Working with Generic GML through
Schema Analysis

Master of Science Thesis

Harald Valerhaugen

@stfold University College, Halden Norway

Working with Generic GML through Schema Analysis

Summary

Geography Markup Language (GML) is a markup language used to describe geograph-
ic objects. These objects can be represented with location, extent and possibly also oth-
er geographic data describing their physical relation to the world. Additionally, they
can contain non-geographic information that further describes the purpose of the ob-
jects. These objects are typically referred to as features. GML has been described as
the foundation of the Geo-Web, because it is an open standard developed to overcome
data interchange problems between proprietary systems. It is based on Extensible
Markup Language (XML), a widely adopted standard for storing data and interchan-
ging data between vendors and applications especially on the Internet. An XML docu-
ment is a plain text document where data is described using markup elements. The
structure and content of an XML document can be constrained using an XML Schema.
A schemais in itself an XML document, built after certain criterias. Some libraries
able to parse XML can control if an XML document is adhering to the rules of a re-
lated schema, if so the document is described as valid. The GML standard is defined
with a set of basic schemas, meant to serve as afoundation for extension. These exten-
sions are called application schemas, and they are literally specializations of these ba-
sic schemas, made to fit the profile of one vendors data. In order to store geospatial
data using GML it is a requirement that they represented with an application schema.
In this thesis you will be presented to a method of both analyzing applications schemas
and instance documents that can be used to resolve their datatypes. The information
will be accessible through a dictionary containing the data types and their ancestors.
Using this dictionary we are much more capable of handling GML documents based
on different application schemas in a generic way. The utilization of such a dictionary
is exemplified with an XSL Transformation (XSLT)[XSLT1] for transforming GML
instance documents into a Scalable Vector Graphics (SVG)[SV G] document.

Table of Contents

FOTEWOID ... bbb IX
L. INEFOTUCTION ..ttt 1
2. XML software and teChNOIOGIEScccevuerieririrenireeeee e 5
XIMIL ettt bt b bt r 5

D I D TR 7

XML SCREIMA ... 7

S RS 11

] SRS 14
Web Feature SErver (WFES) ... 15

ParsiNg XIML ..ottt s 15
Simple API fOr XML (SAX) oo 16
Document Object Model (DOM)ooeiireririeieesese e 17

Scalable Vector GraphiCs (SVG)ccceviierinerienereeeeee e 19

3. GIMIL SOFtWEIE ...ttt 21
JUMP - Unified Mapping Platform ..o 21
GEOTOOIS ...t b et 25
GeoTools DataSource (GMLDataSource)ccccceverenereenieneneene 26
GEOTOOIS DABSIONEcc.ceeereeeieeieiesiese s 28
ClIEOPEIIA ...ttt e e b e b ne e 29

GO LOBOEY ...ttt 31

4. Handling arbitrary GML SOUICEScceiueriirieriinierieeeeeeee e 33
Handling arbitrary GIMLcocooiiiiieeieesee e 33
GML Profiling ..c.cooeeeieiieeeeeeee s 36

ProjeCt ONEMEDooeiirieieieie e 37
Implementation diSCUSSIONcoeiieiirierere s 41
Converting application schemas and documentsccocceveeeveeenee. 41
Constructing a GML mapping diCtionarycccccceevevenereneneneene 44

XML SChEMA AP ..o 48

Parsing schemawith XSLT ..o 49

GML JESIGN ISSUEScoviviiiiieeiieie ettt 50
Cascading GML ANAYSIS ..c.ooiiieieieeseeseeee s 55

5. Schema parser and GML VIBWES ... 66
Parsing SCNEMEScoviiiiiieriesie et 66
Mapping dictionary SChemaccccverirerieeeeree e 66

iv

Parsing GML application SChemascccccveveeveeieveesecce e 67

Generic GML VisualiZationcccovevenenenineneese s 70

6. Conclusions and fUrther Work ... 76
TYPE AICHIONAIY ..ecuveeeeecieeete ettt re e sreenne s 76
GML VIBWES ..ottt st 79

2] o ToTo | ="] VUSRS 81
AL XSL TransforMatioNSc..eeeeeeieieriesie et 86
GML Schemato Mapping DIiCtIONArYccccccceeveveeveese e 86
Stylesheet for removing identical type maps from mapping dictionary .. 104
Generic GML/Dictionary to SVG transformationcccceeceveevieeeenne. 105
Stylesheet included into the genericGML2SVG.xdlt listed 123

