-

jects. These objects are typically referred to as features. GML has been described as

the foundation of the Geo-Web, because it is an open standard developed to overcome

data interchange problems between proprietary systems. It is based on Extensible

Markup Language (XML), a widely adopted standard for storing data and interchan-

ging data between vendors and applications especially on the Internet. An XML docu-

ment is a plain text document where data is described using markup elements. The

structure and content of an XML document can be constrained using an XML Schema.

A schema is in itself an XML document, built after certain criterias. Some libraries

able to parse XML can control if an XML document is adhering to the rules of a re-

lated schema, if so the document is described as valid. The GML standard is defined

with a set of basic schemas, meant to serve as a foundation for extension. These exten-

sions are called application schemas, and they are literally specializations of these ba-

sic schemas, made to fit the profile of one vendors data. In order to store geospatial

data using GML it is a requirement that they represented with an application schema.

In this thesis you will be presented to a method of both analyzing applications schemas

and instance documents that can be used to resolve their datatypes. The information

will be accessible through a dictionary containing the data types and their ancestors.

Using this dictionary we are much more capable of handling GML documents based

on different application schemas in a generic way. The utilization of such a dictionary

is exemplified with an XSL Transformation (XSLT)[XSLT1] for transforming GML

instance documents into a Scalable Vector Graphics (SVG)[SVG] document.

Table of Contents

Foreword ... ix

1. Introduction .. 1

2. XML software and technologies .. 5

XML ... 5

DTD ... 7

XML Schema ... 7

XSL .. 11

GML ... 14

Web Feature Server (WFS) .. 15

Parsing XML .. 15

Simple API for XML (SAX) .. 16

Document Object Model (DOM) ... 17

Scalable Vector Graphics (SVG) ... 19

3. GML software .. 21

JUMP - Unified Mapping Platform ... 21

GeoTools .. 25

GeoTools DataSource (GMLDataSource) ... 26

GeoTools DataStore ... 28

Cleopatra .. 29

GO Loader ... 31

4. Handling arbitrary GML sources ... 33

Handling arbitrary GML .. 33

GML profiling .. 36

Project OneMap ... 37

Implementation discussion ... 41

Converting application schemas and documents 41

Constructing a GML mapping dictionary .. 44

XML Schema API .. 48

Parsing schema with XSLT ... 49

GML design issues ... 50

Cascading GML Analysis .. 55

5. Schema parser and GML viewer .. 66

Parsing schemas ... 66

Mapping dictionary schema ... 66

iv

Parsing GML application schemas .. 67

Generic GML Visualization ... 70

6. Conclusions and further work .. 76

Type dictionary .. 76

GML Viewer .. 79

Bibliography .. 81

A. XSL Transformations .. 86

GML Schema to Mapping Dictionary ... 86

Stylesheet for removing identical type maps from mapping dictionary .. 104

Generic GML/Dictionary to SVG transformation 105

Stylesheet included into the genericGML2SVG.xslt listed 123

B. XML schemas ... 125

Mapping Dictionary Schema ... 125

C. Schema and instance document example .. 127

dens.xsd .. 127

instance.xml ... 128

D. GML schema and instance example ... 131

hbn.xsd ... 131

halden1.xml .. 132

v

List of Figures

1.1. GML schema design ... 2

2.1. Element visualization .. 6

2.2. Data type visualization .. 10

2.3. DOM Level 2 Architecture (DOM Activity Statement) 17

2.4. Simple GML to SVG transformation .. 20

3.1. Technical architecture of JUMP (JUMP Technical Report) 21

3.2. JUMP screenshot (JUMP Technical Report) .. 22

3.3. GMLDataSource SAX filters .. 27

3.4. Extending and substituting featureCollection ... 28

3.5. Cleopatra demonstration screenshot ... 30

4.1. Basic GML application schema .. 34

4.2. HaldenByNight application schema ... 35

4.3. OneMap: Gateway screenshot .. 37

4.4. OneMap: Repository ... 38

4.5. Integrated schema hierarchy ... 40

4.6. River fragments constituting complete river ... 41

4.7. Application using converted GML-documents ... 42

4.8. Application utilizing a schema dictionary .. 45

4.9. Retrieve generic GML from repository .. 46

4.10. Ordnance Survey MasterMap schema structure (OSMasterMap User Guide)

... 47

4.11. Interleaved instances and properties ... 51

4.12. Definition of PolygonPropertyType ... 52

4.13. Retrieving additional information about a feature 53

4.14. Definition of LinearRingPropertyType ... 54

4.15. Defining a GML vocabulary ... 56

4.16. Halden-by-night vocabulary mapping .. 59

4.17. ContentHandler methods .. 63

4.18. Resolver chains ... 64

5.1. How to traverse schemas .. 67

5.2. Type-mapping of the NightSiteBar-element ... 69

5.3. Utilizing dictionary to parse arbitrary GML ... 70

5.4. Integrated GML transformed to SVG ... 72

5.5. SVG integrated layer visibility ... 73

vi

5.6. Feature information window ... 73

5.7. Ordnance survey data with default styling .. 74

6.1. Schema hierarchy search problem .. 77

vii

List of Examples

2.1. Well-formed XML .. 6

2.2. Schema fragment: gambling_machine .. 8

2.3. Schema fragment: slot_machine ... 9

2.4. XSL Transformation example ... 12

2.5. Feature type example .. 14

2.6. Xerces ContentHandler method signatures. .. 17

2.7. parse a document into DOM-structure .. 19

3.1. Template for River-feature ... 23

3.2. Template for Road-feature .. 24

3.3. GMLDataSource recognition of geometry elements. 26

3.4. Recognition of features in GMLDataStore ... 27

3.5. Configuring Cleopatra .. 29

4.1. Object model: functional notation .. 54

4.2. Type maps from example data .. 57

4.3. Schema definitions of mapped types .. 58

4.4. Typemap for OS MasterMap type BoundaryLine 61

5.1. Simple feature styling ... 72

viii

Foreword
Two persons should have their name printed in gold in this document, but sadly cart-

ridges are expensive enough as they are, so black ink must do. Gunnar Misund presen-

ted me to their OneMap-project, and set me off working with GML and GIS the au-

tumn 2003, not exactly my area of expertise up until then. Thanks for patience, inter-

esting challenges and a genuine interest for your students. Of course my live-in girl-

friend Kirsti is not forgotten, even though she has been placed second to my work all

too many times the last months. Now, finally having this thesis completed I will never

again use it as an excuse to avoid social interaction with either her or friends and fam-

ily.

ix

Chapter 1. Introduction
For a long time, vendors of Geographical Information Systems (GIS) did not have

common interfaces for interchanging, viewing, editing or querying their geospatial

data. Through the Open Geospatial Consortium (OGC)[OGC] government agencies,

universities and companies participates in a consensus process to develop publicly

available interface specifications for just this purpose. Some specifications are already

widely adopted, such as Web Map Service (WMS)[WMS], while others, such as the

Web Feature Service (WFS)[WFS] are catching up. A WMS delivers maps based on

requests to a web server. Most commonly these maps are delivered as ordinary raster

images like jpeg or the transparent png, and consists of layers with homogeneous fea-

tures. The user decides which layers to retrieve and the sequence of them in addition to

the geographical extent and upon this request an image with the named layers in the

desired format is delivered. A WFS however, does not serve data as maps, but as

XML[XML] representations of features. More specifically the response from a valid

WFS query is delivered in a format called Geography Markup Language, a specifica-

tion that has reached version 3.0 as we speak. The specification of GML has advanced

from version 1.0 based on Document Type Definitions (DTD)[DTD], to version 2 and

3, heavily relying on XML Schemas. XML Schemas encourage an object-oriented and

modular design of XML document definition, including important principles like ab-

stract types and derivation. GML defines both abstract and non-abstract types and ele-

ments, which forms the foundation for the development of application schemas. An

application schema form a dialect of GML that is specialized for certain data, like for

example data from a company's database. If you want to model some kind of geospa-

tial data model in GML, it is necessary to define one or several schemas capturing the

properties and features from the system. It is not sufficient to use data types and ele-

ments from the base GML schemas, because many of them are abstract and thus not in-

stantiable.

The endless possibilities when designing GML application schemas, the methods of

specifying chains of derived type declarations, together with the use of substitution

groups, provides the opportunity to represent a broad range of geospatial data sets.

However, as the data gets more complex it gets more difficult to keep track of their ori-

gin. Even though the rules of the base GML schemas define the structure of application

schemas, their datatypes may change both by name and content, thus making it cum-

bersome to handle data in a homogenous way.

1

The different application schemas are created from the three base GML schemas in

version 2, while the version 3.0 specification is more than eight times larger. My work

is focused on version 2, but the theories are logically transferable to working with

GML 3. An application schema represents one dialect of GML, with individual fea-

tures, properties and geometries. If you only consider the top layer, being the different

GML schema dialects, the data are clearly heterogeneous Figure 1.1, “GML schema

design”.

Figure 1.1. GML schema design

With the non-profit, open source project, OneMap [P1M], the main goal is to "provide

online public access to a comprehensive and detailed world map". This will be done in-

crementally and uncoordinated by many submissions. It is an underestimation to call

this challenging considering the vast number of formats, covering different parts of the

globe with different level of detail. Even though there are enormous amounts of

geodata available from various sources, the data must be collected and analyzed, re-

quiring a lot off both human and computational resources.

GML is adopted by a broad range of companies, both profit and non-profit. With this

joint effort to develop a common format for geospatial data, interoperability between

systems and exchange of data is far less complex than before. When storing geographic

data on XML format as GML we can utilize a vast number of software and methods

for query, parsing and structural design of schemas. The flexibility of schema design,

and the fact that the base GML schemas are meta-language for describing application

vocabularies, means that application schemas in most terms can be considered as het-

erogeneous. As a result most systems working with GML are often designed for one

dialect or profile (see the section called “GML profiling”) only. This issue is the

foundation of this master thesis, as there are none open-source libraries or methods to

handle GML in a generic way. Based upon existing libraries; parsing, analysis and ex-

tracting of schema information is possible. By developing a code base to make differ-

Introduction

2

ent dialects of GML accessible to utilizing applications, data exchange on GML-format

will be more encouraged. This information may be provided as a dictionary, where ori-

gin of data types can be traced, making it possible for applications to utilize easy ac-

cessible meta-information for different GML vocabularies. When different features

constructed from arbitrary application schemas can be threated generically, they can

also be mixed into integrating vocabularies, meaning documents that do not define in-

stantiable features in their own namespace, but use feature definitions from other

vocabularies.

In Chapter 2, XML software and technologies some important standards for working

with XML are introduced. Among these are XML generally and the document defini-

tion languages DTD and XML Schema. It is important to get a quite profound under-

standing of XML in order to fully be able make use of some of the other standards

presented in this chapter. For altering, parsing and transforming XML there are a num-

ber of specifications and implementations. Those presented here is Document Object

Model (DOM)[DOM], Simple API for XML (SAX)[SAX] and Extensible Stylesheet

Language (XSLT)[XSLT1]. The XML parsers can basically do the same tasks, but the

fundamental differences in how a document is parsed makes their working areas some-

what different. Performance does often come in expense of functionality; this is an im-

portant point to remember when picking one before the other. It is expected that the

reader has a basic understanding of programming, but they do not need to be expert.

The introductionary chapter can be skipped if you feel comfortable with the XML and

the concept of XML parsing.

Chapter 3, GML software gives a brief introduction to some of the available software

working with arbitrary GML, and some that would greatly benefit from being able to

analyze schemas and automate the process of loading GML data sources. There are

several methods for working with arbitrary GML, using a manually made mapping file

might be the most usual one, one that works excellent when there is only one or a few

dialects to be interpreted and imported into a program. Naturally, this could hardly be

called support of generic GML data sources, and the amount of work to make such

mapping files by hand for tens or hundreds of application schemas, requires some ef-

fort.

In Chapter 4, Handling arbitrary GML sources you will be given a more thorough in-

troduction to the issue of GML schema analysis. Utilizing arbitrary GML is presented

more in detail illustrated with a small example data set. You will also be presented to a

cascading method of GML analyzis, a method which is more reliable when working

with GML and schemas over the internet in particular, where resources might not al-

ways be obtainable.

Two XSL transformations are presented Chapter 5, Schema parser and GML viewer .

One is used to transform GML schemas into a mapping dictionary and one is for con-

verting GML with a given mapping dictionary into SVG. A description of how I chose

to implement them is found in the same chapter, together with some example results.

The last section, presented in Chapter 6, Conclusions and further work sums up the

work that has been done and some of the problems that arose during implementation. I

will try to more thoroughly go through the choices I made regarding implementation

strategies.

Chapter 2. XML software and
technologies

GML is as mentioned an XML standard, based on another XML standard, namely

XML Schema. This chapter gives a brief introduction to XML and some of the librar-

ies and methods developed to work with XML. First and foremost the characteristics of

XML in general is described, before moving on to how structure and content of docu-

ments can be restricted using DTDs and schemas. These topics can be considered as

the basics of XML and are important when it comes to understanding the GML vocab-

ulary, which also is presented in this chapter. The last part threat the art of parsing

XML documents, either for conversion to another XML vocabulary or to extract in-

formation from them.

XML
XML is designed to give a flexible, but fairly simple way to store and describe meta

data. XML is an abbreviation of the highly complex SGML, the language describing

HTML, but also a large range of other more complex languages. By defining this less

powerful, but more accessible meta-language interface, it met the requirement for a

standard data exchange language on the Internet and between applications.

XML is made for describing data, not displaying it like HTML is. HTML has a limited

set of elements, all known by web browsers that are able to present the data on basis of

these elements. XML however does not have a limited set of elements. They must be

well-formed, meaning that all tags must be closed or terminated by an end-tag. A docu-

ment with the tag <description> requires a closing tag </description> well-formed. Al-

ternatively the tag could be an empty tag <description/>. In addition the tags also have

to be nested correctly, not allowing closing of other tags than the current tag. Therefore

a document can be described as a tree-structure, which leaves us the advantage of a re-

latively clear set of rules regarding the structure of documents and the methods of ana-

lysis and traversal. Elements in an XML document should and often are named to de-

scribe the content of the document, but the fact that there is no standard set of elements

in XML means that it is impossible to make generic XML editors that 'understands' the

meaning documents.

5

The following snippet of an example we shall examine in more detail later is con-

sidered well-formed XML. Notice the closing of each element, and the correct nesting.

The element visualization (Figure 2.1, “Element visualization”) is a screenshot of a

functionality in XMLSPY[SPY], a powerful tool for developers of XML and related

technologies. This clearly shows how the nested elements form a hierarchical

(tree-like) structure; the XML fragment is an instance of this data type.

Example 2.1. Well-formed XML

...
<gambling_machine>
<name>Pokermania</name>
<id>A900-01</id>
<manufacturer>
<name>Mercury Inc</name>
<service_phone>666-234-567</service_phone>

</manufacturer>
<min_bet>10</min_bet>
<max_bet>50</max_bet>
<max_winnings>1000</max_winnings>
<payback_rate>85</payback_rate>

</gambling_machine>
...

Figure 2.1. Element visualization

XML software and technologies

6

DTD

When exchanging data on XML format it is important to be able to describe the con-

tent and structure of a document, so that applications can interpret or create documents

made for a certain system. A standardized way to define an XML vocabulary is to use

a DTD. An instance document can then define what DTD is describing the document,

and XML parsers can validate a document against the DTD and report possible diver-

gences. Documents that are in accordance with their DTDs are described as valid. This

is an extremely important issue when it comes to exchange of data between systems. A

DTD specifies the allowed elements, their allowed content, both type and cardinality.

Often, defining document structure using DTDs are sufficient, but it lacks some funda-

mental methods for expressing constraints for element and attribute data. Constraining

element cardinality is cumbersome to to define with a DTD when you for instance

want to limit the number of elements to be between e.g. 10 and 20.

A DTD defining the structure of the element visualization (Figure 2.1, “Element visu-

alization”) shown above, could look something like the following:

...
<!ELEMENT name (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT min_bet (#PCDATA)>
<!ELEMENT max_bet (#PCDATA)>
<!ELEMENT max_winnings (#PCDATA)>
<!ELEMENT payback_rate (#PCDATA)>
<!ELEMENT manufacturer (name, service_phone)>
<!ELEMENT gambling_machine ((name, id, manufacturer), (min_bet, max_bet,
max_winnings, payback_rate))>
...

XML Schema

Due to the limitations of DTDs and the fact that some developers desired a less com-

plex way to define the structure of their documents, the work with developing a new

standard to define an XML document's structure and legal building blocks started, the

result was the XML Schema. The Schema turned out more complex than the DTD, but

many of the problems addressed with the DTD was elegantly solved. A schema is in it-

self a XML document, describing the allowed contents of another XML document,

with elements from the http://www.w3.org/2001/XMLSchema namespace[XMLNS].

On the other hand, the syntax of a DTD is not XML itself, meaning that tools for edit-

ing DTDs and validating documents against them, must implement support for one ad-

ditional syntax. Naturally the same problem arise for developers of DTDs and docu-

ments, needed to master both syntaxes.

The gambling_machine complexType in Example 2.1, “Well-formed XML”, is origin-

ally defined in a schema along with other elements. Full example listed Appendix C,

Schema and instance document example . The complete schema dens.xsd describes the

elements of a document to keep track of gambling dens and slotmachines belonging to

them. Interesting data for inspectors of those kinds of businesses. The data type is de-

scribed in the code block underneath. First, the root of the data type is a complexType

from the Schema-namespace. This is an example of how we can declare our own com-

plex datatypes; complex meaning that the type consists of other elements nested with-

in, so called simpleType.

Example 2.2. Schema fragment: gambling_machine

...
<xs:complexType name="gambling_machine">
<xs:annotation>
<xs:documentation>Datatype for gambling slot machine,
ergo machines that pay out prize money in certain
situations.

</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="slot_machine">
<xs:sequence>
<xs:element name="min_bet" type="xs:positiveInteger"/>
<xs:element name="max_bet" type="xs:positiveInteger"/>
<xs:element name="max_winnings" type="xs:positiveInteger"/>
<xs:element name="payback_rate">
<xs:simpleType>
<xs:restriction base="xs:unsignedShort">
<xs:maxInclusive value="100"/>
<xs:minExclusive value="0"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
...

If you compare this Schema-snippet to the XML fragment in the section called “XML”

[6] , you recognize the structure of elements. However, the schemas give a closer de-

scription of what kind of data you are actually dealing with. For instance the

<min_bet>-element is of type positiveInteger. Take a look at the <payback_rate>, this

element is not like the others. It is declared in an element-tag, but there is a

<simpleType> element nested within. This is actually a method of restricting the al-

lowed values of data type. By a restriction, with an unsignedShort as base, we can spe-

cify the maximum and minimum allowed value of the unsignedShort-type, resulting in

a type that no longer can hold values below zero and above one hundred. If we try to

make an instance document violating this rule the validation will fail. Note that the

<payback_rate> is declared inline and thus not making it reusable in other parts of the

Schema. We could have declared an element or data type at the root of the document,

then referenced the element or created a new element from the data type inside our

<gambling_machine>, like this:

<xs:element ref="payback_rate"/>

if <payback_rate> is an element, or like this:

<xs:element name="payback_rate" type="payback_rate"/>

Even though some elements are missing compared to the XML fragment, the data is

still declared in the <gambling_machine>, but it might not be easy to spot for an un-

trained eye at first sight. This data type has a super-type, <slot_machine>, where the

rest of the content is declared (Example 2.3, “Schema fragment: slot_machine”). This

super-type is made because a gambling machine is a type of slot machine, but so is for

instance an arcade game. The concepts of reusability and inheritance are introduced in-

to XML using Schemas. The <payback_rate> element was a restriction of the un-

signedShort, while the <gambling_machine> is a extension of the <slot_machine>,

specifying new content and reusing existing.

Example 2.3. Schema fragment: slot_machine

...
<xs:complexType name="slot_machine" abstract="true">
<xs:annotation>
<xs:documentation>Abstract data type defined to be super-type for
any type of slot machine in the system.

</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="id">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="[A,B,C][0-9]{3}[-][0-9]{5}"/>

</xs:restriction>
</xs:simpleType> </xs:element>

XML software and technologies

9

<xs:element ref="manufacturer"/>
</xs:sequence>

</xs:complexType>
...

The complexType declaration above defines an element id, showing the use of a pat-

tern to restrict string-values. The pattern is a regular-expression that has to match to

the element in the instance document in order for it to be valid. The pattern in the

above complexType is translated into one of the letters A, B or C, followed by three di-

gits from 0-9, a dash, then five more digits. Let us say that this is a registration code

that all legal slot machines have to be labeled with within an area. The regular-ex-

pression matching ensure that the code is correct according to the rules of registration.

If we take a look at the data type visualization (Figure 2.2, “Data type visualization”)

of <gambling_machine> in XMLSPY, we can see a more accurate description because

the characteristics inherited from slot_machine is shown on the yellow background and

the rest of the elements on white.

Figure 2.2. Data type visualization

There are several other benefits of using schemas, for instance schemas both have a

greater number of data types available than DTDs and they provide the opportunity to

make your own. The Schema standard allows programmers to take an object-oriented

approach to the developing of documents. By deriving other data types, either by re-

striction or extension, the aspect of reusability and tighter control over the allowed ele-

ment and attribute values, is evident. You can define fundamental properties in abstract

data types, and by deriving these and declare substitution groups, one element or data

type may substitute for another. This method of development is flexible and powerful,

but still you can keep tight control over what kind of data is allowed in your instance

documents. The example schema describes a data type, arcade_game, with the super-

type slot_machine. Even though both of these types in an object-oriented approach

could substitute for the slot_machine, we have to specify it in the Schema using the

substitutionGroup -attribute. Now both gambling_machine and arcade_game can sub-

stitute for elements of type slot_machine. Actually, if elements of slot_machine are re-

quired, one of these must substitute because the slot_machine type is declared abstract,

and cannot be instantiated.

[...]
<xs:element name="gambling_machine" type="gambling_machine"
substitutionGroup="slot_machine"/>
<xs:element name="arcade_game" type="arcade_game"
substitutionGroup="slot_machine"/>
[...]

The complete schema and an examples instance document are located in Appendix C,

Schema and instance document example .

XSL

XML will not necessarily ever replace HTML since they basically cover two different

purposes, namely markup for describing data and markup for displaying data. There

are however technologies under development for displaying XML. As earlier ad-

dressed, the HTML-elements are all known to browsers made especially for the pur-

pose to layout the content according to the tagging of a file. Since you define your own

elements in XML, browser cannot guess how you want your elements styled and dis-

played. For this purpose we can use Extensible Stylesheet Language(XSL)[XSL], an-

other W3C specification. XSL is actually a family of three different W3C recommend-

ations, a transformation language called XSL Transformation (XSLT), a language to

address and manipulate parts of documents called XML Path Language (XPath)[XP]

and a styling language called XSL Formatting Objects (XSL-FO)[XSL].

The purpose of XSLT is to transform a XML document into another document such as

e.g. Scalable Vector Graphics (SVG)[SVG], HTML or any other desired format. Parts

of the original file are matched against templates in the transformation file, reorganiz-

ing the data and placing it on the desired location in the output document. XPath is

used to address data from the tree-structured XML document. When people refer to

XSL they are often actually talking about XSLT. This is somewhat incorrect consider-

ing that XSLT is only one component of the XSL recommendation. The transformation

part can however be used independently of the formatting objects and vice versa.

Both structure and content of an XML document can be drastically changed using

XSLT. Example 2.4, “XSL Transformation example” presents a short example of how

to convert an XML instance document with gambling_dens to a HTML document.

Example 2.4. XSL Transformation example

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform
" xmlns:sl="http://www.dens.com">
<xsl:output method="html" encoding="UTF-8" indent="yes"/>
<xsl:template match="/">
<html>
<head>
<title>Registrered slot machines</title>

</head>
<body>
<table border="1">
<tr>
<th>Name</th>
<th>Registration number</th>
<th>Owner</th>

</tr>
<xsl:for-each select="//sl:arcade_game | //sl:gambling_machine">
<xsl:call-template name="slot_machine"/>

</xsl:for-each>
</table>
<xsl:call-template name="summary"/>

</body>
</html>

</xsl:template>

<xsl:template name="slot_machine">
<tr>
<td>
<xsl:value-of select="sl:name"/>

</td>
<td>
<xsl:value-of select="sl:id"/>

</td>
<td>
<xsl:value-of select="../../sl:name"/>

</td>
</tr>

</xsl:template>

<xsl:template name="summary">
<xsl:variable name="nrArcade" select="count(//sl:arcade_game)"/>
<xsl:variable name="nrGambling"
select="count(//sl:gambling_machine)"/>
<table>
<tr>
<td>Number of arcade games:</td>
<td><xsl:value-of select="$nrArcade"/></td>

</tr>

XML software and technologies

12

<tr>
<td>Number of gambling machines:</td>
<td><xsl:value-of select="$nrGambling"/></td>

</tr>
<tr>
<td>Average number of slot machines per den:</td>
<td><xsl:value-of select="($nrArcade + $nrGambling) div
count(//sl:gambling_den)"/></td>

</tr> </table>
</xsl:template>

</xsl:stylesheet>

As revealed by the document declaration of the example stylesheet, the file is XML it-

self. The transformation elements used are those represented by the namespace ht-

tp://www.w3.org/1999/XSL/Transform, identified by the abbreviation xsl in the docu-

ment. The elements without any namespace prefix, goes directly to output, these are

the HTML-elements that form the layout of the page. A transformation starts with the

matching of templates against the document to be converted. To get the conversion 'go-

ing', we must use the template to match the XPath '/' identifying the root of the docu-

ment. When the root is located, the XSLT-engine transforms the data in the instance

document according to the order given in the template. A template is either identified

with a match like the root-element, or with a name. If the template has a name, we can

call it from other parts of the document. The <xsl:for-each ...>-element will traverse

the node-sets returned from the XPath-expression found within the select-attribute. As

you can see, we combine the xsl-elements with XPath-expressions to get the most out

of the transformations. It is important to remember that the <xsl:for-each ...>-element

is not a ordinary loop like the for-loop found in C/C++/Java. The for-each is used to

traverse node-sets and for each iteration the parsers logical position will be inside the

current node. If you want some kind of ordinary for-looping, there are no implementa-

tions of this in XSLT. You may however imitate a for-loop using recursive templates.

In our example you will see that we use the xsl:call-template-command for each node.

The template outputs a table row, with the name and id of the machine in addition to

the name of the place where you can find it. This template can just as well be defined

inline in the for-each-element if we do not want to make it reusable to other templates.

The last table row of the stylesheet output sums up the different types of machines. It

also divides the number of machines on the total number of dens. Math functionality is

crucial if XSLT should be a real competitor to implementations in Java, C++ or any

other high level programming language. As you can see, we can store the values in

variables like we do in other conventional languages. There is however one important

note on variables in XSLT, their value cannot be changed once they are initiated.

XSLT is only a specification how transformation stylesheets can be written to convert

a document from one XML format to another, not how it should be done. There are

quite a few available parsers, implemented to interpret transformation stylesheets and

carry out transformations on documents. Most of them only supports the XSLT 1.0

specification, but recently the Saxon project released a parser with some functionality

defined in the XSLT 2.0 specification[XSLT20].

GML
"Geography Markup Language is an XML grammar written in XML Schema for the

modeling, transport, and storage of geographic information" [GML30]

The OGC abstract model of geography[AMG] describes the world in terms of geo-

graphic entities called features. A feature is a combination of spatial and non-spatial

data, properties and geometries. A GML document contains so called feature collec-

tions, that works as containers for features. A feature collection is actually a feature it-

self, meaning that feature collections can hold other feature collections. There are no

limitations on the depth of feature nesting in a GML document. A document may e.g.

store information about train stations within an area, it will therefore be composed of

many features (stations), each describing the non-spatial properties of stations like the

name and other related data, alongside with their geometric properties such as location

and boundaries. Example 2.5, “Feature type example” shows a feature, school, with

properties and geometries.

Example 2.5. Feature type example

...
<Feature fid="142" featureType="school" >
<Description>Balmoral Middle School</Description>>
<Property Name="NumFloors" type="Integer" value="3"/>
<Property Name="NumStudents" type="Integer" value="987"/>
<Polygon name="extent" srsName="epsg:27354"> <LineString
name="extent"
srsName="epsg:27354">
<CData>
491888.999999459,5458045.99963358
491904.999999458,5458044.99963358 491908.999999462,5458064.99963358
491924.999999461,5458064.99963358 491925.999999462,5458079.99963359
491977.999999466,5458120.9996336 491953.999999466,5458017.99963357

</CData>
<LineString>

</Polygon>
</Feature>
...

Considering that GML is XML, we can benefit from a broad range of applications and

standards to develop, transform and parse the data. From day one there were tools

available for these tasks, which must be considered a great argument for choosing

GML, not only for exchange of geographic data, but in some cases also storage. GML

upholds the principle of separating content from presentation, meaning that presenta-

tion of the data is not up to GML.

Web Feature Server (WFS)

The Web Feature Service Implementation Specification (WFS)[WFS] describes an in-

terface for retrieval of geospatial data encoded in GML. How these data are stored

should be opaque to the client utilizing the service. Data sharing between proprietary

systems will thus be possible if they are accessible through a WFS. WFS is specified

for the HTTP protocol, accepting parameters as key-value-pairs in a GET query.

Through a valid DescribeFeatureType request, the client will be served a GML schema

describing features available from the WFS interface. The schema returned is designed

for the underlying data in particular, meaning that there are no standardized feature

schemas meant to fit all features stored behind a WFS interface. Since GML is meant

to describe, not present geospatial data, it is up to the client parse and style features in

any chosen format. GML served from a WFS is not any different from any ordinary

GML document, but a fully functional implementation offers functionality to filter out

features based on geographic or non-spatial property values. When wanting to present

GML acquired from a WFS, an application must either be able to directly make a

graphical presentation of GML, or the GML must be transformed into some kind of

presentation format like e.g. SVG.

Parsing XML
This section introduces some of the methods and libraries available for parsing and

working with XML. When working out a method to work with GML in a generic way,

one or several parsing libraries like these could be the key elements of success.

We have already seen an example of how to transform XML-structures using XSLT, a

powerful XML-based, functional programming language. There are situations when

we need APIs to access information in XML documents, for editing or merely reading

XML software and technologies

15

purposes. You will find two basic approaches to this, Document Object Model (DOM)

[DOM] and Simple API for XML (SAX) [SAX]. They are both powerful and widely

adopted standards, but they have fundamentally different approaches on how to parse

XML. All programmers working with XML should be acquainted with the differences

between them and the situations when you should choose one before the other.

Both APIs are platform- and language-neutral programming interfaces, with dozens of

implementations for several different programming languages. All examples provided

within this document are written using Xerces2 Java Parser, but should be easily adap-

ted to other programming languages. Programmatically, DOM is probably the most

high-level method of the two, while SAX represents the effective one, addressing the

fields where DOM lacks in performance. The following sections give a short introduc-

tion to the fundamental characteristics and differences between the available XML

parsing libraries.

Simple API for XML (SAX)

SAX was at first a widely adopted API for XML in Java, but is now available for many

different programming languages, making it an excellent additional API for parsing

XML. W3C are not in charge of the development of SAX, it is under open develop-

ment as a SourceForge-project[SRCF].

SAX is an event-based API where XML documents are parsed sequentially and events

are triggered dependent of document's structure and content. When using DOM, the

document has to be parsed into a data structure before the content is reachable by code.

SAX parsers parses a document sequentially, meaning that the actual extraction of doc-

ument information starts instantly from the first byte is read from the a file.

Programming SAX with Xerces

When we are parsing documents using SAX, the XMLReader-object is responsible for

the actual parsing. This reader triggers different events to the ContentHandler, depend-

ing on what kind of data is read at the moment. The code in Example 2.6, “Xerces

ContentHandler method signatures.”, shows some of the methods in the interface Con-

tentHandler. These methods should be quite self-explanatory, and if we implemented

the handler to output the argument values, this would reflect the order of the elements

in the document. Remember that you are not able to go 'backwards' in the event-stream

when using SAX, if you have interest in the prior elements, the only way to gain access

to preceding parts of a document is to store it as a parser reaches it.

Example 2.6. Xerces ContentHandler method signatures.

[...]
public void characters(char[] ch, int start, int length) throws org.xml.sax.SAXException;
public void endDocument() throws org.xml.sax.SAXException;
public void endElement(String namespaceURI, String localName, String qName)
throws org.xml.sax.SAXException;
public void startDocument() throws org.xml.sax.SAXException;
public void startElement(String namespaceURI, String localName, String qName,
org.xml.sax.Attributes atts) throws org.xml.sax.SAXException;
[...]

Document Object Model (DOM)

The main characteristic of DOM is that it keeps the document in-memory, stored as a

tree-structure, making it possible to access, add, delete, manipulate content in a non-

sequential way. DOM is actually divided into levels, each level providing additional

functionality upon the other. So far level 1 and 2 are Recommondations to W3C from

the DOM Working Group, which are now working on the level 3 specification. The

somewhat altered illustration underneath (Figure 2.3, “DOM Level 2 Architecture

(DOM Activity Statement)”), taken from the DOM Activity Statement, show an over-

view of the functionality offered by DOM level 1 and 2 APIs.

Figure 2.3. DOM Level 2 Architecture (DOM Activity Statement)

Methods provided to navigate the tree and gaining random access to nodes or node-

sets, makes this approach an easy pick for many developers. However the advantages

of DOM are in some cases considered the disadvantages. Keeping large document in-

memory exhausts resources, thus it is important to have a good reason for using DOM.

If you just want to traverse a document, possibly to gather data to create object-in-

stances, the overhead of using DOM makes it a bad choice. However if you access the

data randomly and often, the time spent to read and make a data structure of the docu-

ment might be worth the cost of storing it in memory.

Programming DOM with Xerces

There are dozens of XML parsers supporting DOM and SAX. I have chosen Xerces

Java Parser in my work, one of many Java implementations of the interface specifica-

tion. Some parser do also offer additional functionality that might cover functionality

not defined in the interfaces, this might be an important point to remember, because

utilizing such functionality will make your software dependent upon one certain type

of parser library.

The first step creating a DOM-parser is to instantiate the

org.apache.xerces.parsers.DOMParser, then pass a String with the document path to

XML software and technologies

18

the parse-function. The DOMParser will then build an in-memory tree consistent of the

information from the file. The content is now accessible from the parser by calling the

method getDocument() (Example 2.7, “parse a document into DOM-structure”).

Example 2.7. parse a document into DOM-structure

...
DOMParser parser = new org.apache.xerces.parsers.DOMParser();
try {
parser.parse("instance.xml");
org.w3c.dom.Document document = parser.getDocument();

} catch (java.io.IOException e) {
e.printStackTrace();
System.exit(1);

}
...

The document-instance represents the whole document, and offers methods for both re-

trieving and adding data. The document and the sub-nodes all implement the interface

Node, giving a standard set of methods for traversing the document.[NODE]

Scalable Vector Graphics (SVG)
GML describes properties and geometries of features, how data should be presented is

however not described in a GML document. SVG can be used to present GML content

as a map. SVG is another specification based on XML, meant to provide markup for

vector graphics. To be able to view SVG documents graphically it is required to have

software made specifically for this purpose; Adobe[ADO] has developed the most ad-

opted piece of software for displaying SVG, the Adobe SVG Viewer. This provides plu-

gin functionality for web-browsers so that SVG content can be displayed directly from

the web. Batik[BAT] is another implementation of the SVG specification, made in

Java and available as an open source library made for presentation and altering of

SVG. There are a number of libraries and specifications that can be used to convert

GML into SVG. One strong candidate is XSLT, stylesheets that can be fed into any

XSL-parser together with a GML document to instantly provide the desired output.

The simplicity of XSLT stylesheets, makes them an easy choice for XML altering.

Most programming languages are equipped with the possibility to run XSL transforma-

tions on XML documents, thus making XSL one of the most portable choices (Fig-

ure 2.4, “Simple GML to SVG transformation”).

Figure 2.4. Simple GML to SVG transformation

GML does of course contain geographic data, but in most cases the meta-information

contained in each feature is just as important for utilizing software. Meta-data can also

be contained in SVG together with the geographical markup. By implementing script-

ing such as ECMAScript[ECMA] we can achieve dynamic behavior much like in

XHTML[XHTML] or other web-standards. The graphical elements in SVG can trigger

scripting code for actions such as mouseover, mouseout, onload, onclick and so on.

Events can also be triggered as a result of the lifecycle of the document in the viewer,

these include e.g. onunload, onerror, onscroll and onzoom. In addition to this function-

ality SVG animation is specified through the Synchronized Multimedia Integration

Language 1.0 (SMIL) specification[SMIL].

Chapter 3. GML software
A lot of tools are available to work with GML in some way. These tools have loaders

and writers to import GML data into the application. Many of them are open source

libraries, still under development. The applications covered in this chapter do all load,

write or alter GML data, but they handle the issue of different application schemas dif-

ferently. Some requires additional metadata in their own proprietary format to interpret

instances of one particular vendor version. There are also examples of unreliable tech-

niques, like recognizing application elements merely on the basis of their element

names. This section attempts to give insight in the solutions implemented by different

participants of the GML community.

JUMP - Unified Mapping Platform
JUMP[JUMP] is an open source GUI-based application for viewing, editing and pro-

cessing spatial data. JUMP utilizes the JTS Topology Suite[JTS], also developed by

Vivid Solutions[VIV], to implement the OpenGIS Simple Features Specification[SFS].

The JUMP Workbench is designed for both development of conflation algorithms, in-

voking of these and as a general-purpose tool for the visualization and edition of spa-

tial data.

To be able to process generic GML, you have to specify a GML Input Template,

identifying collections, features, geometry and non-spatial properties. By using an in-

put template you are able to extract a single FeatureCollection from a GML file, mean-

ing that you have to specify multiple input templates in order to import more than one

collection/layer.

JUMP can interpret and write JUMP GML , without the need of templates specified by

the user. However templates are still used, written and read from the start of the GML-

instance. For additional functionality, the application can be extended by providing

plugins. Users can also write their own drivers to different data sources, allowing the

application to work with proprietary formats.

Figure 3.1. Technical architecture of JUMP (JUMP Technical
Report[JTEC])

21

JUMP can also act as a client to OGC Web Map Service (WMS)[WMS] servers,

providing an interface to create and edit WMS queries Figure 3.2, “JUMP screenshot

(JUMP Technical Report)”.

Figure 3.2. JUMP screenshot (JUMP Technical Report)

GML software

22

Considering the Cambridge example found in the GML2-specification[GML20], we

can provide two input templates, making it possible for JUMP to interpret the GML

files correctly. By specifying the collection-element, the feature-element and the asso-

ciated geometry element, JUMP reads and displays the features found. If feature-ele-

ments has additional properties, not provided by the basic GML types, these goes into

the same input template as a column-element if we want to import them into the suite.

If we want to display the River-element in JUMP, we specify a template where Collec-

tion-element is CityModel, FeatureElement is River and GeometryElement is

gml:centerLineOf (Example 3.1, “Template for River-feature”).

Example 3.1. Template for River-feature

<?xml version="1.0" encoding="UTF-8"?>
<JCSGMLInputTemplate>
<CollectionElement>CityModel</CollectionElement>

<FeatureElement>River</FeatureElement>
<GeometryElement>gml:centerLineOf</GeometryElement>

</JCSGMLInputTemplate>

If the River-type had any additional non-spatial properties, these could be listed after

the GeometryElement. The Road-element, found in the same file has two properties,

classification and number. These must also be listed in the template, for the application

to be able to read them and for the user to be able to edit and view them in the editor.

Example 3.2. Template for Road-feature

<?xml version="1.0" encoding="UTF-8"?>
<JCSGMLInputTemplate>
<CollectionElement>CityModel</CollectionElement>
<FeatureElement>Road</FeatureElement>
<GeometryElement>linearGeometry</GeometryElement>
<ColumnDefenitions>
<column>
<name>classification</name>
<type>STRING</type>
<valueelement elementname="classification"/>
<valuelocation position="body"/>

</column>
<column>
<name>number</name>
<type>INTEGER</type>
<valueelement elementname="number"/>
<valuelocation position="body"/>

</column>
</ColumnDefenitions>

</JCSGMLInputTemplate>

The type-, value- and valuelocation-elements provide information to the application

where to find the property-values, and what kind of values they contain. The classifica-

tion is a string, and the number is an integer. The values will not be validated against

any restrictions made in schemas, and the list of possible types to specify within the

template only represent a small subset of values compared to the amount found in

XML schema. The file cambridge.xml can now be loaded into JUMP. We load the file

as two layers, one with the road-template and one with the river-template. Each tem-

plate provides one layer of information, and can be edited separately.

The idea of specifying input templates is easy understandable and pretty straight for-

ward. As long as users are working with a pretty limited set of features, the time spent

creating them manually will probably be quite insignificant. On the other hand, if we

want to make use of several different document conforming to different

GML2-dialects, this process is not at all ideal.

The plugin functionality of JUMP should make pretty straight forward to extend the

program with extra functionality. An automatic template generator could be a very use-

ful plugin, one that could be realized using the solutions presented in this thesis. It is

important that the schema analysis can be done in the most portable manner, because it

is important to predict what kind of programs that would actually benefit from schema

analysis. XSLT libraries are available for most programming languages, while imple-

menting the analyzer in Java or any other programming language that requires compil-

ing will make it less portable.

GeoTools
The development of GeoTools[GTP] started at The University of Leeds in 1996. The

first version was targeted at the applet API, this does now exists as GeoTools-Lite,

while the further development of a more broad library continues, taking full advantage

of existing Java technologies to develop an open source Java library for development

of OpenGIS solutions. GeoTools is divided into separate modules, each implementing

different requirements. A subset of these modules will be sufficient for most de-

velopers, but as a whole they cover a lot of ground when it comes to development of

OpenGIS solutions. The Geotools FAQ states that “The aim of the project is to develop

a core set of Java objects in a framework which makes it easy to implement OGC-

compliant, server-side services or provide OGC compatibility in standalone applica-

tions or applets.”, furthermore they describe the strategy of implementation as “The

GeoTools 2 project comprises a core API of interfaces and default implementations of

those interfaces”[GFQ]. GeoTools are committed to implementing the standards set by

the OGC. This ensures that GeoTools is developed according to OpenGIS specifica-

tions, formalized through OGC's structured committee programs and consensus pro-

cess.

GeoTools strive to support as many geographical data formats as possible, making

them accessible for the vast amount of functionality implemented in the GeoTools-

suite. Different geospatial formats are transformed into the GeoTools feature represent-

ation format through different implementations of a DataStore or DataSource frame-

work. In order to make proprietary data available to GeoTools, a new implementation

must be built upon your data source, following the guidelines of implementation.

Among others, GeoTools support PostGIS, GML2.0 and MySQL data.

The DataStore interface is closely related to the OGC Web Feature Server Specifica-

GML software

25

tion, described in the section called “Web Feature Server (WFS)”, where a feature is

describes as an atomic unit of geographic information. The FeatureType determines the

properties of the Feature. In addition each Feature has an unique id.

GeoTools DataSource (GMLDataSource)

The GMLDataSource is an implementation of the DataSource interface, meant to

handle GML2.0, loading features from GML into the JTS topology suite. The imple-

mentation is however pretty "hard coded", the recognition of certain elements from

GML is actually done by partial and full string comparison of element names. The fol-

lowing snippet shows how the native GML geometry properties and elements are

coped with during SAX-parsing.

Example 3.3. GMLDataSource recognition of geometry elements.

if (namespaceURI.equals(GML_NAMESPACE)) {
// if geometry, pass it on down the filter chain
if (BASE_GEOMETRY_TYPES.contains(localName)) {
parent.geometryStart(localName, atts)

} else if (SUB_GEOMETRY_TYPES.contains(localName)) {
parent.geometrySub(localName);

} else if (COORDINATES_NAME.equals(localName)) {
// if coordinate, set one of the internal coordinate methods
coordinateReader.insideCoordinates(true, atts);
buffer = new StringBuffer();

} else if (COORD_NAME.equals(localName)) {
coordinateReader.insideCoord(true);
buffer = new StringBuffer();

} else if (X_NAME.equals(localName)) {
coordinateReader.insideX(true);

} else if (Y_NAME.equals(localName)) {
coordinateReader.insideY(true);

} else if (Z_NAME.equals(localName)) {
coordinateReader.insideZ(true);

} else {
parent.startElement(namespaceURI, localName, qName, atts);

}
} else {
/* all non-GML elements passed on down the filter chain without
* modification
*/
parent.startElement(namespaceURI, localName, qName, atts);

}

If none of these tests, possibly the first one isn't true, the handling of this elementStart

is passed directly on to the parent ContentHandler in a chain of handlers. Figure 3.3,

“GMLDataSource SAX filters” shows the data flow through the provided filters of the

DataSource implementation, where the top ContentHandler; GMLFilterDocument con-

trols the flow of data as shown in the program listing above. This fraction of code is

actually found in the startElement-method in GMLFilterDocument.

Figure 3.3. GMLDataSource SAX filters

The GMLDataSource works perfectly well when working with certain vocabularies,

but it does indeed fail on others, because it is assumed that naming is done using a cer-

tain convention. Another quick 'hack' is to be found in the class GMLFilterFeature,

where featureMember- and featureCollection-elements are recognized merely on the

basis of their names (Example 3.4, “Recognition of features in GMLDataStore”). The

comments of the author clearly indicate that this solution is not optimal concerning

how the elements are identified. As soon as the elements have different names, it is

useless to utilize this code to find features!

Example 3.4. Recognition of features in GMLDataStore

[...]
public void startElement(String namespaceURI, String localName,
String qName, Attributes atts) throws SAXException {
if (localName.endsWith("Collection")) {
// if we scan the schema this can be done better.
NAMESPACE = namespaceURI;

//_log.debug("starting a collection with namespace " + NAMESPACE + " and
Name " + localName);
return;

}

// if it ends with Member we'll assume it's a feature for the time being

// nasty hack to fix members of multi lines and polygons
if (localName.endsWith("Member") &&
!localName.endsWith("StringMember")
&& !localName.endsWith("polygonMember")) {
[...]

}
[...]

}

By defining a schema where the features and feature collections are defined with

names not ending with 'Collection' or 'Member', the features of the instance document

will no longer be available to the GMLDataSource. Figure 3.4, “Extending and substi-

tuting featureCollection” shows a perfectly legal way to extend a FeatureCollection,

and at the same renaming it. If we want the GMLDataSource implementation to be

able to parse documents where this collection is present, some code altering is neces-

sary.

Figure 3.4. Extending and substituting featureCollection

The primary drawback of implementing access to your data using DataSource-inter-

faces, is that one DataSource only provides access to one feature type. There are also

some issues regarding performance, as all the features are loaded into memory. The

implementation is therefore best suited for small data sets. Access to subsets of fea-

tures is possible by implementations of Filter or Query.

GeoTools DataStore

DataStore supersedes DataSource as interface for data access. It provides all the basic

functionality found in DataSource, along with many improvements. The most obvious

improvement when it comes to functionality, is support for multiple feature types for

GML software

28

each DataStore. This makes it possible to read multi-feature documents using one

DataStore.

DataStores also improves performance when working with a big data sets. Features can

be loaded and manipulated one by one, not exhausting limited memory resources. It is

still possible to gain access to feature collections, as in-memory structures if this is

needed.

For working with features, GeoTools provides two interface specifications. Expression

and Filter. Expression-classes are implemented to perform calculations on features, re-

turning a generic object. Expressions are usually composed of other Expressions. Fil-

ters are implemented to be able to extract features that satisfy certain criteria. Filters

can perform tests on attributes and geometries of features, and reports back whether a

feature satisfies the filter condition or not. A Filter can be wrapped in a Query, to

provide more complex conditions. David Zwiers has started the development of a GML

DataStore, the project was recently added as a branch of the GeoTools project. The

GMLDataStore is intended to be OGC GML 2.1 compliant. Most likely the DataStore

implementation will make use of schema parsing in order to interpret document con-

tent, but the details are still unknown.

Cleopatra
This project is a proof of concept for generating Scalable Vector Graphics (SVG) on

the fly from GML. It is intended to act as a publishing layer between a GML data

source and the end user. The conversion process in parameter driven and

customizable[CLEO]. The process of publishing generic GML data as SVG is not

automatic. The plugin requires a configuration settings XML file, defining XPaths to

indicate which features and non-spatial data fields to expose. Example 3.5,

“Configuring Cleopatra” shows a small fraction of the configuration file for Cleopatra,

where XPaths to specific parts of the document are provided. For each application

schema and document, this configuration file must be present for Cleopatra to parse the

data correctly. By pointing to external Cascading Style Sheets (CSS), the features' geo-

metries are styled for viewing.

Example 3.5. Configuring Cleopatra

[...]
<!-- this has various GML application Schema specific xpaths -->

<settings:xpaths>
<!-- absolute xpath that will find features -->
<settings:feature>//osgb:topographicMember</settings:feature>
<!-- relative xpath from feature to feature type -->
<settings:featureType>./*[1]/osgb:theme</settings:featureType>
<!-- relative xpath from feature to attribute data-->
<settings:attributeData>./*[1]/*[text() and count(text()) = 1]
</settings:attributeData>
<!-- relative xpath from attribute data to data name-->
<settings:attributeDataName>local-name()
</settings:attributeDataName>
<!-- relative xpath from attribute data to data value-->
<settings:attributeDataValue>./text()
</settings:attributeDataValue>

</settings:xpaths>
[...]

The configuration files for Cleopatra are pretty thorough and complicated, which also

makes the viewer very customizable. There is no tool provided for creation of such

files, so they have to be made manually. A schema parser could provide support for re-

cognition of generic feature types and properties so that the creation of these files

would be easier. Treating feature- and property types based on their ancestors could

also be possible in applications like Cleopatra. One example is styling, where every

feature, which is descendant of a certain GML feature type, should be styled in a cer-

tain way. This relationship is only possible to recognize through a schema analysis.

This is a Figure 3.5, “Cleopatra demonstration screenshot” is a screenshot from a

demonstration found at Schemasoft's homepage.

Figure 3.5. Cleopatra demonstration screenshot

GO Loader
Snowflake Software Ltd.[SFL] has developed specialized software for working with

GML data. They offer a free Ordnance Survey (OS) MasterMap [OS] viewer that is

made specifically to work with data based on the OS application schemas. Ordnance

Survey is a government department and executive agency, providing a broad range of

products and services. Surveying and topographic mapping of Great Britain is the basis

for their activities, one being digitally storing the geospatial data and offer it as OS

MasterMap GML. Even though the free viewer only supports OS MasterMap, they of-

fer a viewer for generic GML, but not as freeware.

The GO Loader is developed to serve the purpose of "modeling, loading and mainten-

ance of content delivered in GML into an Oracle Spatial / Locator database.". The

GML software

31

most exciting fact about this loader, is that it analyzes the application schemas for the

instances to be loaded, and therefore it does not require any additional meta data, to be

able to parse and load the data into the database. Since this is commercial software, we

can only speculate how the schema parsing is done, but the process is most likely done

by utilizing some implementations of XML parsing libraries, like the lightweight SAX

or the more complex DOM. An alternative, possibly combined with the mentioned

ones, is of course XSLT.

As correctly pointed out on Snowflake's website, there are numerous benefits of this

approach. The ability to read new sources of GML without writing any kind of transla-

tion software or input/output templates, might be the most significant advantage over

other similar tools. Especially if you are frequently loading GML data, based on un-

known application schemas, you will benefit over and over again. Just as a growing

number of other geospatial software, GO Loader is written in Java, making it possible

to execute it on a number of platforms.

Chapter 4. Handling arbitrary GML
sources

The preceding chapter hopefully gave insight to some of the applications somehow de-

pendent on utilizing GML for various purposes. They are all exposed to the problems

related to the handling of generic GML. The implementers have all chosen different

strategies for the task, some more reliable than others. This chapter covers and dis-

cusses the problems that arise when you programmatically want to work with on be-

forehand unknown vocabularies of GML. Additionally, it covers profiling of GML, a

well-known strategy to restrict the loosely defined GML rules regarding both allowed

structure and content of documents.

Handling arbitrary GML
GML application schemas are developed from the base GML schemas, replacing ab-

stract types and declaring substitution groups. The development is often done in layers,

leaving the final application schemas with datatypes extending or restricting base GML

types indirectly through other application specific types. This naturally increases the

complexity in finding back to the source, even though it is clearly feasible when con-

sidering for example schema validators. These make sure that instance documents con-

form to their schemas, meaning that they validate the grammar against the base data

types.

Developers of applications and toolkits such as GeoTools and JUMP strive to make

their software support as many data formats as possible. GML2 is difficult to deal with

in a generic way, because the elements defined in the schemas feature.xsd and geo-

metry.xsd, are not sufficient and not intended to serve as the only schemas for instance

documents. They define a meta-language, to be used as a basis for other another meta-

language. Elements like _Feature and _FeatureCollection and their corresponding

datatypes are abstract. This means that it is a requirement for application schemas to

define their own datatypes, deriving and substituting for these. Handling arbitrary

GML sources in a generic way is not a trivial task, nevertheless, it should be a sought

after functionality in many programs, considering e.g. some of the applications presen-

ted in Chapter 3, GML software . Most systems does handle one GML vocabulary

only, nevertheless, this does not necessarily mean that the data format is not interesting

33

in some other context than that served by this specific application. Open source toolkits

for analyzing GML schemas could provide some assistance for application developers

to make software less vendor specific. Figure 4.1, “Basic GML application schema” il-

lustrates how a simple GML 2.0 application schema is designed. Through utilization of

the base GML data types, found in the two schemas feature.xsd and geometry.xsd.

Figure 4.1. Basic GML application schema

A simple GML application schema is illustrated in Figure 4.2, “HaldenByNight applic-

ation schema”. This schema is created to model the places to go when day turns into

night in the small town of Halden. The element HaldenByNight is the root element of

application documents, making it an instantiation of a FeatureCollection complex type.

Figure 3.4, “Extending and substituting featureCollection” shows how this type is de-

clared in the schema, namely as an extension of gml:AbstractFeatureCollection, where

GML is the namespace abbreviation for the GML-namespace. The element is declared

to substitute for the gml:_FeatureCollection, in accordance to the GML 2.1.2 specific-

Handling arbitrary GML sources

34

ation. Feature elements and indeed other FeatureCollection elements are enclosed

within the non-abstractgml:featureMember element or possibly a specialized feature

member type, deriving FeatureAssociationType. The fact that a feature collection leg-

ally can be nested inside another featureCollection, makes it clear that schemas and

thereby documents can be built in a recursive manner. This makes GML very flexible

considering how the geospatial data can be modeled, simplifying grouping of related

element in an intuitive manner.

Figure 4.2. HaldenByNight application schema

Instances of the HaldenByNight-schema is valid GML2, and is therefore also valid

data for the Cleopatra viewer, the JUMP application presented in Chapter 3, GML soft-

ware , or any other application somehow able to work with arbitrary GML. However,

these applications rely on configuration files to be able to handle the generic GML.

Handling arbitrary GML should be straight forward when considering the close rela-

tion between various application schemas, but it turns out not to be. Significant GIS

vendors have addressed the problem with different solutions to the problems. Profiling,

as discussed in section the section called “GML profiling” is one of them, particularly

addressed by Environmental Systems Research Institute (ESRI)[GPR] one of the world

leading vendors of geographic information systems. As earlier mentioned, documents

can be defined in a recursive manner, meaning that a feature collection may be nested

deep inside a hierarchy of other feature collections. This loose restriction on structure,

provides the freedom to indeed model your documents recursively. One of the advant-

ages of this doing this, is that the features and feature collections, can be grouped in ac-

cordance with their relationship and their role within the entire structure. It has been

pointed out that a great deal of flexibility, restricts and makes it complicated to work

out guidelines for interoperability between GML sources.

GML profiling

A profile of GML is a restriction of the basic descriptive capability of GML. These

profiles may either be defined by construct of additional schemas, or as procedural

agreements within an information community[GML20]. Additionally, a GML profile

may not be defined so that it goes beyond the constraints of the GML specification.

ESRI has taken the initiative to make a common profile for GML. Through meetings

with members of the OGC, a software extension, The OGC Interoperability Add-on for

ArcGIS, has been released to extends their desktop suite, ArcGIS, to act as a client for

OGC WMS-and WFS-based services. By using this extension, GML data fitting a cer-

tain profile can be exchanged between different vendors. Among restrictions coerced

through the profile is[GPR]:

• A FeatureCollection should not include endless levels of other FeatureCollection

elements

• A FeatureCollection should include a homogeneous set of features.

• Features should contain well-defined data types.

There is no doubt that by profiling GML, and thereby avoiding unnecessarily complic-

ated application schemas, implementing tools for interoperability between systems is

less complicated. Profiling is however restriction of the abilities of GML, and thereby

the application schemas. Pitfalls may of course be avoided if developers adhere to a

GML profile. A profile defined by the creation of one or several schemas "on top of"

the base GML schemas, can be viewed as a meta-dialect of GML. To describe a sys-

tem as generic because it accepts GML in accordance to one or several specialized

GML profiles, is of course not correct, even if the profile is widely agreed up on by

vendors. A generic parser must be able to read and possibly write arbitrary sources, as

long as they are valid against the base schemas. Nevertheless, widely accepted profiles,

both the physical and normative, like the ones agreed up on by OGC, have been made

on basis of field experience and addressed problem issues. Therefore, when designing

application schemas, developers should at least keep topical profiles in mind as

guideline to reduce complexity and encourage interoperability.

Specialized GML profiles could successfully be introduced for particular fields, where

certain modeling features of GML is futile. By such standardization, interoperability

and homogeneousity, is aided. At the same time business specific structures and mod-

eling rules could be introduced into a profile, to make it more specialized towards the

field of interest. For instance transport planning profiles or environmental computing

profiles, can provide specialized functionality commonly needed for utilizing systems.

On the other hand, developing a generic GML profile plunders some freedom and flex-

ibility from GML. As long as there are no such restrictions introduced into the GML

specification itself, generic tools must be able to interpret all profiles of GML.

Project OneMap

Project OneMap is hosted by and coordinated from Østfold University College, Faculty

of Computer Science, Halden, Norway. By combining efforts from several contribut-

ing parties, we hope to collect, manage, process and provide global, comprehensive

and detailed geospatial data, free of charge. The project is designed with three main in-

frastructure components[ONE].

The Gateway is the main entry point for users of the service. "The Gateway is a

browser based user interface, for retrieval of OneMap data. Currently this imply a

SVG/JavaScript implementation, which provides simple but sufficient navigation and

query possibilities." [GED], The Gateway is based on the same principles presented

the OneMap GML Editor[OME]. Using the SVG editor, changes can be carried out on

the SVG model before they are submitted to the central server for update of the source

data.

Figure 4.3. OneMap: Gateway screenshot

Handling arbitrary GML sources

37

The Clearinghouse represents the modules related to data submission. Data is collected

through contributions from a wide variety of parties. Clearinghouse focuses on tasks

concerning building, updating and revising the OneMap geodata. The main objective,

namely to accumulate enormous amounts of geodata, covering the entire globe, is done

in an uncoordinated, consensus driven manner, based on the principles of peer review

[ONE].

Finally, the heart of OneMap, the Repository. This is a distributed storage structure,

where a huge set of XML files are stored and managed to efficiently support retrieval

and updating the geodata comprising the world map. Each feature type, e.g. roads and

buildings, are presented in a global logically consistent layer. These layers are prepro-

cessed into a level-of-detail hierarchy, subsequently they are tiled by adaptive quad-

tree subdivision, so that the size of each tile is below a certain threshold.

Figure 4.4. OneMap: Repository

Obviously, the choice of using GML as OneMap data exchange and storage format, is

based on the fact that GML is a widely adopted, open standard specifically designed

for the task. The gathering of data from several different sources would have been im-

possible if the system required data on some sort of proprietary format. Even a request

for data in conformity with a certain GML profile, could imply that submitted data

from important contributors, would require time-consuming transformation to be valid.