B. XML SChEMES ..c.veiiiiiiiieiesiesie et 125
Mapping Dictionary SChemacccoceveeeiciecc e 125

C. Schema and instance document exampleccccocveveveereecececce e, 127
(012 S o LTRSS 127
INSEANCEXIMI ..ttt bbb enes 128

D. GML schemaand instance eXampleccccceveeieieesecse s 131
NDNXSA o s 131
NAIENL XM <. 132

List of Figures

1.1. GML SChemadesign ... s 2
2.1, Element VISUBIIZBLIONccoeriririeiesiesese e 6
2.2. Datatype VISUAIZBLIONceoeeieieieiesie st 10
2.3. DOM Level 2 Architecture (DOM Activity Statement)cccveevereeenne. 17
2.4. Simple GML t0 SV G transformationc.cceeeereeieeneenesesesie s 20
3.1. Technical architecture of JUMP (JUMP Technical Report)cc.cceeveueee. 21
3.2. JUMP screenshot (JUMP Technical REPOI)coeveeierieneneneneeeeeee 22
3.3. GMLDataSource SAX fIltErScooeiiereresereeee s 27
3.4. Extending and substituting featureCollectionccceoeverenenenenenene 28
3.5. Cleopatra demonstration SCreeNSNOLc.cocvverererieeieesese s 30
4.1. Basic GML application SCNEMAccoeierieriinienieeeeeeee e 34
4.2. HaldenByNight application SChemaccocviviiininicnere e, 35
4.3. OneMap: Gateway SCrEENSNOLcccereerierieriesrerieseee et sre e sae e 37
4.4. ONEM@P: REPOSITONYooveieiriiriiniieiieieee ettt 38
4.5. Integrated schemahierarchy ..., 40
4.6. River fragments constituting COMPIELe MVErccceevrieeiereneresesereeen, 41
4.7. Application using converted GML-dOCUMENEScccecveieererienienienieneenen, 42
4.8. Application utilizing aschemadiCtionaryccoceeeiereneneneneneeeee, 45
4.9. Retrieve generic GML from repoSItOryocoevereeierieenenese s 46
4.10. Ordnance Survey MasterMap schema structure (OSMasterMap User Guide)
... 47
4.11. Interleaved instances and ProPertiesccoeeevereeieeieenerese e 51
4.12. Definition of PolygonProperty TYPEccoceveririneeeeeeree e 52
4.13. Retrieving additional information about afeaturec.ccocevenerereenene. 53
4.14. Definition of LinearRiNgProperty TYPEcovviverieeeeeeerese e 54
4.15. Defining @ GML VOCADUIANYccoeieieiiieriesiceeeeeeee e 56
4.16. Halden-by-night vocabulary mappingccceeevrieienenenereseseeeee, 59
4.17. ContentHandler Methodsoooeieieiinireee e 63
4.18. RESOIVEN ChaINScceeiiiiieiee e 64
5.1. HOW tO traverse SChemascocoeiiienenieeereee s 67
5.2. Type-mapping of the NightSiteBar-elementccccooeiiiininnenireee 69
5.3. Utilizing dictionary to parse arbitrary GMLccccooeiiiininencneeceee 70
5.4. Integrated GML transformed to0 SV Gcccoovveieriniiieeeeeseee s 72
5.5. SVG integrated layer VISIDIItY ... 73

Vi

5.6. Feature information window

5.7. Ordnance survey datawith default stylingccccoceveevevevecceceecece

6.1. Schema hierarchy search problem

Vii

List of Examples

2.1 WE-FOrmMEA XIML ..o 6
2.2. Schema fragment: gambling_machingccocovereeirieienenese e 8
2.3. Schema fragment: SIot_Machingcccceveiiiinenineeee e 9
2.4. XSL Transformation eXample ... 12
2.5. Feature type eXample ... s 14
2.6. Xerces ContentHandler method SIgNaUresS.cceoeeveerenereneneseseeeenes 17
2.7. parse adocument into DOM-SITUCLUIEccoverierereenienieseseseseeeesieeees 19
3.1 Template for RIVEr-fFEAIUIEccoiiiiererereee s 23
3.2. Template for ROAO-FEALUNEcceieiiiierere s 24
3.3. GML DataSource recognition of geometry elements.ccoceveveerercenene 26
3.4. Recognition of featuresin GMLDaaSIoreccccoceeeerenereneneseseeenes 27
3.5. Configuring CIEOPELIIAcceeuererieeieiierie sttt 29
4.1. Object model: functional NOtALIONccccceriririnieeeee e 54
4.2. Type maps from example datacccooererereninenieeeeee e 57
4.3. Schema definitions of MapPed tYPEScccoveririririeeeeee e 58
4.4. Typemap for OS MasterMap type BoundaryLingccooeverenerenennnnn 61
5.1. SImplefeature StYIINGcccooeeirireeee s 72