In such a system, the best solution could be to store all GML data as close as possible

to its original format as possible. Dependent on in what extent the system is able to

handle arbitrary GML, this can be an option or not. This would require efficient and re-

liable processing and analysis of the data, a very difficult task compared to working

against one GML application schema only. When grouping data in layers, e.g. roads,

buildings, rivers etc., like done in the OneMap system, human interference is required

to recognize these features/feature collections. In such a system, a GML dictionary cre-

ator can be just the tool needed for the treating GML generically.

Lazy Integration

There are two main aspects of the integration methodology in OneMap; geometric and

semantic integration. The former ensures geometric consistency when combining data

from diverse sources which describes (parts of) the same geographic entity, e.g. when

building a global coastline based on chunks from national mapping agencies. The latter

is to classify contributed features according to a common Feature Type Catalog. The

OneMap Feature Type Catalog is built incrementally governed by peer review, and

may be view as a thesaurus or a simplified ontology. More details on related ap-

proaches to semantic integration are found in[OBI]. The geometric integration corres-

ponds to the problem often referred to as map conflation[CON]. In the following we

assume that each submitted feature or feature collection may be classified according to

the OneMap Feature Catalog.

The goal is to design a general strategy where we model each feature class in the Fea-

ture Type Catalog as an encapsulating GML class, substituting for the

_IntegratingFeatureCollection, which again is substituting for the abstract

_FeatureCollection element. The integrating feature collection corresponds to a tradi-

tional map layer. Further, we want to restrict a given OneMap integrating feature col-

lection to contain only the kinds of features that are considered to be of the same class

according to the Feature Type Catalog. A given integrating feature collection, e.g.

Buildings, may then contain a set of external feature types defined in the schemas of

the contributing sources, and only these feature types. Another design goal is that is

should be easy to include a new external feature type in a given integrating feature col-

lection.

A result of this method is that each original feature is preserves in the original state.

The only alteration made to a contributing data set is that the feature collections may

be disassembled and distributed to the appropriate integrating feature collections. The

approach may be viewed as a minimal version of schema integration as known in the

domain of federated databases[FED].

The theory of data integration is simple, namely to include features and GML types in-

to OneMap system. A feature are supposed to be included into an instance document as

is, meaning that the system have to be able to handle all features generically. The

schema standard and namespaces does of course allow us to import as many

namespaces into our application schemas as desired, so the focus is on integrating the

data in a way so that the system can make use of it.

The strategy for structuring the data in the system is as layers of related features. These

features are not homogeneous in terms of their GML definition, nevertheless they are

heterogeneous representations of the same real world objects.

Figure 4.5. Integrated schema hierarchy

Figure 4.5, “Integrated schema hierarchy” show how the schema hierarchy for

OneMap feature integration is constructed, providing one schema file for each layer.

This is naturally just a question about modularization, since all integrating schema files

are in the same namespace. All integrated features, are imported from different vocab-

ularies. There are no non-spatial feature types defined in the integration schemas, all

Handling arbitrary GML sources

40

are actually integrated from different namespaces. Feature member membership are re-

stricted using the 'barbarians at the gate' approach, presented in the GML2 specifica-

tion, where a FeatureAssociationType is restricted to contain an abstract or non-ab-

stract feature, which other elements must substitute for in order to be a child of the as-

sociation.

As an example, consider Figure 4.6, “River fragments constituting complete river”

where a river is represented as a feature collection, consisting of features being frag-

ments of the complete river. The membership of a river is restricted through the integ-

ration schemas, where features qualifying as a fragment of a collection are registered.

When creating instance documents we can now integrate features from other docu-

ments directly into our own document. This can be done by copying them or possibly

by allowing the use of linking to other documents in the integrating schema.

Figure 4.6. River fragments constituting complete river

This integration of features can give an extremely rich feature set. Schema analysis is

an important tool for any such application. The next section discusses how to imple-

ment the schema analysis library to most efficiently be able to utilize it in applications

where this kind of functionality is needed.

Implementation discussion
Being able to analyze and handle arbitrary GML could bring a good application to the

next level. Some applications are preconfigured to read a set of known vocabularies,

and often this is sufficient. However, many applications could make great benefits

from being able to interpret new application schemas and thereby being able to work

with their instance documents. Such functionality could be made available in a number

of ways, including e.g. a Web Service or implemented in a code library. No matter the

final solution, it should be kept in mind that the implementation should be portable and

usable in any type of application.

Converting application schemas and docu-
ments

By defining and implementing a method to convert and transform application schemas

and instance documents to a common format, we can store the converted instance doc-

ument in our own proprietary format. We can identify restrictions, extensions, substitu-

tion groups and other relevant information, together with the transformed version of

the documents. This way applications can be programmed to access the data directly.

Now applications can utilize "any" GML, through the converted documents. Fig-

ure 4.7, “Application using converted GML-documents”.

Figure 4.7. Application using converted GML-documents

XML Schemas provides a great deal of flexibility speaking of structure and content in

the instance documents. We can build schemas able to store the semantics within a

range of different document. These can be designed loose, meaning that it is possible

for users and applications to add almost any valid XML content, still keeping the entire

document valid. The drawback of such design, is the fact that it proves complicated to

transform or interpret the data, when the content of a final document is unpredictable

Handling arbitrary GML sources

43

to parsers or other utilizing applications.

With this approach, the conversion process would be minimal, leaving the interpreting

to a parser or interpreter, thus thereby making the coding of these more complex. Much

of the original data from the application schemas could be kept as found, merely

adding information-elements in the document, describing the origin of datatypes.

The option to alter instance documents directly, is not optimal. First and foremost,

changing schemas to make room for meta information inside the documents, is like

denying the existence of available meta information in the schemas. This method "cop-

ies" the structure information into the document, duplicating it, but possibly making it

more accessible and processed for utilization. This requires that each instance docu-

ment will have to provide this information, even though they descend from the same

application schemas as an unlimited amount of other documents. Small changes in the

schemas, will also require the reprocessing of every document, to make them up to

date. Finally, you also have to change the application schemas, to make room for a

meta data section, if you want the documents to validate.

As a solution meant to act as a foundation for applications, to able to deal with generic

GML, it is a poor. Converting original data to a certain proprietary format, means that

any such "generic" parser, must be able to deal one profile of GML only, and to char-

acterize it as generic, would be somewhat incorrect. In addition, the conversion of all

data going into a such parser, will take up an unacceptable amount of resources both

speaking of storage and processing.

Constructing a GML mapping dictionary

By analyzing the application schemas, the structure of the instance documents can be

stored. As long as the schemas is not altered in any way, the instances are bound to the

structure and rules of the basic GML2 schemas, specialized by the application schem-

as. If provided a code library for this purpose, applications can access unknown dia-

lects of GML, treating application specific data types with knowledge of their origin. A

solution may be to implement a query-interface, for applications to utilize if origin of

datatypes is of any importance to the application Figure 4.8, “Application utilizing a

schema dictionary”. This approach is much less critical than a conversion of schemas

and documents. A dictionary can be accessed when needed, providing the desired in-

formation about the application GML types. No conversion is necessary, just direct or

queryable access to the a mapping dictionary.

Figure 4.8. Application utilizing a schema dictionary

We can try to see this in connection with the OneMap gateway, if this one time in the

future would utilize generic GML from the repository (see Figure 4.9, “Retrieve gener-

ic GML from repository”). This design is somewhat different than the current one,

where layers of roads, coastlines etc. are found in separate files. Here we can imagine

the files from different contributors stored as provided, possibly preprocessed into

smaller files because of the support for level-of-detail display. When the gateway re-

quests the coastline layer from the repository, the repository first inquiries a mapping

dictionary, for type-mappings. A layer dictionary, have to be made manually, by se-

lecting the features or feature collections (traced by mapping) belonging to each specif-

ic layer. When this information is gathered, the instance document can be filtered, be-

fore the layer features inside the desired area, are returned. Access to the mapping dic-

tionary, will probably also be necessary for the viewer, to sort out what kind of geo-

metry types, features have.

Figure 4.9. Retrieve generic GML from repository

The primary source for document information, are of course the application schemas.

Provided that all schemas, both the ones describing the application namespace, and

those imported into the target namespace, are available, we can parse the schemas to

get all the information we need. An XML application, can consist of one or several

schemas, all with a common target namespace. Several schemas, define the Ordnance

Survey MasterMap namespace, with the OSDNFFeatures.xsd as root, including dir-

ectly or indirectly all the additional ones. Figure 4.10, “Ordnance Survey MasterMap

schema structure (OSMasterMap User Guide)” [MMUG]. Dividing the target

namespace definition into several schemas is merely a method to organize the schemas

in a more structural way. Related types and elements, e.g. those constituting an ab-

stract, application specific layer, can be found within one file. Alternatively, different

structures, like simpleType and complexTypes, can be split into individual files. This is

naturally one of the facts that we have to be aware of, especially considering that even

though the root schema is available, other included schemas might be inaccessible. We

might therefore have a situation where we have a partially available vocabulary.

Handling arbitrary GML sources

46

Figure 4.10. Ordnance Survey MasterMap schema structure
(OSMasterMap User Guide)

There are a number of GML vocabularies available (e.g. OS MasterMap, Top10NL

etc.), in some cases defining, more or less, the same type of features and geometries.

Considering for instance that a geometry property, defined in another GML vocabulary

fits your needs, you can benefit from the import-mechanism. By importing a

namespace, the constructs in it, will be made available to the importing schema. This is

the only way to make use of a schema with a different target namespace than the one

you are defining. If we want to make a complete parsing of a vocabulary, it is also ne-

cessary to parse the imported namespaces, to find out what kind constructs therein is

utilized by the importing schema.

A GML vocabulary is fully defined through the it's referenced schema. This schema

may, as mentioned, have import and include-statements, to utilize constructs from oth-

er namespaces (import), or possibly include other files from same namespace

(include). For parsing and working with the schemas, we can choose any technology

suited for XML document access. However, it is likely that we need to access the

schema constructs in a random manner, meaning that ordinary SAX-parsing isn't the

right tool for this job. DOM however, could prove quite perfect for the job, considering

that we will benefit from the advantage of an in memory structure of the schemas. In

addition, you will probably not find a schema or schema hierarchy so extensive, that

this will fail due to lack of computer resources. Having said that, there are already

available code libraries to access and explorer schema vocabulary.

XML Schema API

The XML Information Set [PSVI], often referred to as the InfoSet, is describes as "a set

of definitions for use in other specifications that need to refer to the information in an

XML document". The infoset describes what kind information from an XML docu-

ment that should be reported from a parser. A parser reporting the constructs described

in the infoset, is 'in conformity' with the infoset. In addition to a document information

item, revealing information about the document as a whole, the infoset consist of ele-

ment information items and attribute information items, one for each and every ele-

ment and attribute in the document. There are also a number of other items, describing

other possible constructs within a document. The infoset is available through DOM

Level 3 Core, ergo a DOM3-parser can provide information about the document, de-

scribed in the XML infoset[XIS].

XML parsers, supporting schemas, will upon request, validate schema-based docu-

ments. This results in an extended infoset, capturing validation results and type inform-

ation based on how elements and other constructs are defined through the schema. This

augmented infoset is called the post-schema-validation infoset (PSVI) [PSVI], but even

though the information in this infoset is useful for many computing tasks, there was

until recently, no common interface specification for accessing it. In December 2003,

IBM and X-Hive submitted the XML Schema API [SAPI], a specification that defines

an interface to dynamic access and query of the PSVI. In addition it defines an inter-

face for loading XML schema documents. The XML Schema API is platform -and lan-

guage-neutral, like DOM and SAX, and is already implemented in the Apache Xerces2

Java Parser and Apache Xerces C++ Parser. The information found in a schema, is of

course crucial information for 'schema aware' applications, e.g. advanced XML editors,

schema editors or any other thinkable application in need of XML metadata informa-

tion. Using the XML Schema API to access either schemas directly, or through a docu-

ment being parsed, we can build schema aware applications without the requirement of

building our own schema parser.

By using the XML Schema API, it is possible to build base-type-aware libraries for

GML parsing. For efficiency, data being of importance to the application can be stored

and accessed on demand. Using Xerces2 Java Parser to parse XML and access the

PSVI, we have a very powerful framework for working with GML documents, op-

posed to for example using a 'lighter' implementation where we analyze the schemas

using XSLT. Ideally, we will see a very flexible framework for analyzing and working

with arbitrary GML. The drawback is that the specification is rather complex, which

will make it very time consuming to program against the specification. Example code

is also rare, and there is no question that implementations of this API is still pretty un-

documented and untested.

It should be noted that this API is for accessing XML Schemas in general, and offers

no functionality specific for GML or any other profile of XML. Using this an imple-

mentation of this API, will serve as a foundation for the schema specific constructs,

while all GML logic must be implemented from scratch. Galdos Systems has de-

veloped a Java-based API, GML4J [G4J], to facilitate working with GML. This project

is open source, with a beta release available for download. It seems like the project is

in hibernation, considering that this beta is dated April 2, 2002. In addition, document-

ation is scarce, likewise open source implementations utilizing the API. Considering

these facts, it was decided not to delve deeper into using this project, even though it

surely could offer great functionality.

Parsing schema with XSLT

The most lightweight method to parse the GML applications schemas, is to use XSLT,

transforming the information in one or several schemas, into more accessible meta-

information encapsulated in one mapping file. Thereafter, additional XSL transforma-

tions can be applied to an instance document, to provide desired output. If this second

Handling arbitrary GML sources

49

transformation is made for generic GML, is up to the programmer, but a mapping file

will provide up-to-date information about the schemas. A probable use-case would be

a transformation made for one certain vocabulary of GML. By parsing the schemas,

and transforming the documents using the mapping file, small changes and additional

constructs extending the original schemas, could appear 'transparent' to the transforma-

tion because it can threat new types according to what kind of parent type it derives.

Mapping files can easily also be parsed into data structures and utilized in GML-

applications, no matter the implementing language.

The Last Call Working Draft of XSLT 2.0??? was released February 15, 2004, and ac-

cording to the document, the working group is planning to advance the specification to

become a Candidate Recommendation. This version represents significant increases in

capability of the language, also considering that XPath 2.0 [XP2] is developed along-

side XSLT 2.0, and will be a part of XSLT 2.0 functionality. Perhaps one of the most

significant changes, considering XSLT for our purpose is that while XSLT 1.0 com-

pletely ignored all element information, obtainable from a DTD or Schema, XSLT 2.0

documents takes into account such information.

GML design issues

So far the gateway only utilizes one type of GML, OneMap GML. You would prob-

ably never see a totally generic viewer for GML, the reason is simply that it is too easy

to design GML in a 'proprietary' way, not considered for common purposes. For in-

stance, best practice guidelines for GML application design, recommends that applica-

tion types derive as specialized GML base types as possible. Designers are however

not bound to this guideline, meaning that they e.g. can build their own LineString-type

extending the general AbstractGeometryType, instead of using or deriving the provided

gml:LineStringType. A schema aware parser, will then be able to tell that it is dealing

with a geometry type, but not be able to tell how such a type should be dealt with. This

might prove as the main obstacle, making a generic viewer for GML. In some cases the

necessary base geometry types are not available, thus requiring designers to build their

own types. Drawing such types without any human interference, will probably not be

possible. However, they can be identified by a GML generic application, making the

schema parsing valuable, in spite of the fact that it is not totally generic.

When designing GML, properties and instances are interleaved, meaning that "a fea-

ture instance contains feature properties, each as an XML element whose name is the

property name". Furthermore, "these properties contains another element, whose name

is the property value or instance; this produces a 'layered' syntax in which properties

and instances are interleave". To distinguish properties from instances, instances of

GML classes starts with uppercase letter, while properties start with lower case. Fig-

ure 4.11, “Interleaved instances and properties”, shows how the root element Halden-

ByNight is written with uppercase first letter, because this is an instance element of a

FeatureCollection. Further, the element has some properties, one being a

gml:featureMember, holding another element instance, namely a application specific

FeatureCollection, Surrounding, with additional properties and instances.

Figure 4.11. Interleaved instances and properties

What kind of information is significant for a schema parser? First and foremost, for an

application wanting to utilize the GML, to e.g. build a SVG document, recognizing

geometric instances is crucial. This can of course be hard-coded in proprietary soft-

ware, but when dealing arbitrary GML, the element names vary, so does the type

names. Association-types can represents properties in GML; in GML2, we find Featur-

eAssociation- and GeometryAssiciation-types. The featureMember-element is the only

represented FeatureAssociation, while there are a number of GeometryAssociation-ele-

ments. Examples are pointProperty, polygonProperty, lineStringProperty, and some

more descriptive, substituting for these; centerOf, extentOf and centerLineOf. Fig-

ure 4.12, “Definition of PolygonPropertyType” shows how the PolygonPropertyType

is defined, restricting GeometryAssociationType, dictating that an instantiation either

encapsulates a gml:Polygon or points to one, using a simpleLink, defined in the

XLinks-schema. Through associations, property values can be restricted and con-

trolled, for example by only allowing certain feature members inside specific feature

collections. Lack of document knowledge, will of course make it nearly impossible to

threat such GML.

Figure 4.12. Definition of PolygonPropertyType

We do acknowledge that the geometric instances are very important when wanting to

do calculations or wanting to transform GML into e.g. SVG; without these it is im-

possible to do any kind of mapping onto a coordinate system. We do probably also

agree that subtypes of AbstractFeatureType and AbstractFeatureCollectionType are

important to identify, to make it possible to view content related to the geometric prop-

erties of features and feature collections. Furthermore, when all geometries are in

place, and the map is drawn, the non-spatial properties are important. GML instances

can be very rich on non-spatial content, related to different features or feature collec-

tions within the document. These must of course be available, read-only or not. Fig-

ure 4.13, “Retrieving additional information about a feature” shows an example of how

non-spatial properties can be retrieved, through accessing a feature, drawn out using

one or several geometric properties. Considering that project OneMap, has developed a

Handling arbitrary GML sources

52

GML Editor, able to handle GML2 compliant documents, it would be very interesting

putting effort into making this editor able to handle generic GML.

Figure 4.13. Retrieving additional information about a feature

The number of predefined geometric types and properties in GML2, is very limited. In

many cases, the types provided are sufficient to model the features, but this still leaves

room for defining custom property names, to further enhance the relation between in-

stances. In the HaldenByNight-example, a complex type, LinearRingPropertyType, is

defined, deriving gml:geometryAssociationType, encapsulating a gml:LinearRing (see

Figure 4.14, “Definition of LinearRingPropertyType”). Several similar geometric

property types are defined in the base schema features.xsd, however none encapsulat-

ing a LinearRing-element. By instantiating these geometric types, we define properties

like centerLineOf, location, coverage etc., ergo role names describing the relation

between features or feature collections, and their properties. The roles do not necessar-

ily hold a geometric property; the GML implementation specification describes an al-

ternate view of this object model, the functional view.

Example 4.1. Object model: functional notation

extentOf(House) = Polygon
address(House) = String

Figure 4.14. Definition of LinearRingPropertyType

Maybe the functional view, is more intuitive, when discussing the importance of the

properties. As shown, property names vary, depending on what information they actu-

ally describe represent inside an object. A school-feature, can e.g. hold two geometric

properties, schoolYardExtent and pupilAreaCoverage, both encapsulating a Polygon. If

we want to transform the document into a SVG map, the best solution would probably

be to have a different style on the two polygons, maybe as a dotted line for the pupil-

AreaCoverage and as a filled solid polygon for the schoolYardExtent. A set of OS

MasterMap style definitions, is found in the user guide???. These definitions are de-

fault styles for presentation of data within OS MasterMap. All definitions are presented

using SVG, and are can be used as reference for customers implementing their own

viewers. To sum up, it will be nearly impossible to style GML automatically, because

there are no way to know how the authors want to represent the features styling-wise.

Some OS MasterMap features do not have a styling, so some will not be drawn when

the styling is applied. The reasons vary, there might be features that are more valuable

as structural data, than viewable data, for example.

Undoubtedly, converting GML to a graphical format, without any other styling than a

default one, will not serve use as a very attractive view of the data. Styling data, having

knowledge of it, will give a more correct and intuitive view of features, presenting

them in their correct role. At the same time, constructing a graphical view, maybe even

one where it is possible to edit the data, will be sufficient for many purposes. This can

be done by merely identifying the subtypes of the base GML types, mapping the geo-

metric ones to a coordinate system, and making it possible to access the data within a

features, through its graphical representation.

Cascading GML Analysis

For most users, applications like JUMP and Cleopatra are used to work with one GML

vocabulary only. Specifying the mapping files manually is therefore not a too signific-

ant obstacle to overcome. Nevertheless, if a tool was available for users, enabling them

to analyze their schemas and at least do a partially automatic generation of these tem-

plates, this would be a significant improvement.

When GML is valid, and all schemas are available from the URLs specified, informa-

tion about the origin of application specific types can be extracted from the schemas.

Schema parsing will thus be the primary source of meta information about GML

vocabularies. However, relying on the schemas being available, especially when ex-

changing data over the Internet, requires a tad of naive optimism. Most applications

that are meant to handle heterogeneous GML will probably succumb to broken schema

links. Is it so that unknown GML is worthless to analyze if the application schema(s)

are inaccessible? We introduce a method to handle heterogeneous GML that allows for

missing meta information, either as a result of broken schema links or incongruity

between schemas and instance documents. This method is cascading, invoking a chain

of methods to analyze a document's elements.

By combining the forces of structural knowledge of all GML documents, and the spe-

cific knowledge of each vocabulary defined through the application schemas, we will

now try to outline a robust solution for analysis of GML schemas and documents. The

framework is extensible to encourage implementations of new methods for document

analysis.

Handling arbitrary GML sources

55

Schema analysis

Schema analysis is a pretty straightforward task, even though it is a cumbersome one.

Validating parsers do for example have to parse schema vocabulary in order to check

structure and values in an instance document. When dealing with GML schemas, we

can be certain that the vocabularies have a targetNamespace, telling us which

namespace is being described in the file(s). One file can contain the whole vocabulary,

or it may use the include element to bring in other files also describing the same (or

no) namespace. The schema can utilize the constructs of the included schema, just as

constructs within the same file. A good example of this modular design is the GML 3

schemas, where developers usually utilize a subset of all the available schemas.

However, bear in mind that the includes are recursive. If you want to bring in elements

or types defined in another namespace, the files have to be linked to in your schema,

using the import element. This element allows for utilization of another vocabulary, by

specifying the desired namespace and the physical location of the schema file. Fig-

ure 4.15, “Defining a GML vocabulary” shows how the file components are related

when working with XML schemas.

Figure 4.15. Defining a GML vocabulary

When analyzing schemas, the main objective is to find out how elements relate to other

elements, and possibly if they are directly or indirectly derived from a GML type. By

gaining easy access to this information, a utilizing application can treat elements de-

pending on their base type. Features, feature collections, properties and other elements

can be treated in a generic way, meaning that the application can work with heterogen-

eous GML documents in a sensible way. There is nothing mysterious about making a

mapping file of a vocabulary, but it greatly simplifies meta-data access for applica-

tions. All element declarations in the schemas are described in an XML file which con-

tains information about instance type, and possibly GML base type, substitution group

and GML base substitution group. The following example shows an element, Night-

SiteBar, mapped from a schema into a mapping file. The instanceOf element contains

the name and namespace for the type this element is an instantiation of. This can be a

GML type, a user defined type, or maybe even one of the types defined in the XML

Schema vocabulary. If the element is only indirectly descending from a GML type, the

gmlDerivedType element contains the name and namespace (always being GML

namespace) of the type it derives from. The same logic applies to the substitutesFor

element and baseSubstitutesFor element. In this example it is obvious that NightSite-

Bar is a generic GML type, but the relationship is only visible through a chain of de-

rivation. Part of the analyzed schema is listed underneath the mapping file, to illustrate

how derivation is mapped to a TypeMap element.

Example 4.2. Type maps from example data

<TypeMap id="d1e13">
<appElement>
<localname>NightSiteBar</localname>
<namespace>no:hiof:onemap:gml:appschema:example1</namespace>

</appElement>
<instanceOf>
<localname>NightSiteBarType</localname>
<namespace>no:hiof:onemap:gml:appschema:example1</namespace>

</instanceOf>
<gmlDerivedType>
<localname>AbstractFeatureType</localname>
<namespace>http://www.opengis.net/gml</namespace>

</gmlDerivedType>
<substitutesFor>
<localname>_NightSiteFeature</localname>
<namespace>no:hiof:onemap:gml:appschema:example1</namespace>

</substitutesFor>
<baseSubstitutesFor>
<localname>_Feature</localname>
<namespace>http://www.opengis.net/gml</namespace>

</baseSubstitutesFor>
</TypeMap>

Example 4.3. Schema definitions of mapped types

[...]
<xs:element name="NightSiteBar" type="NightSiteBarType"
substitutionGroup="_NightSiteFeature"/>
<xs:element name="_NightSiteFeature" type="gml:AbstractFeatureType"
abstract="true" substitutionGroup="gml:_Feature"/>

<xs:complexType name="NightSiteBarType">
<xs:complexContent>
<xs:extension base="NightSiteType">
[...]

</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name="NightSiteType" abstract="true">
<xs:complexContent>
<xs:extension base="gml:AbstractFeatureType">
[...]

</xs:extension>
</xs:complexContent>

</xs:complexType>
[...]

When parsing an XML document into another one, XSLT[XSLT1] can appear as an

obvious choice of implementation language. Even though some operations can appear

cumbersome, XSLT offers what is required. XSLT 2.0 is at the time of writing classi-

fied as a 'Last Call Working Draft' at W3C. The Saxon8 'basic' XSLT and XQuery pro-

cessor, implements the "basic" conformance level for XSLT 2.0, XPath 2.0 and

XQuery 1.0 processing[SX]. Using some of the functionality from XSLT 2.0 to simpli-

fy the implementation, we have developed a schema parsing XSLT stylesheet that

parses one or several vocabularies into a mapping file. The stylesheet can either follow

the schemaLocation attribute value from an instance file, or alternatively a specified

'root' schema or a manually provided schemaLocation string provided as command line

parameters to the stylesheet. All elements defined globally or inline in one of the

vocabularies, are mapped by the stylesheet, traversing all linked schemas to find the

origins of application specific types.

A bundle with sample data and the transformation stylesheet is available for download

and testing from our web server[CODE]. We have tried to collect a subset of test data,

representing both simple application schemas, more complex ones with include and

import statements, and finally one representing Lazy GML Integration as it will be

used in Project OneMap.

First, our small 'hello world' application schema and instance document. It models fea-

Handling arbitrary GML sources

58

tures in the small city of Halden, Norway. The vocabulary is fully defined with one

schema file, and should impose no serious challenge for the schema parser. The ele-

ments are instantiated from types indirectly deriving and substituting for the base GML

types. As we can see from Figure 4.16, “Halden-by-night vocabulary mapping”, the

elements are mapped, typewise, but all restrictions and extensions done from the base

types are not information available from the mapping file. It is important to note that if

the schema-parsing is supposed to be used in an editing environment, the changes car-

ried out on the properties, have to be checked for validity against the original schemas,

before the data update is finalized.

Figure 4.16. Halden-by-night vocabulary mapping

So, let's move on to a more complex dataset. A broad range of companies has em-

braced GML, and adopted it as their data interchange format. Ordnance Survey, the

UK national mapping agency, provides detailed, property rich, spatial and non-spatial

data of UK as GML. The schemas are naturally quite complex, even though they have

striven to keep them as simple and easy accessible as possible. The vocabulary is

defined through a number of schemas, all in the same namespace, logically modular-

ized (see Figure 4.10, “Ordnance Survey MasterMap schema structure (OSMasterMap

User Guide)”).

Since the elements in the OS MasterMap schemas, are all in the same namespace, the

issue here, is to navigate through the include statements, parsing the elements as they

occur. If the schemas are parsed directly from their location at the Ordnance Survey

web server, there is of course an issue of the reliability of internet connections and

speed. However, as soon as the schemas are mapped, the mapping file would answer

all questions regarding the relation between the application specific types and the base

GML types. One of the OS MasterMap features, mapped to the dictionary format, is

shown in the listing underneath. From the mapping information it is obvious that the

feature is created in accordance with the best practice guideline, (indirectly) deriving

from AbstractFeatureType and (indirectly) substituting for _Feature.

Example 4.4. Typemap for OS MasterMap type BoundaryLine

[...]
<TypeMap id="d2e48">
<appElement>
<localname>BoundaryLine</localname>
<namespace>http://www.ordnancesurvey.co.uk/xml/namespaces/osgb</namespace>
</appElement>
<instanceOf>
<localname>BoundaryLineType</localname>
<namespace>http://www.ordnancesurvey.co.uk/xml/namespaces/osgb</namespace>
</instanceOf>
<gmlDerivedType>
<localname>AbstractFeatureType</localname>
<namespace>http://www.opengis.net/gml</namespace>
</gmlDerivedType>
<substitutesFor>
<localname>_BoundaryFeature</localname>
<namespace>http://www.ordnancesurvey.co.uk/xml/namespaces/osgb</namespace>
</substitutesFor>
<baseSubstitutesFor>
<localname>_Feature</localname>
<namespace>http://www.opengis.net/gml</namespace>
</baseSubstitutesFor>
</TypeMap>
[...]

If URLs in included or imported schemas are invalid, the information from these will

of course not be mapped. This means that there will be missing vocabulary type-maps

for elements declared in these files. In addition, type-tracking for element in available

files could prove incomplete if their type hierarchy is fully or partially defined in these

files. When using SAXON as XSLT engine, an error message will be produced if the

document is unavailable, however this will not inflict on the further parsing of the

vocabulary.

Structural analysis

Handling arbitrary GML sources

61

A schema analyzer may in some cases fail to provide a complete mapping file for an

application schema. There might be several reasons, including missing or unreachable

schema files and not entirely consistent schemas, leading to ambiguous or incomplete

results. In such cases we can attempt to parse the instance documents and analyze their

content based on the structure of the elements. The GML specifications will offer us

the basic rules, and the document can be parsed filling out missing pieces in the map-

ping dictionary.

GML documents should be built according with some basic structural rules (GML

2.x):

• The root element must be directly or transitively descended from

gml:AbstractFeatureCollectionType.