viii

Foreword

Two persons should have their name printed in gold in this document, but sadly cart-
ridges are expensive enough as they are, so black ink must do. Gunnar Misund presen-
ted me to their OneMap-project, and set me off working with GML and GIS the au-
tumn 2003, not exactly my area of expertise up until then. Thanks for patience, inter-
esting challenges and a genuine interest for your students. Of course my live-in girl-
friend Kirsti is not forgotten, even though she has been placed second to my work all
too many times the last months. Now, finally having this thesis completed | will never
again use it as an excuse to avoid social interaction with either her or friends and fam-

ily.

Chapter 1. Introduction

For a long time, vendors of Geographical Information Systems (GIS) did not have
common interfaces for interchanging, viewing, editing or querying their geospatial
data. Through the Open Geospatial Consortium (OGC)[OGC] government agencies,
universities and companies participates in a consensus process to develop publicly
available interface specifications for just this purpose. Some specifications are aready
widely adopted, such as Web Map Service (WMS)[WMS], while others, such as the
Web Feature Service (WFS)[WFS] are catching up. A WMS delivers maps based on
requests to a web server. Most commonly these maps are delivered as ordinary raster
images like jpeg or the transparent png, and consists of layers with homogeneous fea-
tures. The user decides which layersto retrieve and the sequence of them in addition to
the geographical extent and upon this request an image with the named layers in the
desired format is delivered. A WFS however, does not serve data as maps, but as
XML[XML] representations of features. More specifically the response from a valid
WEFS query is delivered in a format called Geography Markup Language, a specifica
tion that has reached version 3.0 as we speak. The specification of GML has advanced
from version 1.0 based on Document Type Definitions (DTD)[DTD], to version 2 and
3, heavily relying on XML Schemas. XML Schemas encourage an object-oriented and
modular design of XML document definition, including important principles like ab-
stract types and derivation. GML defines both abstract and non-abstract types and ele-
ments, which forms the foundation for the development of application schemas. An
application schema form a dialect of GML that is specialized for certain data, like for
example data from a company's database. If you want to model some kind of geospa-
tial data model in GML, it is necessary to define one or several schemas capturing the
properties and features from the system. It is not sufficient to use data types and ele-
ments from the base GML schemas, because many of them are abstract and thus not in-
stantiable.

The endless possibilities when designing GML application schemas, the methods of
specifying chains of derived type declarations, together with the use of substitution
groups, provides the opportunity to represent a broad range of geospatial data sets.
However, as the data gets more complex it gets more difficult to keep track of their ori-
gin. Even though the rules of the base GML schemas define the structure of application
schemas, their datatypes may change both by name and content, thus making it cum-
bersome to handle datain a homogenous way.

Introduction

The different application schemas are created from the three base GML schemas in
version 2, while the version 3.0 specification is more than eight times larger. My work
is focused on version 2, but the theories are logically transferable to working with
GML 3. An application schema represents one dialect of GML, with individual fea-
tures, properties and geometries. If you only consider the top layer, being the different
GML schema didects, the data are clearly heterogeneous Figure 1.1, “GML schema
design”.

Figure 1.1. GML schema design

GML instance documents
Application schemas

With the non-profit, open source project, OneMap [P1M], the main goal is to "provide
online public access to a comprehensive and detailed world map". Thiswill be donein-
crementally and uncoordinated by many submissions. It is an underestimation to call
this challenging considering the vast number of formats, covering different parts of the
globe with different level of detail. Even though there are enormous amounts of
geodata available from various sources, the data must be collected and analyzed, re-
quiring alot off both human and computational resources.

GML is adopted by a broad range of companies, both profit and non-profit. With this
joint effort to develop a common format for geospatial data, interoperability between
systems and exchange of datais far less complex than before. When storing geographic
data on XML format as GML we can utilize a vast number of software and methods
for query, parsing and structural design of schemas. The flexibility of schema design,
and the fact that the base GML schemas are meta-language for describing application
vocabularies, means that application schemas in most terms can be considered as het-
erogeneous. As a result most systems working with GML are often designed for one
dialect or profile (see the section called “GML profiling”) only. This issue is the
foundation of this master thesis, as there are none open-source libraries or methods to
handle GML in a generic way. Based upon existing libraries; parsing, analysis and ex-
tracting of schema information is possible. By developing a code base to make differ-

2

ent dialects of GML accessible to utilizing applications, data exchange on GML-format
will be more encouraged. This information may be provided as a dictionary, where ori-
gin of data types can be traced, making it possible for applications to utilize easy ac-
cessible meta-information for different GML vocabularies. When different features
constructed from arbitrary application schemas can be threated generically, they can
also be mixed into integrating vocabularies, meaning documents that do not define in-
stantiable features in their own namespace, but use feature definitions from other
vocabularies.

In Chapter 2, XML software and technologies some important standards for working
with XML are introduced. Among these are XML generally and the document defini-
tion languages DTD and XML Schema. It is important to get a quite profound under-
standing of XML in order to fully be able make use of some of the other standards
presented in this chapter. For altering, parsing and transforming XML there are a num-
ber of specifications and implementations. Those presented here is Document Object
Model (DOM)[DOM], Smple API for XML (SAX)[SAX] and Extensible Stylesheet
Language (XSLT)[XSLT1]. The XML parsers can basically do the same tasks, but the
fundamental differencesin how a document is parsed makes their working areas some-
what different. Performance does often come in expense of functionality; thisisan im-
portant point to remember when picking one before the other. It is expected that the
reader has a basic understanding of programming, but they do not need to be expert.
The introductionary chapter can be skipped if you feel comfortable with the XML and
the concept of XML parsing.

Chapter 3, GML software gives a brief introduction to some of the available software
working with arbitrary GML, and some that would greatly benefit from being able to
analyze schemas and automate the process of loading GML data sources. There are
several methods for working with arbitrary GML, using a manually made mapping file
might be the most usual one, one that works excellent when there is only one or a few
dialects to be interpreted and imported into a program. Naturally, this could hardly be
called support of generic GML data sources, and the amount of work to make such
mapping files by hand for tens or hundreds of application schemas, requires some ef-
fort.

In Chapter 4, Handling arbitrary GML sources you will be given a more thorough in-
troduction to the issue of GML schema analysis. Utilizing arbitrary GML is presented
more in detail illustrated with a small example data set. Y ou will also be presented to a
cascading method of GML analyzis, a method which is more reliable when working
with GML and schemas over the internet in particular, where resources might not a-

ways be obtainable.

Two XSL transformations are presented Chapter 5, Schema parser and GML viewer .
Oneis used to transform GML schemas into a mapping dictionary and one is for con-
verting GML with a given mapping dictionary into SVG. A description of how | chose
to implement them is found in the same chapter, together with some example results.

The last section, presented in Chapter 6, Conclusions and further work sums up the
work that has been done and some of the problems that arose during implementation. |
will try to more thoroughly go through the choices | made regarding implementation
strategies.

Chapter 2. XML software and
technologies

GML is as mentioned an XML standard, based on another XML standard, namely
XML Schema. This chapter gives a brief introduction to XML and some of the librar-
ies and methods developed to work with XML. First and foremost the characteristics of
XML in general is described, before moving on to how structure and content of docu-
ments can be restricted using DTDs and schemas. These topics can be considered as
the basics of XML and are important when it comes to understanding the GML vocab-
ulary, which also is presented in this chapter. The last part threat the art of parsing
XML documents, either for conversion to another XML vocabulary or to extract in-
formation from them.

XML

XML is designed to give a flexible, but fairly smple way to store and describe meta
data. XML is an abbreviation of the highly complex SGML, the language describing
HTML, but also alarge range of other more complex languages. By defining this less
powerful, but more accessible meta-language interface, it met the requirement for a
standard data exchange language on the Internet and between applications.