• Relationships between classes (e.g. features/feature collections) should be repres-

ented through associations and/or properties, possibly restricting membership. A

property can contain simpleTypes or other classes. This is the fundamental con-

struction model. There is no basic restriction of how deep nesting can be.

In GML 3, however, it is bit more complex. However, as long as we stick to GML 2.x,

the base framework is restricted enough for us to be able to do fairly simple structure

analysis. A common way to model application schemas is to define new properties and

roles, describing the vocabulary more accurate in your 'own words', but stick to the

base geometric constructs. To provide maximum interoperability between heterogen-

eous GML sources, developers should strive to inherit as specialized base GML types

as possible. This way a generic analyzer can operate on the data more accurately.

Using what we know about type relationships, identification of elements should be

possible based on their parent, children or neighbor elements.

Manual analysis

When schemas are incomplete, inaccessible or instance documents are not in accord-

ance with the information parsed from a schema, we will try to parse documents and

analyze them based on their structure and the known types within. This will sometimes

succeed, but can not be considered a foolproof method. There might occur situations

where there is a question whether an element is one of two possible, or maybe there

aren't any presented options. This is where the software surrender, and we should

present to the user the unidentified elements, trusting that he will fill out the missing

pieces.

Cascading process

This section describes the process and framework for combining the forces of several

analyzing methods. This process is based on SAX-parsing of instance documents,

where the GML elements are mapped to an internal tree-model with name, namespace

and meta-information. Information concerning the origin of elements is attempted re-

vealed by so called resolvers, all implementing the interface GMLTypeResolver. The

implementation is done in Java, using JAXP to SAX-parse the instance

document[JAXP]. SAX parsing is event based, meaning that the parser generates

events when it reaches specific constructs in an XML document. By implementing

ContentHandler interface the parser reports a number of events to this class. Among

others, each start and end element is reported and caught by the registered Con-

tentHandler (see Figure 4.17, “ContentHandler methods”). The outlining of structure

and partial implementation of this framework was done by Gunnar Misund, as an ex-

ample of how a dictionary type resolver can be used in a broader context when analysis

GML document content.

Figure 4.17. ContentHandler methods

In addition to the element being added to the internal tree-representation, the resolvers

are invoked here. A chain of pre-resolvers attempts to identify the element in the star-

tElement method, while all non-resolved elements are attempted resolved by a chain of

post-resolvers when reaching the endElement method (see Figure 4.18, “Resolver

chains”). The number, order and type of resolvers are specified using an array of re-

solvers. If an element is fully identified, there will be no further attempts to resolve

them, both pre and post. Therefore it is important that resolvers relying on qualified

guesses do report correct types. The framework can be extended to support partially

resolving, meaning that an element can be structurally identified as one of a number of

types. Thereafter the element identification can be further limited by subsequent re-

solvers based on the pruning already done.

Figure 4.18. Resolver chains

Handling arbitrary GML sources

64

Chapter 5. Schema parser and GML
viewer

The primary objective of my work is develop a framework to use for the handling of

arbitrary GML. The result will be a foundation to use in different software, working

with GML in some way. This chapter presents a solution where GML vocabularies are

transformed into dictionaries, where type information for each element is stored in an

easy accessible XML structure. These dictionaries does not contain information not

found in the schemas, but considering that type information for XML vocabularies can

be scattered across an almost unlimited amount of files, these dictionaries are very

helpful. You will also be presented to a proof-of-concept GML viewer; a GML to SVG

stylesheet able to present arbitrary GML. Through the generated SVG and the connec-

ted scripts, the features can be viewed and both type and element information can be

accessed through their geometry.

Parsing schemas
I chose to use XSLT to parse the schemas, making a mapping dictionary in XML

format. As mentioned, this is the most lightweight method, still very powerful when

dealing with transformation of XML. First it was important to recognize what kind of

information which should be taken from the schemas into a mapping file. It is possible

to build entire derivation hierarchies, identifying all super-types of a type. However,

the most crucial information, is if a vocabulary's type is deriving from a base GML

type, and if so, what type is it deriving. I do acknowledge that more detailed informa-

tion can be important for some applications, but to visualize the ideas presented in

former sections of this document, I consider the GML base types, and possible the sub-

stitution groups as the most important type information found in GML application

schemas.

Mapping dictionary schema

It is important to keep in mind why we want to parse the GML schemas, namely to

find out how the elements are related to the base GML types. The mapping file will in-

clude the following information:

66

• The target namespace, in other words the vocabulary being described.

• Related namespaces, being those present in the applications schemas.

• Type mappings, one for each element declared in the application schemas, locally

and globally.

Each type map will contain:

• The element's name and namespace (grouped using a complexType)

• If the element's type is GML derived, either a gmlType- or gmlBaseType-element,

depending on the element type being a direct instantiation of a GML type or just an

instantiation of a derived GML type.

• If the element substitutes for a 'proprietary' element, a substitutesFor-element,

naming the substitutionGroup-value.

• If the element indirectly substitutes for a GML-element, a baseSubstitutionGroup-

element, with the name of the GML type as value.

These data will hopefully provide a sufficient amount of information to an application

or other stylesheet, utilizing arbitrary GML. Examples from a mapping file will be

presented together with the schema transformation. The schema defining the mapping

dictionary is found in the section called “GML Schema to Mapping Dictionary”.

Parsing GML application schemas

If we want to map elements in an instance document, we have to look at the element-

declaration-tags in an XML schema. These can either be globally defined, or declared

inline a global type or element. Figure 5.1, “How to traverse schemas” shows a some

constructs found in the HaldenByNight-schema, which will hopefully shed some light

on how element-types can be traced.

Figure 5.1. How to traverse schemas

Schema parser and GML viewer

67

a. This element is an instantiation of NightSiteBarType(c). Elements can occur in in-

stance documents of the schema, and the type therefore has to be mapped.

b. This elements represents a property, a role to be used between a feature and geo-

metry. The LinearRingPropertyType, which this element is an instantiation of, is

not a GML type, and we will therefore track this type too.

c. This is a type-declaration, and if no element is directly or indirectly instantiation

from this type, it will not be mapped. However, the NightSiteBar is, and therefore

a trace will show that this type is derived from the NightSiteType (d); further tra-

cing is required. This type does however have to inline elements, one an instanti-

ation of the base XML schema data type nonNegativeInteger, and one a restric-

tion of another schema-type, double. Further tracing will not be necessary for

these types, now knowing that they do not descend from the GML schemas.

d. This is the NightSiteType, from which, among others, the NightSiteBarType(c) de-

rives. When tracing the NightSiteBars type, we will eventually find this type. This

is also where the tracing is completed, and we can come to the conclusion that

NightSiteBar is derived from a base GML type, namely the AbstractFeatureType.

e. The type-definition of the LinearRingPropertyType, deriving from

gml:GeometryAssociationType. Tracing elements to this type clarifies that the

property is a geometric one, not what kind of role the geometry has to the feature.

Figure 5.2. Type-mapping of the NightSiteBar-element

a. The appElement contains the name and namespace of the element being mapped.

b. This element is derived from a GML type; the top GML element is stated with

name and namespace. The attribute derivedBy, states whether the direct derivation

from the GML type is by restriction or extension, not necessarily whether the ele-

ment derives its parent by restriction or extension.

c. If the element declaration has a substitutionGroup-attribute, the element name and

namespace for which it substitutes is stated here.

d. If the element substitutes directly or indirectly for a base GML type, the element

name and namespace is contained in the baseSubstitutionGroup-element.

Generic GML Visualization

In order to test both the cascading GML analysis and the lazy integration strategy, we

have implemented a simplistic GML to SVG transformation. The main idea is to visu-

alize the geometric constructs and provide easy access to the non-geometric properties

of the features. Transformations are done on GML instances, and the SVG application

can not load data from other sources. However, this is made to outline strategies for

handling instance documents, when there are mapping files present.

By accessing a mapping file constructed using the cascading method presented above,

the transformation stylesheet can convert any valid GML 2.x instance document into a

SVG document (see Figure 5.3, “Utilizing dictionary to parse arbitrary GML”). It is

however required that the cascading analysis succeeded in identifying the elements in

the GML application schemas describing a document. The structure of the final SVG-

document is identical to the GML file, in terms of nesting of features and feature col-

lections. If the transformation comes over unknown elements, it will not continue pars-

ing the sub-tree of this element.

Figure 5.3. Utilizing dictionary to parse arbitrary GML

Schema parser and GML viewer

70

Styling of the different features has not been an issue in this work. Therefore, we have

only introduced a very limited way of styling, only making it possible to apply one

style for all features from one namespace. This is of course not adequate if more than

one type of feature from a namespace is integrated into a vocabulary. The OneMap

GML editor, presented at SVG Open 2003[GED], is a lightweight SVG editor for edit-

ing and displaying GML 2.1 compliant data. The server converts GML to SVG, for the

client to display it and offer editing possibilities. One of the stated challenges for fur-

ther work was to develop a more robust method regarding what kind of data the applic-

ation was able to utilize and edit. By implementing the next editor version, using the

principles described in this article, the editor will be able to handle arbitrary GML, as

opposed to only utilizing a specifically created GML format.

The integration example from the preceding section has integrated features from Ord-

nance Survey, GML2 spec example, Norkart and OneMap. Applying the SVG trans-

formation on these data results in a map containing all integrated feature (see Fig-

ure 5.4, “Integrated GML transformed to SVG”).

Figure 5.4. Integrated GML transformed to SVG

The styling is as simple as possible, allowing users to specify custom styles for each

namespace present. This file is the specified when converting. All namespaces, that has

not been applied a user style, will get a default style. The style to specify is identical to

the value of the SVG style attribute, and is applied to all features using a named class.

If the user wants to specify a custom style, a style as that listed underneath will be

stored in a separate file, and then the filename is passed to the transformation as a com-

mand line argument.

Example 5.1. Simple feature styling

<style:styles xmlns:style="userstyle" targetNamespace="userstyle">
<style:style>
<style:namespace>default</style:namespace>
<style:stylestring>stroke:black; stroke-width: 0.05%; fill:white; fill-
opacity:0.0</style:stylestring>

</style:style>
<style:style>
<style:namespace>http://www.onemap.net</style:namespace>
<style:stylestring>stroke:black; stroke-width: 0.05%;
fill:green</style:stylestring>

</style:style>
</style_styles>

Even though the GML to SVG transformation can be applied to all GML 2.x data

provided a mapping file is available, the integration namespace has introduced an at-

tribute that can be used on a feature collections representing a feature layer, e.g. roads

or rivers (Figure 5.5, “SVG integrated layer visibility”).

Figure 5.5. SVG integrated layer visibility

It is pretty trivial to draw the geometries of GML in SVG, considering that most geo-

metry types in instance documents are original GML elements. The transformation do

however also map the non-spatial element types and values into the SVG file, making

it possible for users to review their GML data. By clicking on the different features, in-

formation stored in the features, together with the type information can be accessed

(Figure 5.6, “Feature information window”). As for now, the feature type information

given is pretty thorough, maybe a bit to extensive for an ordinary viewer, but as a valu-

able supplement for companies wanting to review their GML data, not having a propri-

etary viewer.

Schema parser and GML viewer

73

Figure 5.6. Feature information window

For quick viewing of GML data, the transformation can be applied to a type-mapped

file without the need of any styling at all. Default styling will then be applied to all fea-

tures. Top10nl example data will e.g. be converted into a SVG file as shown in Fig-

ure 5.7, “Ordnance survey data with default styling”.

Figure 5.7. Ordnance survey data with default styling

Chapter 6. Conclusions and further
work

GML type dictionaries can, as shown Chapter 5, Schema parser and GML viewer , be

helpful when working with arbitrary GML. They encapsulate important element and

type information that can be used to threat documents in a generic way. Using XSLT

as extensive as I did when developing the solutions presented in this thesis, does of

course have both pros and cons. Many tasks can be cumbersome to do using XSLT,

and performance is a very critical issue when choosing a strategy. In this chapter I will

conclude my work and discuss some of the implementation choices that were of im-

portance for the results achieved. Finally, I will try to sum up to what extent I feel I

succeeded and, equally important, where I regard my solutions as unfinished or inad-

equate.

Type dictionary
The stylesheets for generating dictionaries from GML applications schemas was suc-

cessfully finished and tested on a range of GML vocabularies. Entire vocabularies

were mapped tracing import and include elements inside the schemas. The nature of

XSLT sometimes makes it difficult to do trivial tasks, like error handling, navigating

documents and in particular debugging. Only in the latter stages of development, did I

try to make use of some of the XSLT 2.0 functionality, because the implementation

and documentation of this standard still is on an early stage, and I did not want to get

into undocumented bugs, considering that some of the stylesheets grew quite heavy.

Only when I got to the stage of tidying my stylesheets, did I use some XSLT 2.0 func-

tionality like functions. This was only for the purpose of readability, not functionality.

There are no fancy environments programming XSLT and XPath. There is XSLT 1.0

debugging and XPath visualizing capabilities in XmlSpy and some other tools, but

they are not always able to cope with complex documents and their value is therefore

limited. I stuck to mostly using XmlSpy during development, because of the XSLT de-

bugger, but in the end when I introduced XSLT 2.0 in my stylesheets it was merely the

coloration of XML elements that was of any assistance. This situation can get quite

frustrating, and small problems tend to take a lot of time searching through Internet

and newsgroups for answers, to trivial problems because poor quality of documenta-

tion. Therefore I would like to mention the possibility that there are flaws in the code,

76

even though this shouldn't really be needed to point out when we are talking about

software.

I did not get the chance to test the stylesheets on big schema hierarchies, meaning in

the range of from about hundred to several thousand files. Most applications and users

would proabably never require mapping of such structures, but nevertheless, I take it

that transforming would be quite resource extensive and slow. The reason is simply

that the traversing of documents and searching for elements and data types, are the

most exhaustive operation done in the stylesheets. The search is done recursively

depth-first, and because of the nature of not being able to have global parameters in

XSLT, all paths to all linked documents are traversed before the search ends. If the

design of the vocabulary is done in a way, where the same file hierarchy is included in

several related files, this hierarchy and it's sub-hierarchies could all be traversed a

number of times even after the data type being searched for is found. Figure 6.1,

“Schema hierarchy search problem” tries to explain this problem in more detail. These

problems would not even be an issue using e.g. Java, as I planned from the beginning.

Nevertheless, XSLT is very powerful mechanisms when converting from one XML

format to another.

Figure 6.1. Schema hierarchy search problem

Conclusions and further work

77

When parsing the file main.xsd, the stylesheet might parse an element substituting for

the element a defined in the file subdoc3.xsd. This element will thus be searched for,

so that the stylesheet can search for the origin of this element. The search will be done

by following the import and include elements in the schema file. By traversing to sub-

doc3.xsd following two import-statements, the element is identified, and this element's

type-information is mapped before the recursive search nest back to the main.xsd.

Now, there is no information available for the parser to know that this element is actu-

ally already mapped. It will therefore also follow the include-statement through sub-

doc2.xsd to subdoc3.xsd, and record the information one additional time. Because of

this problem the output dictionary get repetitive occurrences of type mappings, and we

get a performance problem. Interrupting this is however difficult, and the searching al-

gorithm may possibly be rewritten to avoid this issue.

The mapping stylesheets was implemented for use with GML2, but will work just as

well for GML3 schemas. The reason is that they simply identify types and elements

based on their namespace. Applying the mapping stylesheet on GML3 schemas, should

therefore be just as successful as on GML2 schemas. The dictionary creation was

tested on the U.S. Census Bureau's TIGER/GML schemas[TIG], which are based on

GML3. The viewer however is dependent on recognition of base spatial and non-

spatial types, and will require some programming to adapt to GML3 documents.

GML Viewer
The generic GML viewer presented in the section called “Generic GML Visualization”

was implemented in SVG, using ECMAScript for browsing functionality. As proof of

concept this implementation captured the essence of generic GML handling. However,

each document has to be transformed manually from GML to SVG, thus not making

the solution very scalable. If intended for use when visualizing several GML sources, it

will be necessary to implement some functionality e.g. through servlets or CGI for

loading and managing of GML resources. If blessed with more development hours it

would have been interesting to build the generic GML viewer as a client of WFS serv-

ers. WFSs normally serve their data as GML, and do also have functionality to get

GML schema descriptions of all the individual feature types the server contains. The

transformation is successfully tested on a number of different GML sources with suc-

cess. It could be a very helpful tool for easy, graphical access to GML data, for devel-

opment purposes.

A simple styling mechanism (illustrated in Example 5.1, “Simple feature styling”) was

just partially implemented, and is used to define styling for features from different

namespaces. When we integrate several features from the same namespace, we end up

with only one type of style for all features, even though it is probable that they should

be styled differently. Sadly I did not find time to implement any smart styling for the

generic GML to SVG transformation. The Styled Layer Descriptor (SLD)[SLD] spe-

cification is particularly interesting when it comes to styling individual features. SLD

is used to individually style layers retrieved from WMS[WMS] servers, posting an

XML document to the server, including among other variables the styles which certain

features should be displayed with. Typically, not all layers or features are stylable, but

e.g. a layer buildings may be stylable, making it possible to provide certain rules for

certain buildings. The styles can be applied to all buildings in one layer or some build-

ings fitting a given profile; a filter. A somewhat similar method could be used for styl-

ing GML features in SVG documents. A feature type or super type of several features

could be addressed in an SLD-like document, and all types or sub-types could then be

styled with the style given. This document could e.g. provide certain styles depending

on the generic GML type of the object, like polygon or point. Apart from a somewhat

imperfect styling configuration, the generic GML viewer stylesheets are very illustrat-

ive examples of how a type dictionary could be utilized for accessing arbitrary GML,

and does provide instant access to all non-spatial properties.

The GML to SVG transformation was done using XSLT. The XML dictionary is ac-

cessed directly and small modifications on the structure of the dictionary would require

reconstruction of the GML to SVG transformation stylesheet. If I could start from

scratch, I might have chosen to implement a framework for the dictionary in a higher

level language, using SAX to load the structure into a framework that would enable

easier access to data analysis and higher level access to them. This would allow cre-

ation of an interface specification, where changes to the dictionary structure could be

transparent to utilizing software. Considering that a fully functional GML viewer needs

an operating environment, e.g. through a web application or an ordinary application,

such an implementation could prove useful. Having loaded the dictionary into a more

programmatically accessible data structure, there is a shorter way to providing an en-

vironment for generic GML handling, through different applications both for analysis,

transformation and styling and viewing of GML or possibly also altering and analysis

of the dictionaries.

Conclusions and further work

80

Bibliography
[ADO] Adobe Systems Incorporated [http://www.adobe.com] .

[AMG] OGC Abstract Specifications

[http://www.opengeospatial.org/specs/?page=abstract/]

[BAT] Batik, Apache XML project [http://xml.apache.org/batik/] .

[CLEO] Cleopatra, Publishing GML data as interactive SVG maps

[http://www.svgopen.org/2003/papers/cleopatra/] . Alison meynert.

[CODE] Schema transformation and generic GML2SVG stylesheets

[http://www.onemap.org/harald/bundle.zip] .

[CON] Transformation of Datasets in a Linear-based Map Conflation Framework. . Y.

Doytscher, S. Filin, and E. Ezra. Surveying and Land Information Systems, Vol

61, No. 3, 2001.

[DOM] Document Object Model [http://www.w3.org/DOM/] .

[DTD] Document Type Definitiion [http://www.w3.org/TR/REC-xml/#dt-doctype]

(described in XML 1.0 Recommendation).

[ECMA] ECMAScript Language Specification

[http://www.ecma-international.org/publications/standards/Ecma-262.htm] .

[EDI] Distributed GML Management with SVG Tools

[http://www.svgopen.org/2003/papers/DistributedGmlManagementWithSVG/] .

Gunnar Misund, Henning Kristiansen, and Mats Lindh.

[FED] Federated database systems for managing distributed, heterogenous, and auto-

nomius databases. . A. Sheth and J. Larson. ACM Computing Surveys, 22 (3),

1990..

[FO] XML Path Language (XPath) Version 1.0 [http://www.w3.org/TR/xpath/] . W3C

Recommondation 16 November 1999.

[G4J] GML4J, SourceForge project page [https://sourceforge.net/projects/gml4j/] .

W3C Recommondation 16 November 1999.

81

http://www.adobe.com
http://www.opengeospatial.org/specs/?page=abstract/
http://xml.apache.org/batik/
http://www.svgopen.org/2003/papers/cleopatra/
http://www.onemap.org/harald/bundle.zip
http://www.w3.org/DOM/
http://www.w3.org/TR/REC-xml/#dt-doctype
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.svgopen.org/2003/papers/DistributedGmlManagementWithSVG/
http://www.w3.org/TR/xpath/
https://sourceforge.net/projects/gml4j/

[GED] Distributed GML Management with SVG Tools. Gunnar Misund, Henning Kris-

tiansen, and Mats Lindh.

[GEX] GML Experiences from the Field

[http://www.safe.com/solutions/whitepapers/pdfs/GML%20-%20Experiences%

20From%20the%20Field1.pdf] . Don Murray and Juan Chu Chow.

[GML20] Geography Markup Language (GML) 2.0 Implementation Specification

[http://www.opengeospatial.org/docs/01.029.pdf] .

[GML30] OpenGIS Geography Markup Languag (GML) Implementation Specification

[http://www.opengeospatial.org/docs/02-023r4.pdf] .

[GPR] GML Profiling: Why It's Important for Interoperability

[http://www.esri.com/news/arcuser/0403/special-section/gml-profiling.pdf] .

ArcUser April-June 2003 (www.esri.com).

[GTP] GeoTools project [http://geotools.org] .

[GFQ] Geotools project FAQ [http://www.geotools.org/FAQ] .

[JAXP] Java API for XML Processing (JAXP) [http://java.sun.com/xml/jaxp/] .

[JUMP] Unified Mapping Platform (JUMP) [http://www.jump-project.org], Vivid

Solutions .

[JTEC] JUMP Unified Mapping Platform, Technical Report

[http://www.jump-project.org/inc/JUMP/assets/JUMP_Technical_Report.pdf] .

Martin Davis.

[JTS] JTS Topology Suite [http://www.vividsolutions.com/jts/JTSHome.htm], Vivid

Solutions .

[MMUG] Ordnance Survey MasterMap User Guide, part 2

[http://www.ordnancesurvey.co.uk/oswebsite/products/osmastermap/guides/use

rguide.html] .

[NODE] Document Object Model Core, Interface Node

[http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-1950641247] .

[P1M] Project OneMap homepage [http://www.onemap.org], Østfold University Col-

Bibliography

82

http://geotools.org
http://www.geotools.org/FAQ
http://java.sun.com/xml/jaxp/
http://www.jump-project.org
http://www.vividsolutions.com/jts/JTSHome.htm
http://www.ordnancesurvey.co.uk/oswebsite/products/osmastermap/guides/userguide.html
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-1950641247
http://www.onemap.org

lege .

[PSVI] XML Schema, Post-schema-validation infoset

[http://www.w3.org/TR/xmlschema-1/#PSVI_contributions] .

[SAX] Simple API for XML [http://www.saxproject.org] .

[SFS] Simple Features Specification for SQL

[http://www.opengis.org/docs/99-049.pdf], Open GIS Consortium, Inc..

[OBI] Ontology-Based Geographic Data Set Integration

[http://www.gdmc.nl/oosterom/STDBM993.PDF] . H. T. Uitermark, P. J. M.

van Oosterom, N. J. I. Mars, and M. Molenaar. Proceedings of International

Workshop on Spatio-Temporal Database Management.

[OGC] Open Geospatial Consortium [http://www.opengis.org] .

[OME] OneMap SVG Map Editor [http://globus.hiof.no/editor/editor.html] . GML

Days 2003.

[ONE] The One Map Project [http://www.ia.hiof.no/~gunnarmi/omd/gmldev_02] .

Gunnar Misund and Knut-Erik Johnsen.

[OS] OS MasterMap

[http://www.ordnancesurvey.co.uk/oswebsite/products/osmastermap/], Ord-

nance Survey.

[OSUG] OS MasterMap User Guide, part 2

[http://www.ordnancesurvey.co.uk/products/osmastermap/pdf/userguidepart2.p

df] .

[RDS] XML Schema: Reconciling Diversity with Standardisation

[http://www.snowflakesoft.co.uk/news/papers/xmlSchema.pdf] . Eddie Curtis.

[SAPI] XML Schema API, W3C Member Submission

[http://www.w3.org/Submission/xmlschema-api/] .

[SFL] Snowflake Software homepage [http://www.snowflakesoft.co.uk/] . Alison meyn-

ert.

[SLD] Styled Layer Descriptor Implementation Specification

[http://www.geoconnections.org/architecture/technical/specifications/sld/styled

http://www.w3.org/TR/xmlschema-1/#PSVI_contributions
http://www.saxproject.org
http://www.gdmc.nl/oosterom/STDBM993.PDF
http://www.opengis.org
http://globus.hiof.no/editor/editor.html
http://www.ia.hiof.no/~gunnarmi/omd/gmldev_02
http://www.ordnancesurvey.co.uk/oswebsite/products/osmastermap/
http://www.w3.org/Submission/xmlschema-api/
http://www.snowflakesoft.co.uk/

_layer_descriptor_1_0.pdf] .

[SMIL] Synchronized Multimedia Integration Language (SMIL 2.0), W3C Recom-

mondation [http://www.w3.org/TR/smil20/] .

[SPY] Altova XML Spy [http://www.xmlspy.com], XML application .

[SRCF] Sourceforge, Open Source development website [http://sourceforge.net] .

[SVG] Scalable Vector Graphics (SVG) 1.1 Specification

[http://www.w3.org/TR/SVG/] . W3C Recommondation 14 January 2003.

[SX] SAXON XSLT and XQuery Processor [http://saxon.sourceforge.net/] . Michael

H. Kay.

[TIG] U.S. Census Bureau, TIGER/GML Schemas

[http://aries.geo.census.gov/WebTIGER/CensusTIGERGMLSchemas.html] .

[VIV] Vivid Solutions Inc. [http://www.vividsolutions.com] .

[WFS] Web Feature Service (WFS) Implementation Specification

[http://www.geoconnections.org/architecture/technical/specifications/filter_enc

oding/filter_encoding_1_0.pdf] .

[WMS] Web Map Service Implementation Specification 1.1.1

[http://www.opengis.org/techno/specs/01-068r3.pdf] .

[XHTML] XHTML 1.0 The Extensible HyperText Markup Language (Second Edition)

[http://www.w3.or/TR/xhtml1/] .

[XIS] Document Object Model (DOM) Level 3 Core Specification, Appendix C: Infoset

mapping

[http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/infoset-mappi

ng.html] .

[XML] Extensible Markup Language (XML) 1.0 (Third Edition)

[http://www.w3.org/TR/REC-xml/] .

[XMLNS] Namespaces in XML, W3 document

[http://www.w3.org/TR/REC-xml-names/] .

[XP] XML Path Language (XPath) Version 1.0 [http://www.w3.org/TR/xpath/] . W3C

http://www.w3.org/TR/smil20/
http://www.w3.org/TR/smil20/
http://www.xmlspy.com
http://sourceforge.net
http://www.w3.org/TR/SVG/
http://saxon.sourceforge.net/
http://aries.geo.census.gov/WebTIGER/CensusTIGERGMLSchemas.html
http://www.vividsolutions.com
http://www.w3.or/TR/xhtml1/
http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/infoset-mapping.html
http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/infoset-mapping.html
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xpath/

Recommondation 16 November 1999.

[XP2] XML Path Language (XPath) Version 2.0 [http://www.w3.org/TR/xpath20/] .

W3C Recommondation 16 November 1999.

[XSC] XML Schema Part 0: Primer, W3C Proposed Recommondation , 30 March

2001 [http://www.w3.org/TR/2001/PR-xmlschema-0-20010330/] .

[XSL] Extensible Stylesheet Language (XSL) Version 1.0 [http://www.w3.org/TR/xsl/]

. W3C Recommondation 15 October 2001.

[XSLT1] XSL Transformations (XSLT) Version 1.0 [http://www.w3.org/TR/xslt] .

[XSLT20] XSL Transformations (XSLT) Version 2.0, W3C Working Draft

[http://www.w3.org/TR/xslt20/] .

Bibliography

85

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/2001/PR-xmlschema-0-20010330/
http://www.w3.org/TR/2001/PR-xmlschema-0-20010330/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt20/

Appendix A. XSL Transformations

GML Schema to Mapping Dictionary

<?xml version="1.0" encoding="UTF-8"?>
<!--
This stylesheet is written for version 2.0 of xslt. At this time only
experimentally supported by Saxon.
-->
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsdold="http://www.w3.org/2000/10/XMLSchema"
xmlns:app="no:hiof:osgb:appschema"
xmlns="no:hiof:basemapper"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:bm="no:hiof:basemapper"
xmlns:map="no:hiof:basemapper:functions"
xsi:schemaLocation="no:hiof:basemapper
http://www.ia-stud.hiof.no/~haraldva/schema/MappingInterface.xsd">
<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>

<!--
There are four parameteres that can be passed from console to the stylesheet.

Parameters:
$basefile - filename of a schema being analyzed. This parameter is only
accessed when the transformation is done directly on a schema.

It is recommended if there are circular includes or imports in the
schema, because it is used to prevent just this.

$baseloc - A url defining the directory where the schemas are located. This
is used by the transformation when schemas are pointed to

with relative paths. Use full url's, including preceding slash.
E.g. file:///c:/schemas/myvocabulary or
http://www.mysite.org/schemas/

$instance - If specified with value 'yes', the file sent to transformations
should be an instance file of a vocabulary. The stylesheet will then access

the schemaLocation-attribute of the file, and parse the schemas
pointed to there. If the location is relative to the instance
file, the
$baseloc-argument must be specified. If the instance file is
large, it is recommended to instead pass the $schemaLocation-
argument
to the stylesheet.

$schemalocation - This argument overrides the $basefile and $instance-
arguments, traversing the schemas specified in the string. The syntax is
thee

same as with an ordinary xsi:schemaLocation-attribute. The
$baseloc should be specified if the url's to the schemas
to the current directory.
.

-->
<xsl:param name="basefile"/>
<xsl:param name="baseloc" select="''"/>
<xsl:param name="instance" select="'no'"/>
<xsl:param name="schemalocation" select="''"/> <!-- this param overrides the
schemaLocation-attribute found in an instance-file. -->
<!--
This variable is meant to be used throughout the stylesheet, where there is
output meant for debugging.
-->
<xsl:variable name="debug" select="boolean('')"/>

<!--
A few "constants".
-->
<xsl:variable name="gml_full" select="'http://www.opengis.net/gml'"/>
<xsl:variable name="xlink_full" select="'http://www.w3.org/1999/xlink'"/>
<xsl:variable name="xml_full" select="'http://www.w3.org/XML/1998/namespace
'"/>

86

<!--
The template to start the transformation.
-->
<xsl:template match="/">
<xsl:if test="$debug">
<xsl:message terminate="no"><xsl:value-of select="$basefile"/>
</xsl:message>

</xsl:if>

<!--
This element is the root of the mapping dictionary.
-->
<bm:MappingDictionary>
<xsl:attribute name="schemaLocation" namespace="
http://www.w3.org/2001/XMLSchema-instance">
<xsl:value-of select="'no:hiof:basemapper
http://www.ia-stud.hiof.no/~haraldva/schema/MappingInterface.xsd'"/>

</xsl:attribute>

<!--
Here we map a list of all the namespaces declared in the first file. This
list isn't necessarily complete, if other
imported or included files declare other namespaces.
-->
<xsl:element name="documentNamespaces">
<xsl:choose>
<!--
If the global param schemalocation has been passed to the stylesheet,
the files pointed to by this string will
be parsed
-->
<xsl:when test="$schemalocation != ''">
<xsl:call-template name="TraverseSchemaLocations">
<xsl:with-param name="baselocation" select="$baseloc"/>
<xsl:with-param name="task" select="'namespaces'"/>
<xsl:with-param name="schemaLocString" select="$schemalocation"/>

</xsl:call-template>
</xsl:when>
<!--
If the instance-param is set to 'yes', the file being transformed by
the stylesheet is an instance file. Therefore
the schemaLocation-attribute of the file is acquired, then passed to
the TraverseSchemaLocations-template.
-->
<xsl:when test="$instance = 'yes'">
<xsl:variable name="schemas" select="normalize-space(child::*[1]
/@xsi:schemaLocation)"/>

<xsl:choose>
<xsl:when test="$schemas">
<xsl:call-template name="TraverseSchemaLocations">
<xsl:with-param name="baselocation" select="$baseloc"/>
<xsl:with-param name="task" select="'namespaces'"/>
<xsl:with-param name="schemaLocString" select="$schemas"/>

</xsl:call-template>
</xsl:when>
<xsl:otherwise>
<xsl:message terminate="yes">
The parameter 'instance' was passed to this stylesheet with
value 'yes', but there is no xsi:schemaLocation-attribute
specified in the provided instance file.
The transformation requires this to be able to find the
schemas related with the vocabulary.

</xsl:message>
</xsl:otherwise>

</xsl:choose>
</xsl:when>
<xsl:otherwise>
<!--
If the instance-parameter is not passed to the stylesheet, the file
being transformed is actually a schema.
The WriteNamespaces-template outputs the namespaces defined in the
schema to the mapping dictionary.
-->
<xsl:call-template name="WriteNamespaces">
<xsl:with-param name="root" select="current()"/>

</xsl:call-template>
</xsl:otherwise>

</xsl:choose>

XSL Transformations

87

</xsl:element>

<!--
The typeMaps-elements, is the root for all the typemaps in the mapping.
The template iterateSchema takes care
of iterating one fysical file.
-->
<typeMaps>
<xsl:choose>
<!--
If the schemalocation-param is passed to the stylesheet, we call the
TraverseSchemaLocations, just as we did
when writing out the related namespaces. This time, the task-argument
is however set to 'typeMaps', meaning it
will traverse the schemaLocation-string in the same manner, but this
time do another task with each file.
-->
<xsl:when test="$schemalocation != ''">
<xsl:call-template name="TraverseSchemaLocations">
<xsl:with-param name="baselocation" select="$baseloc"/>
<xsl:with-param name="task" select="'typeMaps'"/>
<xsl:with-param name="schemaLocString" select="$schemalocation"/>

</xsl:call-template>
</xsl:when>
<!--
We are dealing with an instance file.
-->
<xsl:when test="$instance = 'yes'">
<xsl:variable name="schemas" select="normalize-space(child::*[1]
/@xsi:schemaLocation)"/>

<xsl:call-template name="TraverseSchemaLocations">
<xsl:with-param name="baselocation" select="$baseloc"/>
<xsl:with-param name="schemaLocString" select="$schemas"/>
<xsl:with-param name="task" select="'typeMaps'"/>

</xsl:call-template>
</xsl:when>
<!--
The file being transformed is a schema, we can therefore iterate it
directly without having to traverse a schemaLocation-string.
-->
<xsl:otherwise>
<!--
first a few values to be used in the mapping. These values will be
passed about in the stylesheet,
but may eventually change, when imports and includes are followed
and mapped.
-->
<xsl:variable name="tns_full" select="string(child::*[1]
/@targetNamespace)"/>
<xsl:variable name="tns_prefix" select="name(child::*[1]
/namespace::*[string(.)=$tns_full])"/>
<xsl:variable name="gml_prefix" select="name(child::*[1]
/namespace::*[string(.)=$gml_full])"/>

<xsl:call-template name="IterateSchema">
<xsl:with-param name="locationRootPath"
select="map:GetFileRoot($basefile)"/>
<xsl:with-param name="tns_full" select="$tns_full"/>
<xsl:with-param name="tns_prefix" select="$tns_prefix"/>
<xsl:with-param name="gml_prefix" select="$gml_prefix"/>

</xsl:call-template>
</xsl:otherwise>

</xsl:choose>
</typeMaps>

</bm:MappingDictionary>
</xsl:template>

<!--
This function takes a full path to a file, and returns the location of the
file, without the filename at the end.
It is dependent upon the function map:lastIndexOf to find the last occurence
of the folder delimiter.
-->
<xsl:function name="map:GetFileRoot">
<xsl:param name="fullname"/>

<xsl:choose>
<xsl:when test="contains($fullname, '/')">

<!--<xsl:variable name="lastIndex" select="index-of($fullname, '/')
[last()]"/>-->
<xsl:variable name="lastIndex" select="map:lastIndexOf($fullname, '/',
string-length($fullname))"/>
<!--<xsl:message terminate="no"><xsl:value-of
select="substring($fullname, 1, $lastIndex)"/></xsl:message>-->
<xsl:value-of select="substring($fullname, 1, $lastIndex)"/>

</xsl:when>
<xsl:when test="contains($fullname, '\')">
<xsl:variable name="lastIndex" select="map:lastIndexOf($fullname, '\',
string-length($fullname))"/>
<xsl:value-of select="substring($fullname, 1, $lastIndex)"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="''"/>

</xsl:otherwise>
</xsl:choose>

</xsl:function>

<!--
This function return the last index of the $char-argument inside the $string
argument. -1 if the $char is not within the $string.
-->
<xsl:function name="map:lastIndexOf">
<xsl:param name="string"/>
<xsl:param name="char"/>
<xsl:param name="currentIndex"/>

<!--<xsl:message terminate="no"><xsl:value-of select="$char"/>, <xsl:value-
of select="$string"/>, <xsl:value-of select="$currentIndex"/>
</xsl:message>-->

<xsl:if test="not($string)">
<xsl:value-of select="number(-1)"/>

</xsl:if>
<xsl:if test="string-length($char) != 1">
<xsl:message terminate="yes">Invalid argument passed to
map:lastIndexOf($string, $char, $currentIndex). Argument $char should be
only one character.</xsl:message>

</xsl:if>
<xsl:if test="$currentIndex > string-length($string) or $currentIndex
< 1">
<xsl:message terminate="yes">Invalid argument passed to
map:lastIndexOf($string, $char, $currentIndex). Argument $currentIndex
have value between [1, string-length($string)]</xsl:message>

</xsl:if>

<xsl:variable name="lastChar" select="substring($string, $currentIndex,
1)"/>
<xsl:choose>
<xsl:when test="$lastChar = $char">
<xsl:value-of select="$currentIndex"/>

</xsl:when>
<xsl:when test="$currentIndex = 1">
<xsl:value-of select="number(-1)"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="map:lastIndexOf(substring($string, 1,
$currentIndex - 1), $char, $currentIndex - 1)"/>

</xsl:otherwise>
</xsl:choose>

</xsl:function>

<!--
This function is used to determine the location of a file, f.ex. being
included by a schema. It takes the argument $currentLocation, that holds the
location of the file currently being parsed. E.g. if the file
http://www.mysite.org/schemas/schema1.xsd is being parsed, the
$currentLocation (which is passed
throughout the stylesheet), holds the value http://www.mysite.org/schemas/. If
a new file is linked to by this stylesheet, the link is either absolute or
relative to this location.
This function calls the funciton IsAbsolutePath, to determine if the $newLink-
param should be concatenated with the $currentLocation, or if the location is
fully
defined in the $newLink-value.
-->
<xsl:function name="map:GetLocation">
<xsl:param name="currentLocation"/>
<xsl:param name="newLink"/>

<!--<xsl:message terminate="no"><xsl:value-of
select="concat($currentLocation, ' ', $newLink)"/></xsl:message>-->
<xsl:choose>
<xsl:when test="map:IsAbsolutePath($newLink) = true()">
<!--<xsl:message terminate="no">Return: <xsl:value-of
select="$newLink"/></xsl:message>-->
<xsl:value-of select="$newLink"/>

</xsl:when>

<xsl:otherwise>

<xsl:variable name="returnvalue" select="concat($currentLocation,
$newLink)"/>

<!--<xsl:message terminate="no">joined: <xsl:value-of
select="$returnvalue"/></xsl:message>-->

<xsl:value-of select="$returnvalue"/>
</xsl:otherwise>

</xsl:choose>
</xsl:function>

<!--
This takes an argument $url, and tells if this is an absolute path or not
(relative one).
-->
<xsl:function name="map:IsAbsolutePath">
<xsl:param name="url"/>

<xsl:choose>
<xsl:when test="contains($url, 'http://') or contains($url, 'file://') or
contains($url, ':')"> <!-- the last test might indicate a file-path like
e.g. c:\ or d:\ etc.-->
<xsl:value-of select="true()"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="false()"/>

</xsl:otherwise>
</xsl:choose>

</xsl:function>

<!--
This template provides the functionality to traverse a schemaLocation-string,
either passed as argument to the stylesheet, or pointed to by
an instance document.
-->
<xsl:template name="TraverseSchemaLocations">
<xsl:param name="baselocation"/>
<xsl:param name="schemaLocString"/>
<xsl:param name="last" select="''"/>
<xsl:param name="task"/>
<xsl:param name="parsed" select="''"/>

<!--
The schemalocation-string holds pair-values, namespace/location. We
therefore "parse" two and two. The nextToken-function is used to
acquire the string located after a given one.
-->
<xsl:variable name="ns" select="normalize-
space(map:nextToken($schemaLocString, $last))"/>
<xsl:variable name="location" select="normalize-
space(map:nextToken($schemaLocString, $ns))"/>

<!--
If we successfully got both the $ns and $location of a namespace, we either
write the namespace-strings of this vocabulary or write the
typeMaps, dependent upon the value of the $task-param.
-->
<xsl:if test="$ns != '' and $location != ''">

<!--<xsl:message terminate="no"><xsl:value-of select="$ns"/>
</xsl:message>-->
<xsl:choose>
<xsl:when test="$task = 'namespaces'">
<!--<xsl:message terminate="no">GetLocation() - <xsl:value-of
select="map:GetLocation($baselocation, $location)"/></xsl:message>-->

<xsl:call-template name="WriteNamespaces">

XSL Transformations

90

<xsl:with-param name="root"
select="document(map:GetLocation($baselocation, $location))"/>

</xsl:call-template>
</xsl:when>
<xsl:when test="$task = 'typeMaps'">
<!--<xsl:message terminate="no">TraverseSchemaLocations - task=
typeMaps - call IterateSchema with nodes of <xsl:value-of
select="map:GetLocation($baselocation, $location)"/></xsl:message>-->

<xsl:call-template name="IterateSchema">
<xsl:with-param name="locationRootPath"
select="map:GetFileRoot(map:GetLocation($baselocation,
$location))"/>
<xsl:with-param name="nodes"
select="document(map:GetLocation($baselocation, $location))"/>
<xsl:with-param name="tns_full" select="$ns"/>
<xsl:with-param name="scanned" select="$parsed"/>
<xsl:with-param name="current" select="$location"/>
<!--<xsl:with-param name="tns_prefix" select="$tns_prefix"/>-->
<!--<xsl:with-param name="gml_prefix" select="$gml_prefix"/>-->

</xsl:call-template>
</xsl:when>

</xsl:choose>

<xsl:call-template name="TraverseSchemaLocations">
<xsl:with-param name="baselocation" select="$baselocation"/>
<xsl:with-param name="schemaLocString" select="$schemaLocString"/>
<xsl:with-param name="last" select="$location"/>
<xsl:with-param name="task" select="$task"/>
<xsl:with-param name="parsed" select="concat($parsed, $location)"/>

</xsl:call-template>
</xsl:if>

</xsl:template>

<!--
This function returns the next token in a string, after a given $lastVal. E.g.
the call map:nextToken('a b c', 'b') returns 'c'

ISSUE: If one namespace or file, is identical to a part of another namespace
or file, the nextToken might return the wrong value, because it

searches for the occurence of one string within another, not
checking if there are several occurences.

-->
<xsl:function name="map:nextToken">
<xsl:param name="fullString"/>
<xsl:param name="lastVal"/>

<xsl:variable name="delimiter" select="' '"/>

<xsl:choose>
<xsl:when test="$lastVal != ''">
<xsl:variable name="temp" select="normalize-space(substring-
after($fullString, $lastVal))"/>
<xsl:choose>
<xsl:when test="contains($temp, $delimiter)">
<xsl:value-of select="substring-before($temp, $delimiter)"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="$temp"/>

</xsl:otherwise>
</xsl:choose>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="normalize-space(substring-before($fullString,
$delimiter))"/>

</xsl:otherwise>
</xsl:choose>

</xsl:function>

<!--
This function outputs the namespaces defined in a file, according to the
format specified in the mapping dictionary schema.
-->
<xsl:template name="WriteNamespaces">
<xsl:param name="root"/>

<xsl:element name="targetns"><xsl:value-of select="$root/child::*[1]
/@targetNamespace"/></xsl:element>

<xsl:for-each select="$root/child::*[1]/namespace::*">
<xsl:element name="namespace"><xsl:value-of select="."/></xsl:element>

</xsl:for-each>
</xsl:template>

<!--
***** template IterateSchema *****

This templates takes care of the mapping of all elements declared as
descendants of the $nodes parameter passed to
the template. This is throughout this file the root of a file.

Parameter list:
$locationRootPath -> The location of the file being parsed. This string is
used to determine the location of

files being pointed to by url's relative to this files
location.

$nodes -> predecessor of element declarations. Usually root of
document.
$scanned -> a string consistent of a concatenation of files already
traversed by this template. This is used to

avoid eternal loops of imports or includes.
$current -> name of the file currently being analyzed.
$tns_full -> target namespace of file being analyzed.
$tns_prefix -> the prefix of the target namespace used in this
particular file.
$gml_prefix -> the GML prefix used in this file.

notes:
problems may arrise if:
-> One file uses more than one prefix for it's target namespace. This
option is not fully tested.

-->
<xsl:template name="IterateSchema">
<xsl:param name="locationRootPath"/>
<xsl:param name="nodes" select="/."/>
<xsl:param name="scanned" select="''"/>
<xsl:param name="current" select="$basefile"/>
<xsl:param name="tns_full" select="string($nodes/child::*[1]
/@targetNamespace)"/>
<xsl:param name="tns_prefix" select="name($nodes/child::*[1]
/namespace::*[string(.)=$tns_full])"/>
<xsl:param name="gml_prefix" select="map:full2prefixFunc($gml_full,
$nodes)"/>

<xsl:message terminate="no">Scanning schema: <xsl:value-of select="concat(
$locationRootPath, $current)"/></xsl:message>
<!--<xsl:message terminate="no">TNS: <xsl:value-of select="$tns_full"/>
Prefix: <xsl:value-of select="$tns_prefix"/></xsl:message>-->
<!--
If the current isn't contained in the scanned-parameter, this file isn't
already analyzed.
-->
<xsl:if test="not(contains($scanned,$current))">
<!--
For each element declaration in this file, we do a typemap, calling the
template BuildTypeMaps.
-->
<xsl:for-each select="$nodes//(xsd:element | xsdold:element)">
<xsl:call-template name="BuildTypeMaps">
<xsl:with-param name="locationRootPath" select="$locationRootPath"/>
<xsl:with-param name="root" select="$nodes"/>
<xsl:with-param name="element" select="."/>
<xsl:with-param name="current" select="$current"/>
<xsl:with-param name="tns_full" select="$tns_full"/>
<xsl:with-param name="tns_prefix" select="$tns_prefix"/>
<xsl:with-param name="gml_prefix" select="$gml_prefix"/>

</xsl:call-template>
</xsl:for-each>

<!--
Then, for each include and import-statement in the schema, we call this
template recursively, to make sure that all relevant data types are
mapped.
-->
<xsl:for-each select="$nodes//(xsd:include | xsdold:include)">
<xsl:call-template name="IterateSchema">
<xsl:with-param name="locationRootPath"
select="map:GetFileRoot(map:GetLocation($locationRootPath,
@schemaLocation))"/>

<xsl:with-param name="nodes"
select="document(map:GetLocation($locationRootPath,
@schemaLocation))"/>
<xsl:with-param name="scanned" select="concat($scanned, $current)"/>
<xsl:with-param name="current" select="@schemaLocation"/>
<xsl:with-param name="tns_full" select="$tns_full"/>

</xsl:call-template>
</xsl:for-each>
<xsl:for-each select="$nodes//(xsd:import | xsdold:import)">
<!--
If this import is pointing to a "known" namespace, we do not want to
analyze them, since they are not relevant for the mapping.
-->
<xsl:if test="@namespace != $gml_full and @namespace != $xlink_full and
@namespace != $xml_full">
<xsl:if test="$debug"><xsl:message terminate="no">Schema import:
<xsl:value-of select="@namespace"/> location: <xsl:value-of
select="@schemaLocation"/></xsl:message></xsl:if>

<xsl:call-template name="IterateSchema">
<xsl:with-param name="locationRootPath"
select="map:GetFileRoot(map:GetLocation($locationRootPath,
@schemaLocation))"/>
<xsl:with-param name="nodes"
select="document(map:GetLocation($locationRootPath,
@schemaLocation))"/>
<xsl:with-param name="tns_full" select="string(@namespace)"/>
<xsl:with-param name="current" select="@schemaLocation"/>

</xsl:call-template>
</xsl:if>

</xsl:for-each>
</xsl:if>

</xsl:template>

<!--
***** template: BuildTypeMaps *****

This template builds typemap for the provided <element>-descendant.

Parameter list:
$locationRootPath -> The location of the file being parsed. This string is
used to determine the location of

files being pointed to by url's relative to this files
location.

$element -> node containing the current element being mapped.
$root -> root being the predecessor of element-element. This
parameter is passed down through the template-calls, and are used for some
purposes.
$tns_full -> target namespace
$tns_prefix -> prefix used for the target namespace in this file.
$gml_prefix -> the prefix used for the GML namespace in the current file.

-->
<xsl:template name="BuildTypeMaps">
<xsl:param name="locationRootPath"/>
<xsl:param name="root" select="/."/>
<xsl:param name="tns_full"/>
<xsl:param name="tns_prefix"/>
<xsl:param name="current" select="$basefile"/>
<xsl:param name="element" select="//(xsd:element | xsdold:element)"/>
<xsl:param name="gml_prefix" select="map:full2prefixFunc($gml_full,
$root)"/>

<xsl:if test="$debug">
<xsl:message terminate="no">BuildTypeMaps: <xsl:value-of
select="$tns_full"/></xsl:message>

</xsl:if>

<!--
If the element has a name (and therefore is not a ref to another element, we
map it directly.
-->
<xsl:if test="$element/@name">
<TypeMap>
<!--
An id is made for the TypeMap. As you may experience; we might get
several identical typemaps in the final file. These are results
of circular imports or includes in the schema-files which the vocabulary

XSL Transformations

93

is consistant of. These may be removed by applying the stylesheet
wash.xslt.
-->
<xsl:attribute name="id" select="generate-id()"/>
<appElement>
<localname><xsl:value-of select="$element/@name"/></localname>
<namespace><xsl:value-of select="$tns_full"/></namespace>

</appElement>

<!--
First we record what type this element is. If it is an instantiation of
a complexType or simpleType, the type is recorded, and possibly traced
if it's not a GML type.
Otherwise it's a "native" type.
-->
<xsl:choose>
<xsl:when test="$element/@type">
<!--
First the element instanceOf is instantiated, using the type-
attribute of the element. The type may possible have a prefix. If
so, it's stripped away, and used for
finding the full namespace, using the function prefix2full, provided
in this stylesheet.
-->
<xsl:element name="instanceOf">

<xsl:element name="localname">
<xsl:choose>
<xsl:when test="contains($element/@type, ':')">
<xsl:value-of select="substring-after($element/@type,
':')"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="$element/@type"/>

</xsl:otherwise>
</xsl:choose>

</xsl:element>
<xsl:element name="namespace">
<xsl:variable name="fullns">
<xsl:choose>
<xsl:when test="contains($element/@type, ':')">
<xsl:value-of select="map:prefix2fullFunc(substring-
before($element/@type, ':'), $root)"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="map:prefix2fullFunc('', $root)"/>

</xsl:otherwise>
</xsl:choose>

</xsl:variable>
<xsl:value-of select="$fullns"/>
<!--
<xsl:choose>
<xsl:when test="$fullns != ''">
<xsl:value-of select="$fullns"/>

</xsl:when>
<xsl:otherwise>
<xsl:message terminate="no">Error parsing schema. No valid
namespace specified for element <xsl:value-of
select="$element/@type"/>.</xsl:message>
<xsl:value-of select="'SCHEMA PARSING ERROR'"/>

</xsl:otherwise>
</xsl:choose>-->

</xsl:element>
</xsl:element>

<xsl:if test="$debug">
<xsl:message terminate="no">BuildTypeMaps: #1b</xsl:message>

</xsl:if>

<!--If the instanceOf-element is not a GML type (or some other known
type), we must trace the type.-->
<xsl:variable name="fullns">
<xsl:choose>
<xsl:when test="contains($element/@type, ':')">
<xsl:value-of select="map:prefix2fullFunc(substring-
before($element/@type, ':'), $root)"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="map:prefix2fullFunc('', $root)"/>

</xsl:otherwise>
</xsl:choose>

</xsl:variable>
<xsl:if test="$tns_full != $gml_full and $tns_full != $xlink_full
and $tns_full != $xml_full">
<xsl:if test="$debug">
<xsl:message terminate="no">BuildTypeMaps: #2</xsl:message>

</xsl:if>

<!--
The TrackGMLBaseType-template is called, with the localname and
namespace of the element we want to
trace the origin of. We are still situated inside the same file,
so we can pass on the value of the prefixes
target namespace (tns) we've already got.
-->
<xsl:call-template name="TrackGMLBaseType">
<xsl:with-param name="localname">
<xsl:choose>
<xsl:when test="contains($element/@type, ':')">
<xsl:value-of select="substring-after($element/@type,
':')"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="$element/@type"/>

</xsl:otherwise>
</xsl:choose>

</xsl:with-param>
<xsl:with-param name="namespace">
<xsl:choose>
<xsl:when test="contains($element/@type, ':')">
<xsl:value-of select="map:prefix2fullFunc(substring-
before($element/@type, ':'), $root)"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="map:prefix2fullFunc('', $root)"/>

</xsl:otherwise>
</xsl:choose>

</xsl:with-param>
<xsl:with-param name="locationRootPath"
select="$locationRootPath"/>
<xsl:with-param name="current" select="$current"/>
<xsl:with-param name="tns_full" select="$tns_full"/>
<xsl:with-param name="tns_prefix" select="$tns_prefix"/>
<xsl:with-param name="gml_prefix" select="$gml_prefix"/>

</xsl:call-template>
</xsl:if>

</xsl:when>
<!--
The element did not have a type-attribute, meaning that it can
possibly be fully or partially defined inline.
If the element is and extension or restriction of another type, we
handle that here.
-->
<xsl:when test="$element//(xsd:complexContent | xsd:simpleContent |
xsd:simpleType | xsd:complexType | xsdold:complexContent |
xsdold:simpleContent | xsdold:simpleType | xsdold:complexType)
/(xsd:restriction | xsd:extension | xsdold:restriction |
xsdold:extension)">
<xsl:variable name="typedef" select="$element//(xsd:complexContent |
xsd:simpleContent | xsd:simpleType | xsd:complexType |
xsdold:complexContent | xsdold:simpleContent | xsdold:simpleType |
xsdold:complexType)/(xsd:restriction | xsd:extension |
xsdold:restriction | xsdold:extension)"/>
<xsl:if test="$debug">
<xsl:message terminate="no">BuildTypeMaps: #4</xsl:message>

</xsl:if>

<xsl:element name="instanceOf">
<xsl:element name="localname">
<xsl:choose>
<xsl:when test="contains($typedef/@base, ':')">
<xsl:value-of select="substring-after($typedef/@base,
':')"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="$typedef/@base"/>

</xsl:otherwise>
</xsl:choose>

</xsl:element>

<xsl:element name="namespace">
<xsl:choose>
<xsl:when test="contains($typedef/@base, ':')">
<xsl:value-of select="map:prefix2fullFunc(substring-
before($typedef/@base, ':'), $root)"/>
</xsl:when>

<xsl:otherwise>
<xsl:value-of select="map:prefix2fullFunc('', $root)"/>

</xsl:otherwise>
</xsl:choose>

</xsl:element>
</xsl:element>

</xsl:when>
<!--
Now, two options are left. The element is either a reference to
another type, meaning that this type will be dealt with when reached,
or
that the element is fully defined inline. Meaning that it is not an
instantiation of another type, and certainly not indirecly derived
from another type.
-->

</xsl:choose>

<!--
Now, the substitutionGroup-attribute is mapped. The current
substitutionGroup-value is recorded in the <substitutesFor>-element.
If this value is not a GML-element, the substitutionGroup is traced.
-->
<xsl:choose>
<!--
If the element substitutes for a GML type, we are nearly finished.
-->
<xsl:when test="starts-with($element/@substitutionGroup,
concat($gml_prefix, ':'))">
<xsl:if test="$debug">
<xsl:message terminate="no">BuildTypeMaps: #6</xsl:message>

</xsl:if>

<xsl:element name="substitutesFor">
<localname><xsl:value-of select="substring-
after($element/@substitutionGroup, ':')"/></localname>
<namespace><xsl:value-of select="$gml_full"/></namespace>

</xsl:element>
</xsl:when>
<!--
If the element has a substitutionGroup-definition, but this isn't a
GML type, we have to trace the subgroup, to
find out if it does inherit/substitute from a GML type.
-->
<xsl:when test="@substitutionGroup">
<xsl:if test="$debug">
<xsl:message terminate="no">BuildTypeMaps: #7</xsl:message>

</xsl:if>

<!--
First we record the subgroup value....
-->
<substitutesFor>
<localname>
<xsl:choose>
<xsl:when test="contains($element/@substitutionGroup, ':')">
<xsl:value-of select="substring-
after($element/@substitutionGroup, ':')"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="$element/@substitutionGroup"/>

</xsl:otherwise>
</xsl:choose>

</localname>
<namespace>
<xsl:choose>
<xsl:when test="contains($element/@substitutionGroup, ':')">
<xsl:value-of select="map:prefix2fullFunc(substring-
before($element/@substitutionGroup, ':'), $root)"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="map:prefix2fullFunc('', $root)"/>

</xsl:otherwise>
</xsl:choose>

XSL Transformations

96

</namespace>
</substitutesFor>

<!--
Then we call the template to track the subgroup.
-->
<xsl:call-template name="trackGMLSubstitutionGroup">
<xsl:with-param name="locationRootPath"
select="$locationRootPath"/>
<xsl:with-param name="gml_prefix" select="$gml_prefix"/>
<xsl:with-param name="tns_full" select="$tns_full"/>
<xsl:with-param name="current" select="$current"/>
<xsl:with-param name="localname">
<xsl:choose>
<xsl:when test="contains(@substitutionGroup, ':')">
<xsl:value-of select="substring-after(@substitutionGroup,
':')"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="@substitutionGroup"/>

</xsl:otherwise>
</xsl:choose>

</xsl:with-param>
<xsl:with-param name="namespace">
<xsl:choose>
<xsl:when test="contains(@substitutionGroup, ':')">
<xsl:value-of select="map:prefix2fullFunc(substring-
before(@substitutionGroup, ':'), $root)"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="map:prefix2fullFunc('', $root)"/>

</xsl:otherwise>
</xsl:choose>

</xsl:with-param>
</xsl:call-template>

</xsl:when>
</xsl:choose>

</TypeMap>
</xsl:if>

</xsl:template>

<!--
***** template: TrackGMLBaseType *****

This template traces the type of a native type, to find out if it directly or
indirectly derives from a GML-type.

Parameter list:
$locationRootPath -> The location of the file being parsed. This string is
used to determine the location of

files being pointed to by url's relative to this files
location.

$root -> root of the tree where the subgroup will be searched for.
This is the root of a document throughout this file.
$localname -> localname of the element we are currently looking for.
$namespace -> namespace of the element we are currently looking for.
$scanned -> concatenated string, containing the names of all files that
has already been searched for this element. Used to avoid eternal recursion.
$tns_full -> target namespace
$tns_prefix -> prefix used for target namespace in this file.
$typeTrack -> this is an important element, used to avoid eternal
recursion when element names and types are equal.
$current -> the file currently being parsed.
$gml_prefix -> the prefix used for the GML namespace in this file. Passed
on within same file, not passed on when moving to another file.