XML is made for describing data, not displaying it like HTML is. HTML has alimited
set of elements, all known by web browsers that are able to present the data on basis of
these elements. XML however does not have a limited set of elements. They must be
well-formed, meaning that al tags must be closed or terminated by an end-tag. A docu-
ment with the tag <description> requires a closing tag </description> well-formed. Al-
ternatively the tag could be an empty tag <description/>. In addition the tags also have
to be nested correctly, not allowing closing of other tags than the current tag. Therefore
a document can be described as a tree-structure, which leaves us the advantage of are-
latively clear set of rules regarding the structure of documents and the methods of ana-
lysis and traversal. Elements in an XML document should and often are named to de-
scribe the content of the document, but the fact that there is no standard set of elements
in XML meansthat it is impossible to make generic XML editors that 'understands' the
meaning documents.

XML software and technologies

The following snippet of an example we shall examine in more detail later is con-
sidered well-formed XML. Notice the closing of each element, and the correct nesting.
The element visualization (Figure 2.1, “Element visualization”) is a screenshot of a
functionality in XMLSPY[SPY], a powerful tool for developers of XML and related
technologies. This clearly shows how the nested elements form a hierarchical
(tree-like) structure; the XML fragment is an instance of this data type.

Example 2.1. Well-formed XML

<ganbl i ng_machi ne>
<nane>Poker mani a</ nane>
<|d>A900 0l1</1d>
<manuf act ur er >
<name>Mercury In
<servi ce_phone>6
</ manuf act Ur er >
<m n_bet>10</mn_b
<max_bet >50</ max_be
<max_W nni ngs>1000< X
<payback ra e>85</payba€
</ga 1 ng_nmachi ne>

c<
66-
et
t
/

Figure 2.1. Element visualization

~ service_phone

gambling_machine E]—
| nﬂn bet

1] i
AlE
IH
£
| =
=
=
(=]
w

DTD

When exchanging data on XML format it is important to be able to describe the con-
tent and structure of a document, so that applications can interpret or create documents
made for a certain system. A standardized way to define an XML vocabulary isto use
aDTD. An instance document can then define what DTD is describing the document,
and XML parsers can validate a document against the DTD and report possible diver-
gences. Documents that are in accordance with their DTDs are described as valid. This
is an extremely important issue when it comes to exchange of data between systems. A
DTD specifies the allowed elements, their allowed content, both type and cardinality.

Often, defining document structure using DTDs are sufficient, but it lacks some funda-
mental methods for expressing constraints for element and attribute data. Constraining
element cardinality is cumbersome to to define with a DTD when you for instance
want to limit the number of elements to be between e.g. 10 and 20.

A DTD defining the structure of the element visualization (Figure 2.1, “Element visu-
alization”) shown above, could look something like the following:

<I'ELEMENT n ig#PCDATA) >
<l ELEMENT i CDATA

<! ELEMENT mn bet (#PCDATA) >

<l ELEMENT nmax_bet #PCDATA

<l ELEMENT max_wi nni n?s ATA) >
<l ELEMENT payback ra #PCDATA >

<l ELEMENT mahufacTurer (name, service_phone ? .

<l ELEMENT ganbl | ng machi ne (nama i d7 manufacturer), (mn_bet, max_bet,
max_w nni ngs payback_rate)

XML Schema

Due to the limitations of DTDs and the fact that some developers desired a less com-
plex way to define the structure of their documents, the work with developing a new
standard to define an XML document's structure and legal building blocks started, the
result was the XML Schema. The Schema turned out more complex than the DTD, but
many of the problems addressed with the DTD was elegantly solved. A schemaisin it-
self a XML document, describing the allowed contents of another XML document,
with elements from the http://Mmww.w3.0rg/2001/XMLSchema namespacel XMLNS].
On the other hand, the syntax of aDTD is not XML itself, meaning that tools for edit-

ing DTDs and validating documents against them, must implement support for one ad-
ditional syntax. Naturally the same problem arise for developers of DTDs and docu-
ments, needed to master both syntaxes.

The gambling_machine complexType in Example 2.1, “Well-formed XML”, is origin-
aly defined in a schema along with other elements. Full example listed Appendix C,
Schema and instance document example . The complete schema dens.xsd describes the
elements of a document to keep track of gambling dens and slotmachines belonging to
them. Interesting data for inspectors of those kinds of businesses. The data type is de-
scribed in the code block underneath. First, the root of the data type is a complexType
from the Schema-namespace. This is an example of how we can declare our own com-
plex datatypes, complex meaning that the type consists of other elements nested with-
in, so called simpleType.

Example 2.2. Schema fragment: gambling_machine

<xs: conmpl exType name="ganbl i ng_nachi ne" >
<xs:annotation> . .
<xs: docunent ati on>Dat at ype for ganbling sl ot machine,
ergo nmachines that pay out prize noney in certain
si tuations.
</ xs: docunent ati on>
</ xs:annot at | on>
<xs: conmpl exCont ent >)
<xs: extensi on base="sl ot _nmachi ne">
<XS:sequence>

<xs: el enent name="m n_bet" type="xs:positivelnteger"/>
<xs: el enent name="max_bet" type="Xxs:positivelnteger"/>
<xs: el enent nane="nax MAnnIn98: type="xs: positivelnteger"/>

<xs: el epent name="payback_ra
<xs: si npl eType>
<xs:restriction base="xs:uns
<xs: maxl ncl usi ve val ue="100
<xs: m nExcl usi ve val ue="0"/
</</xs;reft%|ctgon>
XS: Si e e
</xs:e|engﬁt> P
</ xs: sequence>
</ Xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

e >

gnedShort">
/>
>

If you compare this Schema-snippet to the XML fragment in the section called “XML”
[6] , you recognize the structure of elements. However, the schemas give a closer de-
scription of what kind of data you are actualy dealing with. For instance the
<min_bet>-element is of type positivelnteger. Take a look at the <payback rate>, this
element is not like the others. It is declared in an element-tag, but there is a
<simpleType> element nested within. This is actually a method of restricting the al-

XML software and technologies

lowed values of data type. By a restriction, with an unsignedShort as base, we can spe-
cify the maximum and minimum allowed value of the unsignedShort-type, resulting in
a type that no longer can hold values below zero and above one hundred. If we try to
make an instance document violating this rule the validation will fail. Note that the
<payback_rate> is declared inline and thus not making it reusable in other parts of the
Schema. We could have declared an element or data type at the root of the document,
then referenced the element or created a new element from the data type inside our
<gambling_machine>, like this:

<xs: el enent ref="payback rate"/>

if <payback_rate> isan element, or like this:

<xs: el enent nanme="payback _rate" type="payback rate"/>

Even though some elements are missing compared to the XML fragment, the data is
still declared in the <gambling_machine>, but it might not be easy to spot for an un-
trained eye at first sight. This data type has a super-type, <slot_machine>, where the
rest of the content is declared (Example 2.3, “ Schema fragment: slot_machine”). This
super-type is made because a gambling machine is a type of slot machine, but so is for
instance an arcade game. The concepts of reusability and inheritance are introduced in-
to XML using Schemas. The <payback rate> element was a restriction of the un-
signedShort, while the <gambling_machine> is a extension of the <slot_machine>,
specifying new content and reusing existing.

Example 2.3. Schema fragment: slot_machine

<xs: conpl exType nanme="sl ot _machi ne" abstract="true">
<xs:annotation> .)
<xs:documnent ati on>Abstract data type defined to be super-type for
any type of s|lot machine in the system
</ xs® docunent at 1 on>
</ xs:annot at i on>
<Xs:sequence>
<xs: el enment nane="nane" type="xs:string"/>
<xs: el epent nane="i1d">
<xs: si npl eType> _
<xs:restriction base="xs:string">
<xs:pattern value="[A B, C][0-9]{3}[-]1[0-9]{5}"/>
</xs;restriction>
</ xs:si npl eType> </xs: el emrent >

9

<xs: el enent ref="manufacturer"/>
</ xs: sequence>
</ xs: conpl exType>

The complexType declaration above defines an element id, showing the use of a pat-
tern to restrict string-values. The pattern is a regular-expression that has to match to
the element in the instance document in order for it to be valid. The pattern in the
above complexTypeistrandated into one of the letters A, B or C, followed by three di-
gits from 0-9, a dash, then five more digits. Let us say that this is a registration code
that all legal slot machines have to be labeled with within an area. The regular-ex-
pression matching ensure that the code is correct according to the rules of registration.

If we take a look at the data type visualization (Figure 2.2, “ Data type visualization”)
of <gambling_machine> in XMLSPY, we can see a more accurate description because
the characteristics inherited from slot_machine is shown on the yellow background and
the rest of the elements on white.