-->
<xsl:template name="TrackGMLBaseType">
<xsl:param name="locationRootPath"/>
<xsl:param name="root" select="/."/>
<xsl:param name="localname"/>
<xsl:param name="namespace"/>
<!--<xsl:param name="recurse" select="boolean('true')"/> -->
<xsl:param name="scanned"/>
<xsl:param name="current" select="$basefile"/>
<!--<xsl:param name="depth" select="number(0)"/> -->
<xsl:param name="tns_full" select="string($root/child::*[1]
/@targetNamespace)"/>
<xsl:param name="tns_prefix" select="name($root/child::*[1]
/namespace::*[string(.)=$tns_full])"/>

<xsl:param name="typeTrack" select="boolean('false')"/>
<xsl:param name="gml_prefix" select="map:full2prefixFunc($gml_full,
$root)"/>

<xsl:if test="$debug">
<xsl:message terminate="no">TrackGMLBaseType: <xsl:value-of
select="$localname"/></xsl:message>

</xsl:if>

<xsl:variable name="element" select="$root//(xsd:element | xsdold:element)
[@name=string($localname)]"/>
<xsl:variable name="derivedelement" select="$root//(xsd:complexType |
xsd:simpleType | xsdold:complexType | xsdold:simpleType)[@name=
string($localname)]"/>

<!--
We first have to check if we are scanning an application schema that is
already scanned. The scanned schemas are
concatenated in the parameter scanned, the current schema uri is stored in
the parameter current.
-->
<xsl:if test="not(contains($scanned,$current))">
<!--<xsl:message terminate="no"><xsl:value-of select="$localname"/>
</xsl:message>-->
<xsl:choose>
<!--
The element is defined with a complexType-element. However, we still do
not know whether this element is
derived from a gml base type. If the derivedElement has a
complexContent-element child, we know that it is a derived
type, possibly from gml. If not, we must recursively find the gml base
type.
-->
<xsl:when test="$derivedelement">

<xsl:variable name="gmlDerived">
<xsl:choose>
<xsl:when test="$gml_prefix != ''">
<xsl:value-of select="substring-
after($derivedelement/(xsd:complexContent | xsd:simpleContent |
xsdold:complexContent | xsdold:simpleContent)/(xsd:restriction |
xsd:extension | xsdold:restriction | xsdold:extension)/@base,
concat($gml_prefix, ':'))"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="$derivedelement/(xsd:complexContent |
xsd:simpleContent | xsdold:complexContent |
xsdold:simpleContent)/(xsd:restriction | xsd:extension |
xsdold:restriction | xsdold:extension)/@base"/>

</xsl:otherwise>
</xsl:choose>

</xsl:variable>

<xsl:choose>
<!--
If the element substitutes for an element from the gml-namespace, we
have found what we are looking for.
-->
<xsl:when test="$gmlDerived != ''">

<gmlDerivedType>
<localname><xsl:value-of select="$gmlDerived"/></localname>
<namespace><xsl:value-of select="$gml_full"/></namespace>

</gmlDerivedType>
</xsl:when>
<!--
The element didn't substitute for a gml type, therefore we call the
template again, this time one step closer to
a possible gml-origin.
-->
<xsl:otherwise>

<xsl:variable name="trackname">
<xsl:choose>
<xsl:when test="contains($derivedelement/(xsd:complexContent |
xsd:simpleContent | xsdold:complexContent |

xsdold:simpleContent)/(xsd:restriction | xsd:extension |
xsdold:restriction | xsdold:extension)/@base, ':')">
<xsl:value-of select="substring-
after($derivedelement/(xsd:complexContent |
xsd:simpleContent | xsdold:complexContent |
xsdold:simpleContent)/(xsd:restriction | xsd:extension |
xsdold:restriction | xsdold:extension)/@base, ':')"/>

</xsl:when>
<xsl:when test="$derivedelement/(xsd:complexContent |
xsd:simpleContent | xsdold:complexContent |
xsdold:simpleContent)/(xsd:restriction | xsd:extension |
xsdold:restriction | xsdold:extension)/@base">
<xsl:value-of select="$derivedelement/(xsd:complexContent |
xsd:simpleContent | xsdold:complexContent |
xsdold:simpleContent)/(xsd:restriction | xsd:extension |
xsdold:restriction | xsdold:extension)/@base"/>

</xsl:when>
</xsl:choose>

</xsl:variable>
<xsl:variable name="tracknamespace">
<xsl:choose>
<xsl:when test="contains($derivedelement/(xsd:complexContent |
xsd:simpleContent | xsdold:complexContent |
xsdold:simpleContent)/(xsd:restriction | xsd:extension |
xsdold:restriction | xsdold:extension)/@base, ':')">
<xsl:value-of select="map:prefix2fullFunc(substring-
before($derivedelement/(xsd:complexContent |
xsd:simpleContent | xsdold:complexContent |
xsdold:simpleContent)/(xsd:restriction | xsd:extension |
xsdold:restriction | xsdold:extension)/@base, ':'),
$root)"/>

</xsl:when>
<xsl:when test="$derivedelement/(xsd:complexContent |
xsd:simpleContent | xsdold:complexContent |
xsdold:simpleContent)/(xsd:restriction | xsd:extension |
xsdold:restriction | xsdold:extension)/@base">
<xsl:value-of select="map:prefix2fullFunc('', $root)"/>

</xsl:when>
</xsl:choose>

</xsl:variable>

<xsl:call-template name="TrackGMLBaseType">
<xsl:with-param name="locationRootPath"
select="$locationRootPath"/>
<xsl:with-param name="root" select="$root"/>
<xsl:with-param name="localname">
<xsl:choose>
<xsl:when test="$trackname">
<xsl:value-of select="$trackname"/>

</xsl:when>

<xsl:otherwise>
<xsl:message terminate="yes">Error: Tracing GMLBaseType
failed. Element localname: <xsl:value-of
select="$localname"/></xsl:message>

</xsl:otherwise>
</xsl:choose>

</xsl:with-param>
<xsl:with-param name="namespace">
<xsl:choose>
<xsl:when test="$tracknamespace">
<xsl:value-of select="$tracknamespace"/>

</xsl:when>
<xsl:otherwise>
<xsl:message terminate="yes">Error: No namespace found.
Tracing GMLBaseType failed. Element localname:
<xsl:value-of select="$localname"/>.</xsl:message>

</xsl:otherwise>
</xsl:choose>

</xsl:with-param>
<xsl:with-param name="current" select="$current"/>
<xsl:with-param name="tns_full" select="$tns_full"/>
<xsl:with-param name="tns_prefix" select="$tns_prefix"/>
<xsl:with-param name="typeTrack" select="boolean('true')"/>
<xsl:with-param name="gml_prefix" select="$gml_prefix"/>

</xsl:call-template>
</xsl:otherwise>

XSL Transformations

99

</xsl:choose>
</xsl:when>

<!--
If typeTrack=true, this means that the element-declaration is already
found, and we are now
searching for this elements type. If this test->true, it means we are
still searching for
the element declaration.
-->
<xsl:when test="$element and not($typeTrack)">
<xsl:choose>
<!--
If the element substitutes for an element from the gml-namespace, we
have found what we are looking for.

todo: handle a situation where there is an empty gml_prefix.
-->
<xsl:when test="starts-with($element/@type, concat($gml_prefix,
':'))">
<gmlDerivedType>
<localname><xsl:value-of select="substring-after($element/@type,
':')"/></localname>
<namespace><xsl:value-of select="$gml_full"/></namespace>

</gmlDerivedType>

<!--<xsl:message terminate="no">Element <xsl:value-of
select="$localname"/> traced to: <xsl:value-of
select="$element/@type"/></xsl:message> -->

</xsl:when>
<!--
The element didn't substitute for a gml type, therefore we call the
template again, this time one step closer to
a possible gml-origin.
-->
<xsl:otherwise>
<xsl:variable name="tracename">
<xsl:choose>
<xsl:when test="contains($element/@type, ':')">
<xsl:value-of select="substring-after($element/@type,
':')"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="$element/@type"/>

</xsl:otherwise>
</xsl:choose>

</xsl:variable>
<xsl:variable name="tracenamespace">
<xsl:choose>
<xsl:when test="contains($element/@type, ':')">
<xsl:value-of select="map:prefix2fullFunc(substring-
before($element/@type, ':'), $root)"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="map:prefix2fullFunc('', $root)"/>

</xsl:otherwise>
</xsl:choose>

</xsl:variable>

<xsl:if test="not(tracename) or not(tracenamespace)">
<xsl:message terminate="yes">Error code:
TrackGMLBaseType#01</xsl:message>

</xsl:if>

<xsl:call-template name="TrackGMLBaseType">
<xsl:with-param name="locationRootPath"
select="$locationRootPath"/>
<xsl:with-param name="localname" select="$tracename"/>
<xsl:with-param name="namespace" select="$tracenamespace"/>
<xsl:with-param name="tns_full" select="$tns_full"/>
<xsl:with-param name="tns_prefix" select="$tns_prefix"/>
<xsl:with-param name="typeTrack" select="boolean('true')"/>

</xsl:call-template>
</xsl:otherwise>

</xsl:choose>
</xsl:when>
<xsl:otherwise>
<xsl:for-each select="$root//(xsd:include | xsdold:include)">
<xsl:call-template name="TrackGMLBaseType">
<xsl:with-param name="locationRootPath"

select="map:GetFileRoot(map:GetLocation($locationRootPath,
@schemaLocation))"/>
<xsl:with-param name="root"
select="document(map:GetLocation($locationRootPath,
@schemaLocation))"/>
<xsl:with-param name="localname" select="string($localname)"/>
<xsl:with-param name="namespace" select="string($namespace)"/>
<xsl:with-param name="scanned" select="concat(string($scanned),
string($current))"/>
<xsl:with-param name="current" select="@schemaLocation"/>
<!--<xsl:with-param name="depth" select="number($depth) + 1"/>-->
<xsl:with-param name="tns_full" select="$tns_full"/>
<!--<xsl:with-param name="tns_prefix" select="$tns_prefix"/>-->
<xsl:with-param name="typeTrack" select="$typeTrack"/>

</xsl:call-template>
</xsl:for-each>
<xsl:for-each select="$root//(xsd:import | xsdold:import)">
<xsl:if test="@namespace!=$gml_full and @namespace=$xlink_full and
@namespace=$xml_full">
<xsl:call-template name="TrackGMLBaseType">
<xsl:with-param name="locationRootPath"
select="map:GetFileRoot(map:GetLocation($locationRootPath,
@schemaLocation))"/>
<xsl:with-param name="root"
select="document(map:GetLocation($locationRootPath,
@schemaLocation))"/>
<xsl:with-param name="localname" select="string($localname)"/>
<xsl:with-param name="namespace" select="string($namespace)"/>
<xsl:with-param name="scanned" select="concat(string($scanned),
string($current))"/>
<xsl:with-param name="current" select="@schemaLocation"/>
<!--<xsl:with-param name="depth" select="number($depth) +
1"/>-->
<!--<xsl:with-param name="tns_full" select="$tns_full"/>-->
<!--<xsl:with-param name="tns_prefix" select="$tns_prefix"/>-->
<xsl:with-param name="typeTrack" select="$typeTrack"/>

</xsl:call-template>
</xsl:if>

</xsl:for-each>
</xsl:otherwise>

</xsl:choose>
</xsl:if>

</xsl:template>

<!--
***** template: TrackGMLSubstitutionGroup *****

This template traces a substitutionGroup-value, to find out if the substition
is indirectly for an GML type.

Parameter list:
$locationRootPath -> The location of the file being parsed. This string is
used to determine the location of

files being pointed to by url's relative to this files
location.

$root -> root of the tree where the subgroup will be searched for.
This is the root of a document throughout this file.
$localname -> localname of the element we are currently looking for.
$namespace -> namespace of the element we are currently looking for.
$scanned -> concatenated string, containing the names of all files that
has already been searched for this element. Used to avoid eternal recursion.
$tns_full -> target namespace
$tns_prefix -> prefix used for target namespace in this file.
$current -> the filename of the file currently being parsed.

-->
<xsl:template name="trackGMLSubstitutionGroup">
<xsl:param name="locationRootPath"/>
<xsl:param name="root" select="/."/>
<xsl:param name="tns_full" select="string($root/child::*[1]
/@targetNamespace)"/>
<xsl:param name="gml_prefix" select="map:full2prefixFunc($gml_full,
$root)"/>
<xsl:param name="localname"/>
<xsl:param name="namespace"/>
<xsl:param name="scanned"/>
<xsl:param name="current" select="$basefile"/>

<xsl:variable name="element" select="$root//(xsd:element | xsdold:element)
[@name=string($localname)]"/>

<xsl:if test="$debug">
<xsl:message terminate="no">trackGMLSubstitutionGroup: <xsl:value-of
select="$localname"/></xsl:message>

</xsl:if>

<!--
We first have to check if we are scanning an application schema that is
already scanned. The scanned schemas are
concatenated in the parameter scanned, the current schema uri is stored in
the parameter current.
-->
<xsl:if test="not(contains(string($scanned),string($current)))">
<xsl:choose>
<!-- if the element is found (the element which is substituted for
another place). -->
<xsl:when test="$element">
<xsl:choose>
<!--
If the element substitutes for an element from the gml-namespace, we
have found what we are looking for.
-->
<xsl:when test="starts-with($element/@substitutionGroup,
concat($gml_prefix, ':'))">
<baseSubstitutesFor>
<localname><xsl:value-of select="substring-
after($element/@substitutionGroup, ':')"/></localname>
<namespace><xsl:value-of select="$gml_full"/></namespace>

</baseSubstitutesFor>
</xsl:when>
<!--
If this element isn't substituting for another, we have traced the
substitutionGroup-attribute as long as possible.
The type it substituted for was not a GML type, but one from another
namespace.
-->
<xsl:when test="not($element/@substitutionGroup)">
<baseSubstitutesFor>
<localname><xsl:value-of select="$element/@name"/></localname>
<namespace><xsl:value-of select="$tns_full"/></namespace>

</baseSubstitutesFor>
</xsl:when>
<!--
The element didn't substitute for a gml type, therefore we call the
template again, this time one step closer to
a possible gml-origin.
-->
<xsl:otherwise>
<xsl:call-template name="trackGMLSubstitutionGroup">
<xsl:with-param name="locationRootPath"
select="$locationRootPath"/>
<xsl:with-param name="localname">
<xsl:choose>
<xsl:when test="contains($element/@substitutionGroup, ':')">
<xsl:value-of select="substring-
after($element/@substitutionGroup, ':')"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="$element/@substitutionGroup"/>

</xsl:otherwise>
</xsl:choose>

</xsl:with-param>

<xsl:with-param name="namespace">
<xsl:choose>
<xsl:when test="contains($element/@substitutionGroup, ':')">
<xsl:value-of select="map:prefix2fullFunc(substring-
before($element/@substitutionGroup, ':'), $root)"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="map:prefix2fullFunc('', $root)"/>

</xsl:otherwise>
</xsl:choose>

</xsl:with-param>
</xsl:call-template>

</xsl:otherwise>
</xsl:choose>

</xsl:when>

XSL Transformations

102

<!--
The element being substituted for some place, was not found in this
file. We therefore have to trace the substitutionGroup-attribute into
the files included and imported.
-->
<xsl:otherwise>
<xsl:for-each select="$root//(xsd:include | xsdold:include)">
<xsl:call-template name="trackGMLSubstitutionGroup">
<xsl:with-param name="locationRootPath"
select="map:GetFileRoot(map:GetLocation($locationRootPath,
@schemaLocation))"/>
<xsl:with-param name="root"
select="document(map:GetLocation($locationRootPath,
@schemaLocation))"/>
<xsl:with-param name="tns_full" select="$tns_full"/>
<xsl:with-param name="localname" select="string($localname)"/>
<xsl:with-param name="namespace" select="string($namespace)"/>
<xsl:with-param name="scanned" select="concat(string($scanned),
string($current))"/>
<xsl:with-param name="current" select="@schemaLocation"/>
<!--<xsl:with-param name="depth" select="number($depth) + 1"/>-->

</xsl:call-template>
</xsl:for-each>
<xsl:for-each select="$root//(xsd:import | xsdold:import)">
<xsl:if test="@namespace!=$gml_full and @namespace=$xlink_full and
@namespace=$xml_full">
<xsl:call-template name="trackGMLSubstitutionGroup">
<xsl:with-param name="locationRootPath"
select="map:GetFileRoot(map:GetLocation($locationRootPath,
@schemaLocation))"/>
<xsl:with-param name="root"
select="document(map:GetLocation($locationRootPath,
@schemaLocation))"/>
<xsl:with-param name="tns_full" select="@namespace"/>
<xsl:with-param name="localname" select="string($localname)"/>
<xsl:with-param name="namespace" select="string($namespace)"/>
<xsl:with-param name="scanned" select="concat(string($scanned),
string($current))"/>
<xsl:with-param name="current" select="@schemaLocation"/>
<!--<xsl:with-param name="depth" select="number($depth) +
1"/>-->

</xsl:call-template>
</xsl:if>

</xsl:for-each>
</xsl:otherwise>

</xsl:choose>
</xsl:if>

</xsl:template>

<!--
This function determines the full namespace, given the abbriviation. $root
holds the root of a schema file.
-->
<xsl:function name="map:prefix2fullFunc">
<xsl:param name="abbr"/>
<xsl:param name="root"/>

<xsl:variable name="temp">
<xsl:value-of select="string($root/child::*[1]/namespace::*[name()=$abbr]
/.)"/>

</xsl:variable>

<xsl:choose>
<xsl:when test="$temp != ''">
<xsl:value-of select="$temp"/>

</xsl:when>
<xsl:otherwise>
<xsl:message terminate="no">Invalid namespace prefix. No namespace
(default or prefixed) found.</xsl:message>
<xsl:value-of select="'INVALID NS PREFIX'"/>

</xsl:otherwise>
</xsl:choose>

</xsl:function>

<!--
This function determines the prefix used for a given namespace. $root holds
the root of a schema file.
-->
<xsl:function name="map:full2prefixFunc">
<xsl:param name="full"/>

<xsl:param name="root"/>

<xsl:variable name="isPresent" select="boolean($root/child::*[1]
/namespace::*[string(.)=$full])"/>

<xsl:choose>
<xsl:when test="$isPresent">
<xsl:value-of select="string(name($root/child::*[1]
/namespace::*[string(.)=$full]))"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="'_NPIF_'"/> <!-- namespace is not present i file
-->

</xsl:otherwise>
</xsl:choose>

</xsl:function>
</xsl:stylesheet>

Stylesheet for removing identical type
maps from mapping dictionary

This transformation converts any GML 2.1.2 data into SVG, given a correct mapping

dictionary, created with the mapElements.xsd listed the section called “GML Schema

to Mapping Dictionary”.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:bm="no:hiof:basemapper">
<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>

<xsl:template match="/">
<bm:MappingDictionary>

<xsl:copy-of select="/bm:MappingDictionary/bm:documentNamespaces"/>

<bm:typeMaps>
<xsl:call-template name="washTypeMaps"/>

</bm:typeMaps>
</bm:MappingDictionary>

</xsl:template>

<xsl:template name="washTypeMaps">
<xsl:param name="transferred" select="''"/>
<xsl:param name="current" select="//bm:TypeMap[1]"/>

<xsl:choose>
<xsl:when test="not(contains($transferred, concat('_', $current/@id,
'_')))">
<xsl:copy-of select="$current"/>

</xsl:when>
<xsl:otherwise>

<xsl:message terminate="no">Duplicate TypeMap filtered: <xsl:value-of
select="$current/@id"/></xsl:message>

</xsl:otherwise>
</xsl:choose>

<xsl:variable name="following" select="$current/following-sibling::*[1]"/>
<xsl:if test="$following">
<xsl:call-template name="washTypeMaps">
<xsl:with-param name="transferred" select="concat('_', $transferred,

'_', $current/@id, '_')"/>
<xsl:with-param name="current" select="$following"/>

</xsl:call-template>
</xsl:if>

</xsl:template>
</xsl:stylesheet>

Generic GML/Dictionary to SVG trans-
formation

This stylesheet converts a GML 2.1.2 compliant file to SVG, given a correct mapping

dictionary in accordance with the schema listed the section called “Mapping Diction-

ary Schema”. This file can be created using the transformation listed the section called

“GML Schema to Mapping Dictionary”.

<?xml version="1.0" encoding="UTF-8"?>
<!--
This transformation stylesheet is made as a proof of concept software, for the
GML mapping dictionary. It utilizes arbitrary
GML files, transforming them to SVG, using the information stored in a mapping
dictionary.
-->
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:gml="http://www.opengis.net/gml"
xmlns:c="no:hiof:basemapper:constants"
xmlns:g2s="no:hiof:basemapper:gmlsvg"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:bm="no:hiof:basemapper"
xmlns:meta="no:hiof:onemap:gml:metainfo"
xmlns:one="http://onemap.org"
xmlns:style="userstyle">

<xsl:output method="xml" indent="yes"
doctype-public="-//W3C//DTD SVG 20010904//EN"
doctype-system="http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd"
cdata-section-elements="script cdata style"/>

<xsl:output method="html" name="htmldoc"/>

<!--
constants.xslt holds some of the base GML names.
-->
<xsl:include href="./constants.xslt"/>

<!-- To be able to retrieve a command line param, we must declare the param
here-->
<xsl:param name="mapfile"/>
<xsl:param name="viewbox" select="''"/>
<xsl:param name="styling"/>
<xsl:param name="flat" select="'no'"/>

<xsl:variable name="userStyles">
<xsl:choose>
<xsl:when test="$styling">
<!--<xsl:message terminate="no">Styling: <xsl:value-of
select="$styling"/></xsl:message>
<xsl:value-of select="document($styling)"/>-->
<style:styles xmlns:style="userstyle" xmlns="userstyle">
<style:style>

XSL Transformations

105

<style:namespace>default</style:namespace>
<style:stylestring>stroke:black; stroke-width: 0.05%; fill:white;
fill-opacity:0.0</style:stylestring>

</style:style>
<style:style>
<style:namespace>http://www.gisline.no</style:namespace>
<style:stylestring>stroke:black; stroke-width: 0.05%; fill:brown;
fill-opacity:1</style:stylestring>

</style:style>
<style:style>
<style:namespace>http://www.onemap.net</style:namespace>
<style:stylestring>stroke:black; stroke-width: 0.05%;
fill:#1BE439</style:stylestring>

</style:style>
<style:style>
<style:namespace>http://www.ordnancesurvey.co.uk/xml/namespaces/osgb
</style:namespace>
<style:stylestring>stroke:black; stroke-width: 0.05%; fill:black;
fill-opacity:0.0</style:stylestring>

</style:style>
<style:style>
<style:namespace>http://www.opengis.net/examples</style:namespace>
<style:stylestring>stroke:blue; stroke-width: 0.05%; fill:black;
fill-opacity:0.0</style:stylestring>

</style:style>
</style:styles>

</xsl:when>
<xsl:otherwise>
<style:styles>
<style:style>
<style:namespace>default</style:namespace>
<style:stylestring>stroke:black; stroke-width: 0.05%;
fill:none;</style:stylestring>

</style:style>
</style:styles>

</xsl:otherwise>
</xsl:choose>

</xsl:variable>

<xsl:variable name="INFORMATIVE_MSG" select="boolean('')"/>
<xsl:variable name="WARNING_MSG" select="boolean('true')"/>
<xsl:variable name="DRAW_FLAT" select="boolean('true')"/>

<xsl:variable name="feature_style" select="'stroke:black; stroke-width: 0.03%;
stroke-color: black; fill:none'"/>
<xsl:variable name="featureCollectionStyle" select="''"/>

<!-- The variable DICT_ROOT contains the childs of the outermost element -->
<xsl:variable
name="gDictRoot"
select="document(string($mapfile))/bm:MappingDictionary"/>

<!-- We might need access to the geometry schema of GML2 for recognizing
geometric properties. -->
<xsl:variable
name="gGeometrySchema"
select="document('./geometry.xsd')/xs:schema"/>

<xsl:variable
name="gFeatureSchema"
select="document('./feature.xsd')/xs:schema"/>

<!-- If there are application specific properties, these the base substitution
group will be gml:_geometryProperty. This relationship is to be found in the
dictionary -->
<!--<xsl:variable
name="gAppGeometries"
select="$gDictRoot/bm:typeMaps/bm:TypeMap[
(bm:baseSubstitutesFor/bm:localname=$GEOMETRY_PROPERTY_BASE and
bm:baseSubstitutesFor/bm:namespace=$GML_NAMESPACE) or
(bm:instanceOf/bm:localname=$GEOMETRY_PROPERTY_TYPE and
bm:instanceOf/bm:namespace=$GML_NAMESPACE) or
(bm:gmlDerivedType/bm:localname=$GEOMETRY_PROPERTY_TYPE and
bm:gmlDerivedType/bm:namespace=$GML_NAMESPACE) or
(bm:baseSubstitutesFor/bm:localname=$GEOMETRY_PROPERTY_TYPE and
bm:baseSubstitutesFor/bm:namespace=$GML_NAMESPACE)]

/bm:appElement/bm:localname"/>-->

<!--<xsl:variable
name="gGeometryTypes"
select="$gGeometrySchema/xs:element[@substitutionGroup=concat('gml:',
$GEOMETRY_BASE)]/@name"/> -->

<!-- The variable gFeatureCollections holds the names of all the elements
identified as descendants of gml:AbstractFeatureCollectionType -->

<xsl:variable
name="gFeatureCollections"
select="$gDictRoot/bm:typeMaps/bm:TypeMap/(bm:gmlDerivedType |
bm:instanceOf)[
bm:localname=$FEATURE_COLLECTION_TYPE and bm:namespace=$GML_NAMESPACE]
/../bm:appElement"/>

<!-- The variable gFeatures holds the names of all the elements recognized as
types derived from AbstractFeatureType -->

<xsl:variable
name="gFeatures"
select="$gDictRoot/bm:typeMaps/bm:TypeMap/(bm:instanceOf |
bm:gmlDerivedType)[
bm:localname=$FEATURE_TYPE and bm:namespace=$GML_NAMESPACE]
/../bm:appElement"/>

<!--
All localnames recognized as linestring-types, are stored in this variable.
It can be noted that this and the other geometry variables only store the
localname of an element, and there might be some mix ups if there are several
elements with
same name, but in different namespace. However this is a proof of concept, and
further enhancement is required to make it fully reliable.
-->
<xsl:variable
name="gAppLineStrings"
select="$gDictRoot/bm:typeMaps/bm:TypeMap[
(bm:instanceOf/bm:localname=$GEOMETRY_LINESTRING_TYPE and
bm:instanceOf/bm:namespace=$GML_NAMESPACE) or
(bm:gmlDerivedType/bm:localname=$GEOMETRY_LINESTRING_TYPE and
bm:gmlDerivedType/bm:namespace=$GML_NAMESPACE)]
/bm:appElement/bm:localname"/>

<xsl:variable
name="gAppLinearRings"
select="$gDictRoot/bm:typeMaps/bm:TypeMap[
(bm:instanceOf/bm:localname=$GEOMETRY_LINEARRING_TYPE and
bm:instanceOf/bm:namespace=$GML_NAMESPACE) or
(bm:gmlDerivedType/bm:localname=$GEOMETRY_LINEARRING_TYPE and
bm:gmlDerivedType/bm:namespace=$GML_NAMESPACE)]
/bm:appElement/bm:localname"/>

<xsl:variable
name="gAppPolygons"
select="$gDictRoot/bm:typeMaps/bm:TypeMap[(bm:instanceOf/bm:localname=
$GEOMETRY_POLYGON_TYPE and bm:instanceOf/bm:namespace=$GML_NAMESPACE) or
(bm:gmlDerivedType/bm:localname=$GEOMETRY_POLYGON_TYPE and
bm:gmlDerivedType/bm:namespace=$GML_NAMESPACE)]
/bm:appElement/bm:localname"/>

<xsl:variable
name="gAppPoints"
select="$gDictRoot/bm:typeMaps/bm:TypeMap[
(bm:instanceOf/bm:localname=$GEOMETRY_POINT_TYPE and
bm:instanceOf/bm:namespace=$GML_NAMESPACE) or
(bm:gmlDerivedType/bm:localname=$GEOMETRY_POINT_TYPE and
bm:gmlDerivedType/bm:namespace=$GML_NAMESPACE)]
/bm:appElement/bm:localname"/>

<xsl:variable
name="gAppCoords"
select="$gDictRoot/bm:typeMaps/bm:TypeMap[
(bm:instanceOf/bm:localname=$COORD_TYPE and bm:instanceOf/bm:namespace=
$GML_NAMESPACE) or
(bm:gmlDerivedType/bm:localname=$COORD_TYPE and
bm:gmlDerivedType/bm:namespace=$GML_NAMESPACE)]
/bm:appElement/bm:localname"/>

<xsl:variable

name="gAppCoordinates"
select="$gDictRoot/bm:typeMaps/bm:TypeMap[
(bm:instanceOf/bm:localname=$COORDINATES_TYPE and
bm:instanceOf/bm:namespace=$GML_NAMESPACE) or
(bm:gmlDerivedType/bm:localname=$COORDINATES_TYPE and
bm:gmlDerivedType/bm:namespace=$GML_NAMESPACE)]
/bm:appElement/bm:localname"/>

<!-- Now let's find the featureMember-types. The featureMember-element from
feature.xsd can be used directly in instance document,
or application schemas can restrict the FeatureAssociationType and substitute
for featureMember, to restrict membership inside the featureMember-element -->
<!--<xsl:variable
name="gAppFeatureMembers"
select="$gDictRoot/bm:typeMaps/bm:TypeMap[bm:gmlDerivedType/bm:localname=
$FEATURE_MEMBER_TYPE or

(bm:instanceOf/bm:localname=$FEATURE_MEMBER_TYPE and
bm:instanceOf/bm:namespace=$GML_NAMESPACE) or
(bm:baseSubstitutesFor/bm:localname=$FEATURE_MEMBER_ELEMENT and
bm:baseSubstitutesFor/bm:namespace=$GML_NAMESPACE) or
(bm:substitutesFor/bm:localname=$FEATURE_MEMBER_ELEMENT and
bm:substitutesFor/bm:namespace=$GML_NAMESPACE)]
/bm:appElement/bm:localname"/>-->