Figure 2.2. Data type visualization

(gam Bling_machine

—|Emax_winnings

= payback_rate

There are severa other benefits of using schemas, for instance schemas both have a
greater number of data types available than DTDs and they provide the opportunity to

XSL

make your own. The Schema standard allows programmers to take an object-oriented
approach to the developing of documents. By deriving other data types, either by re-
striction or extension, the aspect of reusability and tighter control over the allowed ele-
ment and attribute values, is evident. Y ou can define fundamental propertiesin abstract
data types, and by deriving these and declare substitution groups, one element or data
type may substitute for another. This method of development is flexible and powerful,
but still you can keep tight control over what kind of data is alowed in your instance
documents. The example schema describes a data type, arcade_game, with the super-
type slot_machine. Even though both of these types in an object-oriented approach
could substitute for the slot_machine, we have to specify it in the Schema using the
substitutionGroup -attribute. Now both gambling_machine and arcade_game can sub-
stitute for elements of type slot_machine. Actually, if elements of slot_machine are re-
quired, one of these must substitute because the slot_machine type is declared abstract,
and cannot be instantiated.

<xs: el ement name="ganbl i ng_machi ne" type="ganbl i ng_nachi ne"
substituti onG oup="sl ot _machi ne"/ >

<xs: el enent nanme="arcade_ganpe" tygez" ar cade_gane"
substitutionG oup="sl ot _machi ne"

The complete schema and an examples instance document are located in Appendix C,
Schema and instance document example .

XML will not necessarily ever replace HTML since they basically cover two different
purposes, namely markup for describing data and markup for displaying data. There
are however technologies under development for displaying XML. As earlier ad-
dressed, the HTML-elements are all known to browsers made especially for the pur-
pose to layout the content according to the tagging of afile. Since you define your own
elements in XML, browser cannot guess how you want your elements styled and dis-
played. For this purpose we can use Extensible Stylesheet Language(XSL)[XSL], an-
other W3C specification. XSL is actually afamily of three different W3C recommend-
ations, a transformation language called XSL Transformation (XSLT), a language to
address and manipulate parts of documents called XML Path Language (XPath)[XP]
and a styling language called XS_ Formatting Objects (XSL-FO)[XSL].

The purpose of XSLT isto transform a XML document into another document such as

XML software and technologies

e.g. Scalable Vector Graphics (SVG)[SVG], HTML or any other desired format. Parts
of the original file are matched against templates in the transformation file, reorganiz-
ing the data and placing it on the desired location in the output document. XPath is
used to address data from the tree-structured XML document. When people refer to
XSL they are often actually talking about XSLT. This is somewhat incorrect consider-
ing that XSLT is only one component of the XSL recommendation. The transformation
part can however be used independently of the formatting objects and vice versa.

Both structure and content of an XML document can be drastically changed using
XSLT. Example 2.4, “XSL Transformation example” presents a short example of how
to convert an XML instance document with gambling_densto aHTML document.

Example 2.4. XSL Transfor mation example

<?xm version="1.0" encodi ng="UTF-8"?>
<xsl : styl esheet version="1.0" xm ns:xsl="http://wwmv. w3. org/ 1999/ XSL/ Tr ansf or m
" xmnsisl="http://ww.dens. conm >]

<xsl| :out put nethod="htm " encodi ng="UTF-8" indent="yes"/>

<xiL%%$gplate mat ch="/">

<head>]]]
<title>Registrered slot machines</title>
head>
<body>
<tabl e border="1">
<tr>

<t h>Nane</t h>
<t h>Regi strati on nunmber</th>
/ﬁh>0mmr4th>
< r>
<xsl:for-each select="//sl:arcade gane /sl :ganbling_machi ne">
<xsl;call-tenpl ate nanme="sl ot _n&Achi ne"/>
</ xsl : for-each>
</table>
<xsl:call-tenplate name="summary"/>
</ body>
</ htm >
</ xsl : tenpl at e>

<xs{ :tenpl ate nanme="sl ot _nachi ne">
<tr>

<t d>

<xsl :val ue- of sel ect="sl:name"/>
</td>
<t d>]
<éil:value-of select="sl:id"/>

<ésl:value-of select="../../sl:name"/>
>

</tr>
</ xsl :tenpl at e>

<xsl :tenpl ate name="summary" >
<xsl|:variabl e name="nr Arcade" sel ect="count(//sl:arcade_gane)"/>
<xsl :vari abl e name="nr Ganbl i ng"
sel ect ="count (//sl: ganbling_machine)"/>
<t abl e>
<tr>
<td>Nunber of arcade games;</td>
/ftd><xs|:value-of sel ect ="$nr Arcade"/ ></t d>
< r>