<xsl:variable
name="gAppFeatureMembers"
select="$gDictRoot/bm:typeMaps/bm:TypeMap/(bm:instanceOf | bm:gmlDerivedType
| bm:baseSubstitutesFor | bm:substitutesFor)[
(bm:localname=$FEATURE_MEMBER_TYPE and bm:namespace=$GML_NAMESPACE) or
(bm:localname=$FEATURE_MEMBER_ELEMENT and bm:namespace=$GML_NAMESPACE)]
/../bm:appElement"/>

<!--
This variable holds the names of all the GML types, being descendants of a
geometry association type, and
-->
<!--<xsl:variable name="gGeometryPropertyTypes" select="($gFeatureSchema |
$gGeometrySchema)/xs:complexType[xs:complexContent/xs:restriction/@base=
concat('gml:', $GEOMETRY_ASSOCIATION_TYPE)]/@name"/>-->

<!--
The two following variables stores the geometrymember-elements in defined in
the featureschema. E.g. centerLineOf, centerOf etc. These are not abstract
elements, and can be used directly in an instance document.
-->
<xsl:variable
name="gBaseGeometryMembers"
select="$gFeatureSchema/xs:element[@substitutionGroup=concat('gml:',
$GEOMETRY_PROPERTY_BASE) or (@type=concat('gml:',
$GEOMETRY_ASSOCIATION_TYPE) and not(@abstract='true'))]"/>

<xsl:variable
name="gBaseGeometryAliases"
select="$gFeatureSchema/xs:element[$gBaseGeometryMembers/@name=substring-
after(@substitutionGroup, ':')]"/>

<!--
The variable gAppGeometryProperties is however correct. Storing the whole
appElement-element from the mapping dictionary. This can be exhaustive for
resources
if done for all variables. I combine this with a function called
isElementInAppElement, to search through the appElement-nodes.
-->

<xsl:variable name="gAppGeometryProperties"
select="$gDictRoot/bm:typeMaps/bm:TypeMap/(bm:instanceOf |
bm:gmlDerivedType)[
(concat('gml:', bm:localname)=$gBaseGeometryMembers/@type and
bm:namespace=$GML_NAMESPACE) or
(bm:localname=$GEOMETRY_ASSOCIATION_TYPE and bm:namespace=$GML_NAMESPACE)
or
(bm:localname=$GEOMETRY_PROPERTY_TYPE and bm:namespace=$GML_NAMESPACE)]
/../bm:appElement"/>

<xsl:template match="/">
<xsl:message terminate="no">Features in mapping file: <xsl:value-of
select="count($gFeatures)"/></xsl:message>
<xsl:message terminate="no">FeatureCollections in mapping file: <xsl:value-

XSL Transformations

108

of select="count($gFeatureCollections)"/></xsl:message>
<xsl:message terminate="no">FeatureMembers in mapping file: <xsl:value-of
select="count($gAppFeatureMembers)"/></xsl:message>

<!--<xsl:for-each select="$userStyles">
<xsl:message terminate="no"><xsl:value-of select="namespace-uri(.)"/>
</xsl:message>

</xsl:for-each>
<xsl:message terminate="no"><xsl:value-of select="count($userStyles)"/>
<xsl:value-of select="local-name($userStyles)"/></xsl:message>-->

<xsl:variable name="viewBox">
<xsl:choose>
<xsl:when test="not($viewbox = '')">
<xsl:value-of select="g2s:flip($viewbox)"/>

</xsl:when>
<xsl:otherwise>
<xsl:call-template name="viewBox">
<xsl:with-param name="box" select="child::*/gml:boundedBy"/>

</xsl:call-template>
</xsl:otherwise>

</xsl:choose>
</xsl:variable>

<xsl:element name="svg">
<xsl:attribute name="width">100%</xsl:attribute>
<xsl:attribute name="height">100%</xsl:attribute>
<xsl:attribute name="viewBox">
<xsl:choose>
<xsl:when test="not($viewBox)">
<xsl:message terminate="no">Bounding box not specified. Please
specify viewBox as stylesheet parameter.</xsl:message>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="$viewBox"/>

</xsl:otherwise>
</xsl:choose>

</xsl:attribute>

<xsl:attribute name="onload">
<xsl:value-of select="'init(evt);'"/>

</xsl:attribute>

<xsl:variable name="rootLayers" select="//one:layerDescription"/>
<defs>
<xsl:call-template name="addMenuDef">
<xsl:with-param name="rootLayers" select="$rootLayers"/>

</xsl:call-template>
<xsl:call-template name="defineStyles"/>

</defs>

<xsl:call-template name="addScript"/>
<xsl:call-template name="writeInfoWindow"/>
<!--

considering that SVG coordinates originates from the top left corner, and the
GML coordinates originates from the bottom left. We specify a matrix
transformation here.
In addition, the viewBox has to be changed, so that the view of the data doesn't
disappear.

-->
<g transform="matrix(1,0,0,-1,0,0)">
<xsl:choose>
<xsl:when test="$flat = 'yes'">
<xsl:apply-templates select="//*[local-name()=
$gFeatures/bm:localname and namespace-uri()=
$gFeatures/bm:namespace]"/>

</xsl:when>
<xsl:otherwise>
<xsl:apply-templates select="child::*[local-name()=
$gFeatureCollections/bm:localname and namespace-uri()=
$gFeatureCollections/bm:namespace]"/>

</xsl:otherwise>
</xsl:choose>

</g>

<xsl:copy-of select="document($mapfile)"/>
</xsl:element>

</xsl:template>

<xsl:template name="viewBox">
<xsl:param name="box"/>

<xsl:variable name="coord" select="$box//gml:coord | $box//*[local-name()=
$gAppCoords]"/>
<xsl:variable name="coordinates" select="$box//gml:coordinates |
$box//*[local-name()=$gAppCoordinates]"/>

<xsl:choose>
<xsl:when test="$coord">
<xsl:variable name="x" select="$coord[1]/gml:X"/>
<xsl:variable name="y" select="$coord[1]/gml:Y"/>
<xsl:variable name="width" select="number($coord[2]/gml:X) -
number($x)"/>
<xsl:variable name="height" select="number($coord[2]/gml:Y) -
number($y)"/>

<!-- to flip the coordinate system, we make the y negative and subtracts
the height-->
<xsl:variable name="strVB" select="concat(concat($x, ' ', $y), concat('
', $width), concat(' ', $height))"/>
<xsl:value-of select="g2s:flip($strVB)"/>

</xsl:when>
<xsl:when test="$coordinates">
<xsl:variable name="separator" select="g2s:getSeparator($coordinates)"/>

<xsl:variable name="x" select="normalize-space(substring-
before($coordinates, $separator))"/>
<xsl:variable name="y" select="normalize-space(substring-
before(substring-after($coordinates, $separator), ' '))"/>
<xsl:variable name="x2" select="normalize-space(substring-
before(substring-after(substring-after($coordinates,$separator), ' '),
$separator))"/>
<xsl:variable name="y2" select="normalize-space(substring-
after(substring-after(substring-after($coordinates,$separator), ' '),
$separator))"/>

<xsl:variable name="width" select="number($x2) - number($x)"/>
<xsl:variable name="height" select="number($y2) - number($y)"/>

<xsl:variable name="strVB" select="normalize-space(concat(concat($x, '
', $y), concat(' ', $width), concat(' ', $height)))"/>

<xsl:value-of select="g2s:flip($strVB)"/>
</xsl:when>
<xsl:otherwise>

<xsl:value-of select="'0 -2000 2000 2000'"/>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

<!--
This function takes a viewBox-string, makes the min-y negative and subtracts
the height of the
box. This should be done in relation with transform="matrix(1,0,0,-1,0,0)",
which turns the drawing upside-down.
Reason: svg coordinates has 0,0 as top left corner, while GIS and GML has a
y-axis with positive up and negative down.
-->

<xsl:function name="g2s:flip">
<xsl:param name="strViewBox"/>

<xsl:variable name="x" select="substring-before(normalize-
space($strViewBox), ' ')"/>
<xsl:variable name="temp" select="substring-after(normalize-
space($strViewBox), ' ')"/>
<xsl:variable name="y" select="substring-before(normalize-space($temp), '
')"/>
<xsl:variable name="temp2" select="substring-after(normalize-space($temp), '
')"/>
<xsl:variable name="width" select="substring-before(normalize-space($temp2),
' ')"/>
<xsl:variable name="height" select="substring-after(normalize-space($temp2),
' ')"/>

<xsl:value-of select="concat(concat($x, ' ', (-1 * number($y))-
number($height)), concat(' ', $width, ' '), $height)"/>

</xsl:function>

<xsl:function name="g2s:getSeparator">
<xsl:param name="coordinates"/>

<xsl:choose>
<xsl:when test="$coordinates/@cs">
<xsl:value-of select="$coordinates/@cs"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="','"/>

</xsl:otherwise>
</xsl:choose>

</xsl:function>

<!--Draw polygons or descendant-->
<xsl:template match="*[node() and (local-name()=$GEOMETRY_POLYGON_ELEMENT and
namespace-uri()=$GML_NAMESPACE) or
local-name()=$gAppPolygons]">

<xsl:variable name="hasCoordinates" select="g2s:hasCoordinates(.)"/>

<xsl:choose>
<xsl:when test="$hasCoordinates">
<xsl:element name="polygon">

<xsl:attribute name="points">
<xsl:call-template name="gmlCoordinateString">
<xsl:with-param name="shape" select="."/>

</xsl:call-template>
</xsl:attribute>
<!--<xsl:attribute name="style">
<xsl:text>stroke: black; fill: none;</xsl:text>

</xsl:attribute>-->
</xsl:element>

</xsl:when>
<xsl:otherwise>
<xsl:if test="$WARNING_MSG"><xsl:message terminate="no">Drawing
cancelled: <xsl:value-of select="local-name(.)"/> no coordinates
recognized.</xsl:message></xsl:if>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

<!--Draw linestrings or descendant-->
<xsl:template match="*[node() and (local-name()=$GEOMETRY_LINESTRING_ELEMENT
and namespace-uri()=$GML_NAMESPACE) or local-name()=
$gAppLineStrings]">

<xsl:variable name="hasCoordinates" select="g2s:hasCoordinates(.)"/>

<xsl:choose>
<xsl:when test="$hasCoordinates">
<xsl:element name="polyline">

<xsl:attribute name="points">
<xsl:call-template name="gmlCoordinateString">
<xsl:with-param name="shape" select="."/>

</xsl:call-template>
</xsl:attribute>
<!--<xsl:attribute name="style">
<xsl:text>stroke: black; fill: none;</xsl:text>

</xsl:attribute>-->
</xsl:element>

</xsl:when>
<xsl:otherwise>
<xsl:if test="$WARNING_MSG"><xsl:message terminate="no">Drawing
cancelled: <xsl:value-of select="local-name(.)"/> no coordinates
recognized.</xsl:message></xsl:if>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

<!--Draw linestrings or descendant-->
<xsl:template match="*[node() and (local-name()=$GEOMETRY_LINEARRING_ELEMENT
and namespace-uri()=$GML_NAMESPACE) or local-name()=
$gAppLinearRings]">

<xsl:variable name="hasCoordinates" select="g2s:hasCoordinates(.)"/>

XSL Transformations

111

<xsl:choose>
<xsl:when test="$hasCoordinates">
<xsl:element name="polyline">

<xsl:attribute name="points">
<xsl:call-template name="gmlCoordinateString">
<xsl:with-param name="shape" select="."/>

</xsl:call-template>
</xsl:attribute>
<!--<xsl:attribute name="style">
<xsl:text>stroke: black; fill: none;</xsl:text>

</xsl:attribute>-->
</xsl:element>

</xsl:when>
<xsl:otherwise>
<xsl:if test="$WARNING_MSG"><xsl:message terminate="no">Drawing
cancelled: <xsl:value-of select="local-name(.)"/> no coordinates
recognized.</xsl:message></xsl:if>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

<xsl:template match="*[node() and (local-name()=$GEOMETRY_POINT_ELEMENT and
namespace-uri()=$GML_NAMESPACE) or
local-name()=gAppPoints]">
<xsl:variable name="point" select="."/>

<xsl:variable name="coord" select="$point//gml:coord | $point//*[local-
name()=$gAppCoords]"/>
<xsl:variable name="coordinates" select="$point//gml:coordinates |
$point//*[local-name()=$gAppCoordinates]"/>
<xsl:variable name="cs" select="$coordinates/@cs"/>

<xsl:variable name="cx">
<xsl:choose>
<xsl:when test="$coordinates">
<!--'<xsl:call-template name="Trim">
xsl:with-param name="strInput">-->
<xsl:choose>
<xsl:when test="$cs">
<xsl:value-of select="normalize-space(substring-
before($coordinates, $cs))"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="normalize-space(substring-
before($coordinates, ','))"/>

</xsl:otherwise>
</xsl:choose>

<!--</xsl:with-param>
</xsl:call-template>-->

</xsl:when>
<xsl:when test="$coord">
<xsl:value-of select="$coord/gml:X"/>

</xsl:when>
</xsl:choose>

</xsl:variable>

<xsl:variable name="cy">
<xsl:choose>
<xsl:when test="$coordinates">
<!--<xsl:call-template name="Trim">
<xsl:with-param name="strInput">-->
<xsl:choose>
<xsl:when test="$cs">
<xsl:value-of select="normalize-space(substring-
before($coordinates, $cs))"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="normalize-space(substring-
after($coordinates, ','))"/>

</xsl:otherwise>
</xsl:choose>

<!--</xsl:with-param>
</xsl:call-template>-->

</xsl:when>
<xsl:when test="$coord">
<xsl:value-of select="$coord/gml:Y"/>

</xsl:when>
</xsl:choose>

</xsl:variable>

<xsl:element name="circle">

<xsl:attribute name="cx">
<xsl:value-of select="$cx"/>

</xsl:attribute>
<xsl:attribute name="cy">
<xsl:value-of select="$cy"/>

</xsl:attribute>
<xsl:attribute name="r">0.30%</xsl:attribute>

</xsl:element>
</xsl:template>

<!-- patterns may not contain variable or parametres, therefore the test
whether the element is a featureCollection, is done inside the template, so
that variables may be referenced. -->

<xsl:template match="//*[local-name()=$gFeatureCollections/bm:localname and
namespace-uri()=$gFeatureCollections/bm:namespace]">
<!--<xsl:template name="handleFeatureCollections">-->
<!--<xsl:param name="collections" select=""/>-->

<xsl:if test="$INFORMATIVE_MSG"><xsl:message terminate="no">
featureCollection: <xsl:value-of select="local-name()"/></xsl:message>
</xsl:if>
<g>
<xsl:if test="one:layerDescription != ''">
<xsl:attribute name="id"><xsl:value-of select="one:layerDescription"/>
</xsl:attribute>

<xsl:attribute name="title">
<xsl:value-of select="one:layerDescription"/>

</xsl:attribute>

<xsl:attribute name="visibility">visible</xsl:attribute>
</xsl:if>

<xsl:apply-templates select="child::*[(local-name()=
$FEATURE_MEMBER_ELEMENT and namespace-uri()=$GML_NAMESPACE) or (local-
name()=$gAppFeatureMembers/bm:localname and namespace-uri()=
$gAppFeatureMembers/bm:namespace)]"/>

</g>

</xsl:template>

<xsl:template match="//*[(local-name()=$FEATURE_MEMBER_ELEMENT and namespace-
uri()=$GML_NAMESPACE) or (local-name()=$gAppFeatureMembers/bm:localname and
namespace-uri()=$gAppFeatureMembers/bm:namespace)]">
<xsl:if test="$INFORMATIVE_MSG"><xsl:message terminate="no">featureMember:
<xsl:value-of select="local-name()"/></xsl:message></xsl:if>

<g>

<xsl:apply-templates select="child::*[(local-name()=
$gFeatures/bm:localname and namespace-uri()=$gFeatures/bm:namespace) or

(local-name()=$gFeatureCollections/bm:localname
and namespace-uri()=
$gFeatureCollections/bm:namespace)]"/>

</g>
</xsl:template>

<xsl:template match="//*[local-name()=$gFeatures/bm:localname and namespace-
uri()=$gFeatures/bm:namespace]">
<xsl:variable name="current" select="current()"/>
<xsl:if test="$INFORMATIVE_MSG"><xsl:message terminate="no">feature:
<xsl:value-of select="local-name()"/></xsl:message></xsl:if>
<xsl:element name="g">
<!--<xsl:attribute name="class">
<xsl:value-of select="'default'"/>

</xsl:attribute>-->
<xsl:variable name="feature_id">
<xsl:choose>
<xsl:when test="@fid">
<xsl:value-of select="@fid"/>

</xsl:when>
<xsl:otherwise>

<xsl:value-of select="concat('feature_', generate-id())"/>
</xsl:otherwise>

</xsl:choose>
</xsl:variable>
<xsl:attribute name="id">
<xsl:value-of select="$feature_id"/>

</xsl:attribute>
<!--<xsl:attribute name="style">
<xsl:value-of select="$feature_style"/>

</xsl:attribute>-->
<xsl:attribute name="class">
<xsl:choose>
<xsl:when test="$userStyles/style:styles/style:style/style:namespace =
namespace-uri()">
<xsl:for-each select="$userStyles/style:styles/style:style">
<xsl:if test="style:namespace = namespace-uri($current)">
<xsl:value-of select="concat('fstyle' , position())"/>

</xsl:if>
</xsl:for-each>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="'default'"/>

</xsl:otherwise>
</xsl:choose>

</xsl:attribute>
<xsl:attribute name="onactivate">
<xsl:value-of select="concat(concat('showFeatureData(''', $feature_id),
''')')"/>

</xsl:attribute>
<xsl:attribute name="onfocusin">
<xsl:value-of select="concat(concat('setStrokeWidth(''', $feature_id),
''',''0.20%'')')"/>

</xsl:attribute>
<xsl:attribute name="onfocusout">
<xsl:value-of select="concat(concat('setStrokeWidth(''', $feature_id),
''', ''0.05%'')')"/>

</xsl:attribute>

<xsl:element name="defs">
<xsl:element name="meta:MetaInformation">
<xsl:element name="meta:TypeInformation">
<!--
Need to store the namespace and localname in temporary variables in
order to get comparison to work..
Strange problem, posted it to the saxon-help-list.
-->
<xsl:variable name="tmpName" select="local-name()"/>
<xsl:variable name="tmpNamespace" select="namespace-uri()"/>
<xsl:variable name="mapId"
select="$gDictRoot/bm:typeMaps/bm:TypeMap[bm:appElement/bm:localname
=$tmpName and bm:appElement/bm:namespace=$tmpNamespace]/@id"/>
<xsl:element name="TypeMap" namespace="no:hiof:basemapper">

<xsl:attribute name="xlink:type"><xsl:value-of
select="'simple'"/></xsl:attribute>
<xsl:attribute name="xlink:href"><xsl:value-of
select="concat('#', string($mapId))"/></xsl:attribute>

</xsl:element>
<!--<xsl:copy-of
select="$gDictRoot/bm:typeMaps/bm:TypeMap[bm:appElement/bm:localname
=$tmpName and bm:appElement/bm:namespace=$tmpNamespace]"/>-->

<!--<xsl:message terminate="no"><xsl:value-of select="local-
name()"/></xsl:message>-->

<!-- <xsl:message terminate="no"><xsl:value-of select="namespace-
uri()"/></xsl:message>-->

</xsl:element>
<xsl:element name="meta:properties">
<xsl:for-each select="child::*[node()]">
<xsl:variable name="isAppGeometryProp"
select="g2s:isElementInAppElement(current())"/>

<xsl:choose>
<xsl:when test="not($isAppGeometryProp)">
<xsl:call-template name="writePropertyMeta">

XSL Transformations

114

<xsl:with-param name="property" select="current()"/>

</xsl:call-template>
</xsl:when>
<xsl:otherwise>
<xsl:call-template name="writePropertyMeta">
<xsl:with-param name="property" select="current()"/>
<xsl:with-param name="isGeometry" select="boolean('true')"/>

</xsl:call-template>
</xsl:otherwise>

</xsl:choose>

</xsl:for-each>
</xsl:element>

</xsl:element>
</xsl:element>

<xsl:apply-templates select="child::*"/>
</xsl:element>

</xsl:template>

<xsl:function name="g2s:isElementInAppElement">
<xsl:param name="element"/>

<xsl:if test="local-name($element)=$gBaseGeometryMembers/@name and
namespace-uri($element)=$GML_NAMESPACE">
<xsl:value-of select="boolean('true')"/>

</xsl:if>

<xsl:if test="local-name($element)=$gBaseGeometryAliases/@name and
namespace-uri($element)=$GML_NAMESPACE">
<xsl:value-of select="boolean('true')"/>

</xsl:if>

<xsl:for-each select="$gAppGeometryProperties">
<xsl:if test="bm:localname=local-name($element) and bm:namespace=
namespace-uri($element)">
<xsl:value-of select="boolean('true')"/>

</xsl:if>
</xsl:for-each>

<xsl:value-of select="''"/>
</xsl:function> <!-- end function: g2s:isElementInAppElement -->

<xsl:template name="writePropertyMeta">
<xsl:param name="property"/>
<xsl:param name="isGeometry" select="boolean('')"/>

<xsl:choose>
<xsl:when test="$property">
<xsl:element name="meta:Property" xml:space="preserve">

<xsl:variable name="mapid"
select="$gDictRoot/bm:typeMaps/bm:TypeMap[bm:appElement/bm:localname=
local-name($property) and bm:appElement/bm:namespace=namespace-
uri($property)]/@id"/>
<xsl:choose>
<xsl:when test="$mapid">
<xsl:element name="TypeMap" namespace="no:hiof:basemapper">

<xsl:attribute name="xlink:type"><xsl:value-of
select="'simple'"/></xsl:attribute>
<xsl:attribute name="xlink:href"><xsl:value-of
select="concat('#', string($mapid))"/></xsl:attribute>

</xsl:element>
</xsl:when>
<xsl:otherwise>
<xsl:element name="meta:name-ns">
<xsl:element name="meta:localname">
<xsl:value-of select="local-name($property)"/>

</xsl:element>
<xsl:element name="meta:namespace">
<xsl:value-of select="namespace-uri($property)"/>

</xsl:element>
</xsl:element>

</xsl:otherwise>
</xsl:choose>

<xsl:element name="meta:elementValue">
<xsl:choose>
<xsl:when test="$isGeometry">

<xsl:comment>GEOMETRY PROPERTY</xsl:comment>
</xsl:when>
<xsl:otherwise>
<xsl:text disable-output-escaping="yes"><![CDATA[</xsl:text>
<xsl:copy-of select="."/>

<xsl:text disable-output-escaping="yes">]]></xsl:text>
</xsl:otherwise>

</xsl:choose>
</xsl:element>

</xsl:element>
</xsl:when>
<xsl:otherwise>
<xsl:if test="$WARNING_MSG">
<xsl:message terminate="no">Empty property specification passed to
template writePropertyMeta</xsl:message>

</xsl:if>
</xsl:otherwise>

</xsl:choose>
</xsl:template> <!-- end template: writePropertyMeta -->

<xsl:function name="g2s:hasCoordinates">
<xsl:param name="shape"/>

<xsl:value-of select="boolean($shape//gml:coord | $shape//*[local-name()=
$gAppCoords] | $shape//gml:coordinates | $shape//*[local-name()=
$gAppCoordinates])"/>

</xsl:function>

<xsl:template name="gmlCoordinateString">
<xsl:param name="shape"/>

<xsl:variable name="coords" select="$shape//gml:coord | $shape//*[local-
name()=$gAppCoords]"/>
<xsl:variable name="coordinates" select="$shape//gml:coordinates |
$shape//*[local-name()=$gAppCoordinates]"/>

<xsl:choose>
<xsl:when test="$coords">
<xsl:for-each select="$coords">
<xsl:value-of select="gml:X"/>
<xsl:text>,</xsl:text>
<xsl:value-of select="gml:Y"/>
<xsl:if test="position() != count($coords)">
<xsl:text> </xsl:text>

</xsl:if>
</xsl:for-each>

</xsl:when>
<xsl:when test="$coordinates">
<!--<xsl:call-template name="Trim">-->
<xsl:value-of select="normalize-space($coordinates)"/>

<!--</xsl:call-template>-->
</xsl:when>
<xsl:otherwise>
<xsl:if test="$WARNING_MSG"><xsl:message terminate="no">No coordinates
recognized for element: <xsl:value-of select="local-name($shape)"/>
</xsl:message> </xsl:if>

</xsl:otherwise>
</xsl:choose>

</xsl:template >

<!--
This template makes sure that all elements that are not handled by any of the
other defined in this document, is "silent"
-->
<xsl:template match="text()" />

<xsl:template name="addMenuDef">
<xsl:param name="rootLayers"/>

<menu id="layerMnu" xmlns="http://www.onemap.org/svgmenu"
onload="GetPosition(evt);">
<header>Action menu</header>
<item action="ZoomIn">Zoom &in</item>
<item action="ZoomOut">Zoom &out</item>

<separator />

<xsl:for-each select="$rootLayers">
<xsl:if test="$INFORMATIVE_MSG = true()"><xsl:message terminate="no">
<xsl:value-of select="current()"/></xsl:message></xsl:if>
<item onactivate="javascript:toggleVisibility('{current()}')"
checked="yes">
<xsl:attribute name="id">
<xsl:value-of select="concat('mnu_', current())"/>

</xsl:attribute>

<xsl:value-of select="current()"/>
</item>

</xsl:for-each>

<separator />

<item action="OriginalView">&Original View</item>
<item action="Quality">Improve &Quality</item>
<item action="ViewSource">&View Source</item>
<item action="SaveSnapshotAs">&Save SVG as ...</item>
<separator />
<item action="Help">&Help</item>
<item action="About">&About 'SVG Viewer'...</item>

</menu>

</xsl:template>

<xsl:template name="defineStyles">

<style type="text/css">
<xsl:for-each select="$userStyles/style:styles/style:style">

<!--<xsl:message terminate="no"><xsl:value-of select="style:namespace"/>
</xsl:message>-->
<xsl:choose>
<xsl:when test="style:namespace = 'default'">
<xsl:text>.default{</xsl:text><xsl:value-of
select="style:stylestring"/><xsl:text>} </xsl:text>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="concat('.fstyle', string(position()), '{')"/>
<xsl:value-of select="style:stylestring"/><xsl:text>} </xsl:text>

</xsl:otherwise>
</xsl:choose>

</xsl:for-each>
</style>

</xsl:template>

<!--
This template writes the javascript into the SVG-document as a CDATA section.
The script-element is defined as a
CDATA-element, so that the CDATA is transferred to output.
-->
<xsl:template name="addScript">
<script type="text/ecmascript">
<REPLACE_THIS_WITH_CDATA>

var svgdoc;
var htmlDoc;
var GML_NAMESPACE = 'http://www.opengis.net/gml';

//var popup;

/*
This toggles the visibility on and of for layers where the layerId-is
specified.
(optional attribute for integratedLayer, in
http://www.onemap.org/integration-namespace)
*/
function toggleVisibility(id) {
var gElement = svgdoc.getElementById(id);

if(gElement == null)
alert('Unknown layer id.');

var visibility = gElement.getAttribute("visibility") == "visible"?
"hidden": "visible";
gElement.setAttribute("visibility", visibility);

XSL Transformations

117

var mnuItem = svgdoc.getElementById('mnu_' + id);

if(visibility == 'hidden') {
mnuItem.setAttribute("checked", "no");

}
else
{
mnuItem.setAttribute("checked", "yes");

}

var newMenuRoot = parseXML(printNode(document.getElementById(
'layerMnu')), contextMenu);
contextMenu.replaceChild(newMenuRoot.firstChild,
contextMenu.firstChild);

}

function getFeatureInformation(element) {
var map = element.getElementsByTagNameNS('no:hiof:onemap:gml:metainfo',
'TypeInformation');

if(map.length != 0) {
var typemap = map.item(0).getElementsByTagNameNS('no:hiof:basemapper',
'TypeMap').item(0);
var id = typemap.getAttribute('xlink:href');

var current = svgdoc.getElementById(id.substring(1));

if(current == null)
return '';

var info = '';

var local =
current.getElementsByTagNameNS('no:hiof:basemapper','appElement').item
(0);
var localname =
local.getElementsByTagNameNS('no:hiof:basemapper','localname').item(0)
.firstChild.nodeValue; //works
var namespace =
local.getElementsByTagNameNS('no:hiof:basemapper','namespace').item(0)
.firstChild.nodeValue; //works
info += '<table width="100%">';
info += ' <tr>';
info += ' <td colspan="2" class="tdcaption">Feature
Information</td>';
info += ' </tr>';
info += ' <tr>';
info += ' <td class="tdsmallcaption">Name:</td>';
info += ' <td class="tdinfo">' + localname + '</td>';
info += ' </tr>';
info += ' <tr>';
info += ' <td class="tdsmallcaption">Namespace:</td>';
info += ' <td class="tdinfo">' + namespace + '</td>';
info += ' </tr>';
info += '</table>';

var instance =
current.getElementsByTagNameNS('no:hiof:basemapper','instanceOf').item
(0);
var instanceName =
instance.getElementsByTagNameNS('no:hiof:basemapper','localname').item
(0).firstChild.nodeValue; //works
var instanceNS =
instance.getElementsByTagNameNS('no:hiof:basemapper','namespace').item
(0).firstChild.nodeValue; //works
info += '<table width="100%">';
info += ' <tr>';
info += ' <td colspan="3" class="tdcaption">Data type information
</td> ';
info += ' </tr>';
info += ' <tr>';
info += ' <td class="tdsmallcaption">Instance of: </td>';
info += ' <td class="tdsmallcaption">Name:</td>';
info += ' <td class="tdinfo">' + instanceName + '</td>';
info += ' </tr>';
info += ' <tr>';
info += ' <td> </td>';
info += ' <td class="tdsmallcaption">Namespace:</td>';
info += ' <td class="tdinfo">' + instanceNS + '</td>';

info += ' </tr> ';
info += '</table>';

return info;
} else {
return '';

}
} //end getFeatureInformation(element)

function indent(astring, depth) {
for(var i=0; i<depth; i++) {
astring = ' ' + astring;

}

return astring;
} //end indent(astring, depth)

function prettyPrint(string) {
var depth = 0;
var newstring = '';
firstElement = true;
flagTextSearch = false;
flagElement = false;
insideStartElement = false;
insideEndElement = false;
insideText = true;

for(var i=0; i<string.length; i++) {
var char = string.charAt(i);

if(char == '\"')
char = '"';

if(char == '<') {
flagElement = true;
insideText = false;

if(!firstElement) {
newstring += '
';

} else {
firstElement = false;

}

if(string.charAt(i+1) == '/') { //We need a peek, to check figure
out the indenting
newstring += indent('<', depth);

} else {
newstring += indent('<', depth+1);

}
} else if(char == '>') {
insideText = true;
flagTextSearch = true; //This is true until first non-space char is
read.

if(insideEndElement)
depth++;

else
depth--;

insideStartElement = false;
insideEndElement = false;

newstring += '>
';
} else if(char == '/' && flagElement) {
flagElement = false;
insideEndElement = true;

newstring += char;
} else if(!insideEndElement && flagElement) {
insideStartElement = true;

newstring += char;
} else if(insideText) {
if(!flagTextSearch) { //If we have already-found non-space
characters, the character is passed.
newstring += char;

} else {
if(char != ' ') {

flagTextSearch = false;
newstring +=char;

} else {

//Do nothing. We don't want preciding spaces transferred to
output.

}
}

} else if(insideStartElement) {
newstring += char;

} else if(insideEndElement) {
newstring += char;

}

}

return newstring;
} //end prettyPrintString(string, depth)

function getProperties(element) {
var props =
element.getElementsByTagNameNS('no:hiof:onemap:gml:metainfo','Property')
;

if(props == null && props.length == 0)
return '';

var info = '';
info += '<table width="100%">';
info += ' <tr>';
info += ' <td class="tdcaption" colspan="3">Properties</td>';
info += ' </tr>';

//alert(props.length);
for(var i=0; i<props.length; i++) {
var name, namespace;
var typemap =
props.item(i).getElementsByTagNameNS('no:hiof:basemapper', 'TypeMap');
var pointedTo;

if(typemap.length != 0) {
var id = typemap.item(0).getAttribute('xlink:href');

pointedTo = svgdoc.getElementById(id.substring(1));

name=
pointedTo.getElementsByTagName('localname').item(0).firstChild.nodeV
alue;
namespace=
pointedTo.getElementsByTagName('namespace').item(0).firstChild.nodeV
alue;

} else {
name =
props.item(i).getElementsByTagNameNS('no:hiof:onemap:gml:metainfo',
'localname').item(0).firstChild.nodeValue;
namespace =
props.item(i).getElementsByTagNameNS('no:hiof:onemap:gml:metainfo',
'namespace').item(0).firstChild.nodeValue;

}

var value =
props.item(i).getElementsByTagNameNS('no:hiof:onemap:gml:metainfo',
'elementValue').item(0).firstChild.nodeValue;
value = prettyPrint(value);

var stripStart = value.indexOf('>');
var stripEnd = value.lastIndexOf('<');

//The following block removes the first and last tag from the string,
including the
-tag. It's a bit hairy..
{
var stripStart = value.indexOf('
');

var lastBRloc = value.lastIndexOf('
');
if(lastBRloc != -1)
value = value.substring(0, value.lastIndexOf('
'));

var stripEnd = value.lastIndexOf('<');

XSL Transformations

120

if(stripStart != -1) {
value = value.substring(stripStart + 5);

}
if(stripEnd != -1) {
value = value.substring(0, stripEnd);
/*
Strange thing. The first lastIndex returns a high number,
indicating that the string contains the <
*/
stripEnd = value.lastIndexOf('<');
if(stripEnd != -1)
value = value.substring(0, stripEnd);

}
}

/*
value = value.replace('<', '<');
value = value.replace('>', '>');
value = value.replace('"""', ''');
*/

info += '<tr>';
info += ' <td colspan="2" class="tdsmallcaption">Name:</td>';
info += ' <td class="tdinfo">' + name + '</td>';
info += '</tr>';
info += '<tr>';
info += ' <td colspan="2" class="tdsmallcaption">Namespace:</td>';
info += ' <td class="tdinfo">' + namespace + '</td>';
info += '</tr>';

info += '<tr>';
info += ' <td colspan="2" class="tdsmallcaption">Value:</td>';
info += ' <td class="tdinfo">' + value + '</td>';
info += '</tr>';

var typemap;
var gmlDerivedTypeName, instanceOfName, instanceOfNS;

if(pointedTo != null) {

var instanceOf =
pointedTo.getElementsByTagNameNS('no:hiof:basemapper',
'instanceOf');

if(instanceOf) {
instanceOfName =
instanceOf.item(0).getElementsByTagNameNS('no:hiof:basemapper',
'localname').item(0).firstChild.nodeValue;
instanceOfNS =
instanceOf.item(0).getElementsByTagNameNS('no:hiof:basemapper',
'namespace').item(0).firstChild.nodeValue;

info += ' <tr>';
info += ' <td class="tdsmallcaption">Instance of: </td>';
info += ' <td class="tdsmallcaption">Name:</td>';
info += ' <td class="tdinfo">' + instanceOfName + '</td>';
info += ' </tr> ';
info += ' <tr>';
info += ' <td> </td>';
info += ' <td class="tdsmallcaption">Namespace:</td>';
info += ' <td class="tdinfo">' + instanceOfNS + '</td>';
info += ' </tr>';

}

var gmlDerivedType =
pointedTo.getElementsByTagNameNS('no:hiof:basemapper',
'gmlDerivedType');
if(gmlDerivedType.length != 0) {
gmlDerivedTypeName =
gmlDerivedType.item(0).getElementsByTagNameNS('no:hiof:basemapper'
, 'localname').item(0).firstChild.nodeValue;
//gmlDerivedTypeNS =
gmlDerivedType.item(0).getElementsByTagNameNS('no:hiof:basemapper'
, 'namespace').item(0).firstChild.nodeValue;

info += ' <tr>';
info += ' <td colspan="2" class="tdsmallcaption">GML base

type: </td> ';
info += ' <td class="tdinfo">' + gmlDerivedTypeName +
'</td>';
info += ' </tr> ';

}
}

info += '<tr><td colspan="3"> </td></tr>';
}

info += '</table>';

return info;
} //end getProperties(element)

function showFeatureData(id) {
var defElement = svgdoc.getElementById(id);
var body = getFeatureInformation(defElement);
body += getProperties(defElement);

if(body!='') {
//window.parent.showModalDialog('featurewindow.html', body,
'dialogHeight:500pt;dialogWidth:450pt;status:no;resizable:yes;help=
no;scroll=auto');
var oNewDoc = window.parent.open("featurewindow.html", "replace",
'height=600,width=650,menubar=no,resizable=yes,scrollbars=
yes,titlebar=no');
oNewDoc.document.getElementsByTagName("p").item(0).innerHTML = body;

} else {
alert('No feature information available');

}

} //end showFeatureData(id)

function setStrokeWidth(id, sw) {
var element = svgdoc.getElementById(id);
var legendStyle = element.getStyle();

legendStyle.setProperty("stroke-width",sw); //set line thickness
} //end setStrokeWidth(id, sw)

function init(evt) {
svgdoc = evt.getTarget().getOwnerDocument();

var newMenuRoot = parseXML(printNode(document.getElementById(
'layerMnu')), contextMenu);

contextMenu.replaceChild(newMenuRoot.firstChild,
contextMenu.firstChild);

//popup = svgdoc.getElementById('aboutFeature');
}

</script>
</REPLACE_THIS_WITH_CDATA>

</xsl:template>

<!--
This template automatically generates the html-file, used by the javascript to
display feature information.
It is dependent upon a XSLT 2.0 parser, because of the xsl:result-document -
call. This enables output
to several different files.

-->
<xsl:template name="writeInfoWindow">
<xsl:result-document href="featurewindow.html" format="htmldoc">
<xsl:text disable-output-escaping="yes">
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01
Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=iso-8859-1">

<title>Feature Information</title>
<script language="javascript">
function setMessage()
{
/*var body = document.getElementsByTagName("p").item(0);
body.innerHTML = window.dialogArguments; */

}
</script>

<style type="text/css">
<!--
body {
background-color: #66CCFF;

}

.tdsmallcaption {
background-color: #6633FF;
font-weight:600;
font:Arial, Helvetica, sans-serif;
color: #FFFFFF;
vertical-align:top;

}

.tdcaption {
background-color: #000000;
font-weight:600;
font:Arial, Helvetica, sans-serif;
font-size:16px;
color: #FFFFFF;
vertical-align:top;

}

.tdinfo {
background-color:#FFFFFF;
width:65%;

}
-->
</style>
</head>

<body onload="setMessage()">
<p></p>

</body>
</html>
</xsl:text>

</xsl:result-document>
</xsl:template>

</xsl:stylesheet>

Stylesheet included into the gener-
icGML2SVG.xslt listed the section called
“Generic GML/Dictionary to SVG transforma-
tion”

This stylesheet defines some constant mappings to the base GML types as defined in

the base GML2 schemas.

XSL Transformations

123

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:variable name="GML_NAMESPACE" select="'http://www.opengis.net/gml'"/>
<xsl:variable name="FEATURE_BASE" select="'_Feature'"/>
<xsl:variable name="FEATURE_TYPE" select="'AbstractFeatureType'"/>
<xsl:variable name="FEATURE_COLLECTION_BASE" select="'_FeatureCollection'"/>
<xsl:variable name="FEATURE_COLLECTION_TYPE"
select="'AbstractFeatureCollectionType'"/>
<xsl:variable name="FEATURE_MEMBER_TYPE" select="'FeatureAssociationType'"/>
<xsl:variable name="FEATURE_MEMBER_ELEMENT" select="'featureMember'"/>
<xsl:variable name="GEOMETRY_BASE" select="'_Geometry'"/>
<xsl:variable name="GEOMETRY_PROPERTY_BASE" select="'_geometryProperty'"/>
<xsl:variable name="GEOMETRY_PROPERTY_BASE_ELEMENT"
select="'geometryProperty'"/>
<xsl:variable name="COORDINATES_BASE" select="'coordinates'"/>
<xsl:variable name="COORDS_BASE" select="'coords'"/>
<xsl:variable name="COORD_TYPE" select="'CoordType'"/>
<xsl:variable name="COORDINATES_TYPE" select="'CoordinatesType'"/>

<!-- Those elements substituting for _Geometry-->

<xsl:variable name="GEOMETRY_POINT" select="'Point'"/>

<xsl:variable name="GEOMETRY_LINEARRING_ELEMENT" select="'LinearRing'"/>
<xsl:variable name="GEOMETRY_LINEARRING_TYPE" select="'LinearRingType'"/>

<xsl:variable name="GEOMETRY_POINT_ELEMENT" select="'Point'"/>
<xsl:variable name="GEOMETRY_POINT_TYPE" select="'PointType'"/>

<xsl:variable name="GEOMETRY_POLYGON_ELEMENT" select="'Polygon'"/>
<xsl:variable name="GEOMETRY_POLYGON_TYPE" select="'PolygonType'"/>

<xsl:variable name="GEOMETRY_LINESTRING_ELEMENT" select="'LineString'"/>
<xsl:variable name="GEOMETRY_LINESTRING_TYPE" select="'LineStringType'"/>

<xsl:variable name="GEOMETRY_ASSOCIATION_TYPE"
select="'GeometryAssociationType'"/>
<xsl:variable name="GEOMETRY_PROPERTY_TYPE" select="'GeometryPropertyType'"/>
<xsl:variable name="GEOMETRY_PROPERTY_POINT" select="'pointProperty'"/>
<xsl:variable name="GEOMETRY_PROPERTY_POLYGON" select="'polygonProperty'"/>
<xsl:variable name="GEOMETRY_PROPERTY_LINESTRING"
select="'lineStringProperty'"/>
<xsl:variable name="GEOMETRY_PROPERTY_MULTIPOINT"
select="'multiPointProperty'"/>
<xsl:variable name="GEOMETRY_PROPERTY_MULTILINESTRING"
select="'multiLineStringProperty'"/>
<xsl:variable name="GEOMETRY_PROPERTY_MULTIPOLYGON"
select="'multiPolygonProperty'"/>
<xsl:variable name="GEOMETRY_PROPERTY_MULTIGEOMETRY"
select="'multiGeometryProperty'"/>

</xsl:stylesheet>

Appendix B. XML schemas

Mapping Dictionary Schema
This schema defines the structure of a Mapping Dictionary, as it is created by the trans-

formation mapElements.xslt found in the section called “GML Schema to Mapping

Dictionary”, given a valid GML 2.1.2 Schema as input.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="no:hiof:basemapper" elementFormDefault="qualified"
attributeFormDefault="unqualified" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="no:hiof:basemapper">
<xs:element name="MappingDictionary">
<xs:annotation>
<xs:documentation>The root of the mapping dictionary.</xs:documentation>

</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="documentNamespaces" type="Document_Namespaces"/>
<xs:element ref="typeMaps"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="typeMaps">
<xs:annotation>
<xs:documentation>This element is child of the MappingDictionary-element,
and contains all the element-mappings for a schema.</xs:documentation>

</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="TypeMap" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="TypeMap" type="TypeMap_Type"/>
<xs:complexType name="Document_Namespaces">
<xs:annotation>
<xs:documentation>A type that represents the targetNamespace and related
namespaces defined by an XML schema.</xs:documentation>

</xs:annotation>
<xs:sequence>
<xs:element name="targetns" type="xs:uri" maxOccurs="unbounded"/>
<xs:element name="namespace" type="xs:uri" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="TypeMap_Type">
<xs:annotation>
<xs:documentation>
Type for storing a schema element with:
- the elements name (1)
- either: a gmlType, meaning this element is a direct instantiation of a
GML type
or a gmlDerivedType, meaning that this elements type is derived
directly or indirectly from a GML type.

- what element this element can substitute for (0/1)
- if the substitutionGroup element, directly or indirectly substitutes
for a GML type, the GML element (0/1)

</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="appElement" type="Basic_Type"/>
<xs:element name="instanceOf" type="Basic_Type" minOccurs="0"/>
<xs:element name="gmlDerivedType" type="Derived_Type" minOccurs="0"/>
<xs:element name="substitutesFor" type="Basic_Type" minOccurs="0"/>

125

<xs:element name="baseSubstitutesFor" type="Basic_Type" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="id" type="xs:id"/>
<!--<xs:attribute name="mapId" use="optional" type="xs:id"/>-->

</xs:complexType>
<xs:complexType name="Basic_Type">
<xs:annotation>
<xs:documentation>Type to represent a basic xml type, with localname and
namespace.</xs:documentation>

</xs:annotation>
<xs:sequence>
<xs:element name="localname" type="xs:string"/>
<xs:element name="namespace" type="xs:string"/>

</xs:sequence>
<xs:attribute name="typeId" type="xs:string"/>

</xs:complexType>
<xs:complexType name="Derived_Type">
<xs:annotation>
<xs:documentation>A specialization of the Basic_Type complexType, adding
an attribute telling if this type is derived by extension or
restriction</xs:documentation>

</xs:annotation>
<xs:complexContent>
<xs:extension base="Basic_Type">
<xs:attribute name="derivedBy" use="optional">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="extension"/>
<xs:enumeration value="restriction"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:extension>

</xs:complexContent>
</xs:complexType>

</xs:schema>

XML schemas

126

Appendix C. Schema and instance
document example

This example consists of a simple schema and instance document.

dens.xsd

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xs:schema targetNamespace="http://www.dens.com" elementFormDefault="qualified"
attributeFormDefault="unqualified" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.dens.com" xmlns:den="http://www.dens.com">
<xs:element name="gambling_dens">
<xs:complexType>
<xs:sequence>
<xs:element name="gambling_den" type="gambling_den" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:key name="PK_Den">
<xs:selector xpath="den:gambling_den"/>
<xs:field xpath="@den_id"/>

</xs:key>
</xs:element>
<xs:complexType name="gambling_den">
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:any minOccurs="0"/>
<xs:element name="machines">
<xs:complexType>
<xs:sequence>
<xs:element ref="slot_machine" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="den_id" type="xs:positiveInteger" use="required"/>

</xs:complexType>
<xs:complexType name="slot_machine" abstract="true">
<xs:annotation>
<xs:documentation>Abstract datatype defined to be super-type for any type
of slot machine in the system.</xs:documentation>

</xs:annotation>
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="id">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="[A,B,C][0-9]{3}[-][0-9]{5}"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element ref="manufacturer"/>
<xs:any minOccurs="0"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="no_id_slotmachine">
<xs:annotation>
<xs:documentation>Denne datatypen er laget for å illustrere bruk av
restriction på complexType datatyper.</xs:documentation>

</xs:annotation>
<xs:complexContent>
<xs:restriction base="slot_machine">
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element ref="manufacturer"/>

127

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="gambling_machine">
<xs:annotation>
<xs:documentation>Datatype for gambling slot machine, ergo machines that
pay out prize money in certain situations.</xs:documentation>

</xs:annotation>
<xs:complexContent>
<xs:extension base="slot_machine">
<xs:sequence>
<xs:element name="min_bet" type="xs:positiveInteger"/>
<xs:element name="max_bet" type="xs:positiveInteger"/>
<xs:element name="max_winnings" type="xs:positiveInteger"/>
<xs:element name="payback_rate">
<xs:simpleType>
<xs:restriction base="xs:unsignedShort">
<xs:maxInclusive value="100"/>
<xs:minExclusive value="0"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:complexType name="credit_price">
<xs:simpleContent>
<xs:extension base="xs:nonNegativeInteger">
<xs:attribute name="currency" use="optional" default="USD">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="NOK"/>
<xs:enumeration value="USD"/>
<xs:enumeration value="EUR"/>
<xs:enumeration value="GBP"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:extension>

</xs:simpleContent>
</xs:complexType>
<xs:complexType name="arcade_game">
<xs:complexContent>
<xs:extension base="slot_machine">
<xs:sequence>
<xs:element name="credit_price" type="credit_price"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:element name="slot_machine" type="slot_machine" abstract="true">
<xs:key name="PK">
<xs:selector xpath="den:slotmachine"/>
<xs:field xpath="den:id"/>

</xs:key>
</xs:element>
<xs:element name="gambling_machine" type="gambling_machine"
substitutionGroup="slot_machine"/>
<xs:element name="arcade_game" type="arcade_game"
substitutionGroup="slot_machine"/>
<xs:element name="manufacturer">
<xs:complexType>
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="service_phone" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Schema and instance document ex-

128

instance.xml

<?xml version="1.0" encoding="UTF-8"?>
<gambling_dens xmlns="http://www.dens.com" xmlns:xsi="
http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="
http://www.dens.com dens.xsd">
<gambling_den den_id="1">
<name>Arcade Paradise</name>
<machines>
<arcade_game>
<name>World Rally Experience</name>
<id>A999-01000</id>
<manufacturer>
<name>Arcade Workshop Inc</name>
<service_phone>111-HELP-ME</service_phone>

</manufacturer>
<credit_price>10</credit_price>

</arcade_game>
<arcade_game>
<name>Street Fighter 2000</name>
<id>A911-12112</id>
<manufacturer>
<name>Arcade Workshop Inc</name>
<service_phone>111-HELP-ME</service_phone>

</manufacturer>
<credit_price>10</credit_price>

</arcade_game>
<arcade_game>
<name>Space Monkey Shootout</name>
<id>C112-11123</id>
<manufacturer>
<name>Abandoned Games Manufacturers</name>
<service_phone>910-111-9721</service_phone>

</manufacturer>
<credit_price currency="NOK">5</credit_price>

</arcade_game><arcade_game>
<name>Galaxy</name>
<id>A001-09090</id>
<manufacturer>
<name>Montys</name>
<service_phone>123-PAYTHEPRICE</service_phone>

</manufacturer>
<credit_price>10</credit_price>

</arcade_game>
<gambling_machine>
<name>RipOff</name>
<id>B119-12456</id>
<manufacturer>
<name>Pickpocket Pros</name>
<service_phone>555-666-777</service_phone>

</manufacturer>
<min_bet>5</min_bet>
<max_bet>50</max_bet>
<max_winnings>300</max_winnings>
<payback_rate>30</payback_rate>

</gambling_machine>

</machines>
</gambling_den>
<gambling_den den_id="2">
<name>Critical Corner Casino</name>
<machines>
<gambling_machine>
<name>Titanic</name>
<id>C119-01333</id>

<manufacturer>
<name>Jackpot Systems</name>
<service_phone>333-LONGDISTANCE</service_phone>

</manufacturer>

<min_bet>1</min_bet>
<max_bet>10</max_bet>
<max_winnings>2000</max_winnings>
<payback_rate>25</payback_rate>

ample

</gambling_machine>
<gambling_machine>
<name>Motherinlaw</name>
<id>B234-99444</id>
<manufacturer>
<name>Moneymakers</name>
<service_phone>987-MACHINE</service_phone>

</manufacturer>
<min_bet>10</min_bet>
<max_bet>100</max_bet>
<max_winnings>20000</max_winnings>
<payback_rate>10</payback_rate>

</gambling_machine>
<gambling_machine>
<name>Pokermania</name>
<id>A900-01555</id>
<manufacturer>
<name>Mercury Inc</name>
<service_phone>666-234-567</service_phone>

</manufacturer>
<min_bet>10</min_bet>
<max_bet>50</max_bet>
<max_winnings>1000</max_winnings>
<payback_rate>85</payback_rate>

</gambling_machine>
</machines>

</gambling_den>
</gambling_dens>

Appendix D. GML schema and instance
example

hbn.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="no:hiof:onemap:gml:appschema:hbn" xmlns:xlink="
http://www.w3.org/1999/xlink" xmlns:gml="http://www.opengis.net/gml" xmlns:xs="
http://www.w3.org/2001/XMLSchema" xmlns="no:hiof:onemap:gml:appschema:hbn"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:import namespace="http://www.opengis.net/gml"
schemaLocation="feature.xsd"/>
<xs:import namespace="http://www.w3.org/1999/xlink"
schemaLocation="xlinks.xsd"/>
<xs:element name="HaldenByNight" type="HaldenByNightType"
substitutionGroup="gml:_FeatureCollection"/>
<xs:element name="Surroundings" type="gml:AbstractFeatureCollectionType"
substitutionGroup="gml:_FeatureCollection"/>
<xs:element name="nightSiteMember" type="NightSiteMemberType"
substitutionGroup="gml:featureMember"/>
<xs:element name="NightSiteBar" type="NightSiteBarType"
substitutionGroup="_NightSiteFeature"/>
<xs:element name="NightSiteKebabStore" type="NightSiteKebabStoreType"
substitutionGroup="_NightSiteFeature"/>
<xs:element name="_NightSiteFeature" type="gml:AbstractFeatureType"
abstract="true" substitutionGroup="gml:_Feature"/>
<xs:element name="buildingOutline" type="LinearRingPropertyType"
substitutionGroup="gml:_geometryProperty"/>
<!--
the element myCoordinates are representet here, to prove the point that you
are free to define aliases for basic gml element.
This is by far not a recommended thing to do, but it's still possible, and in
some
-->
<xs:element name="myCoordinates" type="gml:CoordinatesType"
substitutionGroup="gml:coordinates"/>
<xs:element name="River" type="RiverType" substitutionGroup="gml:_Feature"/>
<xs:complexType name="HaldenByNightType">
<xs:complexContent>
<xs:extension base="gml:AbstractFeatureCollectionType">
<xs:attribute name="lastupdated" type="xs:dateTime" use="optional"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:complexType name="NightSiteMemberType">
<xs:complexContent>
<xs:restriction base="gml:FeatureAssociationType">
<xs:sequence minOccurs="0">
<xs:element ref="_NightSiteFeature"/>

</xs:sequence>
<xs:attributeGroup ref="xlink:simpleLink"/>
<xs:attribute ref="gml:remoteSchema" use="optional"/>

</xs:restriction>
</xs:complexContent>

</xs:complexType>
<xs:complexType name="NightSiteType" abstract="true">
<xs:complexContent>
<xs:extension base="gml:AbstractFeatureType">
<xs:sequence>
<xs:element ref="buildingOutline"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="NightSiteBarType">
<xs:complexContent>
<xs:extension base="NightSiteType">

131

<xs:sequence>
<xs:element name="age_limit" type="xs:nonNegativeInteger"/>
<xs:element name="beer_price">
<xs:simpleType>
<xs:restriction base="xs:double">
<xs:minExclusive value="0"/>
<xs:maxInclusive value="100"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:complexType name="NightSiteKebabStoreType">
<xs:complexContent>
<xs:extension base="NightSiteType">
<xs:sequence>
<xs:element name="kebabprice" type="xs:int"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="RiverType">
<xs:complexContent>
<xs:extension base="gml:AbstractFeatureType">
<xs:sequence>
<xs:element ref="gml:centerLineOf"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="Street">
<xs:complexContent>
<xs:extension base="gml:AbstractFeatureType">
<xs:sequence>
<xs:element ref="gml:centerLineOf"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="LinearRingPropertyType">
<xs:annotation>
<xs:documentation>

Encapsulates a LinearRing, to be used as a geometric property
</xs:documentation>

</xs:annotation>
<xs:complexContent>
<xs:restriction base="gml:GeometryAssociationType">
<xs:sequence minOccurs="0">
<xs:element ref="gml:LinearRing"/>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

</xs:schema>

halden1.xml
Instance document of application schema hbn.xsd listed above.

<?xml version="1.0" encoding="UTF-8"?>
<HaldenByNight xmlns="no:hiof:onemap:gml:appschema:hbn"
xsi:schemaLocation="no:hiof:onemap:gml:appschema:hbn hbn.xsd" xmlns:gml="
http://www.opengis.net/gml" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<gml:boundedBy>

GML schema and instance example

132

<gml:Box>
<gml:coord>
<gml:X>0.5</gml:X>
<gml:Y>0.5</gml:Y>

</gml:coord>
<gml:coord>
<gml:X>44</gml:X>
<gml:Y>36</gml:Y>

</gml:coord>
</gml:Box>

</gml:boundedBy>
<gml:featureMember>
<Surroundings>
<gml:boundedBy>
<gml:Box>
<gml:coord>
<gml:X>0.5</gml:X>
<gml:Y>0.5</gml:Y>

</gml:coord>
<gml:coord>
<gml:X>44</gml:X>
<gml:Y>36</gml:Y>

</gml:coord>
</gml:Box>

</gml:boundedBy>
<gml:featureMember>
<River>
<gml:name>Tista</gml:name>
<gml:centerLineOf>
<gml:LineString>
<myCoordinates>8.0 0.5, 18.0 8.0, 19.0 14.0, 24.0 20.0, 30.0 22.0,
32.0 26.0, 34.0 36.0</myCoordinates>

</gml:LineString>
</gml:centerLineOf>

</River>
</gml:featureMember>

</Surroundings>
</gml:featureMember>

<nightSiteMember>
<NightSiteBar>
<gml:name>Hr. Dietz</gml:name>
<buildingOutline>
<gml:LinearRing>
<gml:coord>
<gml:X>4.0</gml:X>
<gml:Y>8.0</gml:Y>

</gml:coord>
<gml:coord>
<gml:X>4.0</gml:X>
<gml:Y>10.0</gml:Y>

</gml:coord>
<gml:coord>
<gml:X>6.0</gml:X>
<gml:Y>10.0</gml:Y>

</gml:coord>
<gml:coord>
<gml:X>6.0</gml:X>
<gml:Y>12.0</gml:Y>

</gml:coord>
<gml:coord>
<gml:X>8.0</gml:X>
<gml:Y>12.0</gml:Y>

</gml:coord>
<gml:coord>
<gml:X>8.0</gml:X>
<gml:Y>8.0</gml:Y>

</gml:coord>
<gml:coord>
<gml:X>4.0</gml:X>
<gml:Y>8.0</gml:Y>

</gml:coord>
</gml:LinearRing>

</buildingOutline>
<age_limit>18</age_limit>
<beer_price>35</beer_price>

</NightSiteBar>
</nightSiteMember>
<nightSiteMember>
<NightSiteBar>

<gml:name>Gamle Krogs</gml:name>
<buildingOutline>
<gml:LinearRing>
<gml:coordinates>22.0,24.0 28.0,24.0 28.0,28.0 22.0,28.0
22.0,24.0</gml:coordinates>

</gml:LinearRing>
</buildingOutline>
<age_limit>18</age_limit>
<beer_price>35</beer_price>

</NightSiteBar>
</nightSiteMember>
<nightSiteMember>
<NightSiteKebabStore>
<gml:name>Lunchbaren</gml:name>
<buildingOutline>
<gml:LinearRing>
<gml:coord>
<gml:X>34.0</gml:X>
<gml:Y>18.5</gml:Y>

</gml:coord>
<gml:coord>
<gml:X>34.0</gml:X>
<gml:Y>20</gml:Y>

</gml:coord>
<gml:coord>
<gml:X>40.0</gml:X>
<gml:Y>20.0</gml:Y>

</gml:coord>
<gml:coord>
<gml:X>40.0</gml:X>
<gml:Y>18.0</gml:Y>

</gml:coord>
<gml:coord>
<gml:X>38.0</gml:X>
<gml:Y>18.0</gml:Y>

</gml:coord>
<gml:coord>
<gml:X>38.0</gml:X>
<gml:Y>17.0</gml:Y>

</gml:coord>
<gml:coord>
<gml:X>36.0</gml:X>
<gml:Y>17.0</gml:Y>

</gml:coord>
<gml:coord>
<gml:X>36.0</gml:X>
<gml:Y>18.5</gml:Y>

</gml:coord>
<gml:coord>
<gml:X>34.0</gml:X>
<gml:Y>18.5</gml:Y>

</gml:coord>
</gml:LinearRing>

</buildingOutline>
<kebabprice>50</kebabprice>

</NightSiteKebabStore>
</nightSiteMember>

</HaldenByNight>