12

<tr>

<t d>Nunmber of ganbling machi nes: </td>
</t<tg><xsl:value—of sel ect ="$nr Ganbl I ng"/ ></ t d>
r
<tr>
<t d>Aver age nunber of slot machi nes per den:</td>
<t d><xsl : val ue- of sel ect="($nrArcade + $nrGanbling) div
count;//sl:ganbllng_den)"/></td>
</tr> </table>
</ xsl : tenpl at e>
</ xsl:styl esheet >

As revealed by the document declaration of the example stylesheet, the file is XML it-
self. The transformation elements used are those represented by the namespace ht-
tp://mwww.w3.0rg/1999/XSL/Transform, identified by the abbreviation xd in the docu-
ment. The elements without any namespace prefix, goes directly to output, these are
the HTML-elements that form the layout of the page. A transformation starts with the
matching of templates against the document to be converted. To get the conversion 'go-
ing', we must use the template to match the XPath '/ identifying the root of the docu-
ment. When the root is located, the XSLT-engine transforms the data in the instance
document according to the order given in the template. A template is either identified
with a match like the root-element, or with a name. If the template has a name, we can
call it from other parts of the document. The <xd:for-each ...>-element will traverse
the node-sets returned from the X Path-expression found within the select-attribute. As
you can see, we combine the xsl-elements with X Path-expressions to get the most out
of the transformations. It is important to remember that the <xdl:for-each ...>-element
is not a ordinary loop like the for-loop found in C/C++/Java. The for-each is used to
traverse node-sets and for each iteration the parsers logical position will be inside the
current node. If you want some kind of ordinary for-looping, there are no implementa-
tions of thisin XSLT. You may however imitate a for-loop using recursive templates.
In our example you will see that we use the xd:call-template-command for each node.
The template outputs a table row, with the name and id of the machine in addition to
the name of the place where you can find it. This template can just as well be defined
inline in the for-each-element if we do not want to make it reusable to other templates.

The last table row of the stylesheet output sums up the different types of machines. It
also divides the number of machines on the total number of dens. Math functionality is
crucial if XSLT should be a real competitor to implementations in Java, C++ or any
other high level programming language. As you can see, we can store the values in
variables like we do in other conventional languages. There is however one important
note on variablesin XSLT, their value cannot be changed once they are initiated.

XSLT isonly a specification how transformation stylesheets can be written to convert
a document from one XML format to another, not how it should be done. There are
quite a few available parsers, implemented to interpret transformation stylesheets and
carry out transformations on documents. Most of them only supports the XSLT 1.0
specification, but recently the Saxon project released a parser with some functionality
defined in the XSLT 2.0 specification[X SLT20].

GML

"Geography Markup Language is an XML grammar written in XML Schema for the
modeling, transport, and storage of geographic information™ [GML30]

The OGC abstract model of geography[AMG] describes the world in terms of geo-
graphic entities called features. A feature is a combination of spatial and non-spatial
data, properties and geometries. A GML document contains so called feature collec-
tions, that works as containers for features. A feature collection is actually a feature it-
self, meaning that feature collections can hold other feature collections. There are no
limitations on the depth of feature nesting in a GML document. A document may e.g.
store information about train stations within an area, it will therefore be composed of
many features (stations), each describing the non-spatial properties of stations like the
name and other related data, alongside with their geometric properties such as location
and boundaries. Example 2.5, “Feature type example” shows a feature, school, with
properties and geometries.

Example 2.5. Feature type example

<Feature fid="142" featureTyPe- school " >
<Descri ption>Bal noral M ddl e School</Descr|pt|on>>
<Property Nane="Nunkl oors"” tyP Inte val ue="3"/>
<Property Name="NunBtudents" type="In eg val ue="987"/>
<Pol ygon® nane="ext ent" srshbne- epsg: 27354" > <LineString
nane="extent"
srsName="epsg: 27354" >
<CDat a>

t

491888. 999999459, 5458045. 99963358
491904. 999999458, 5458044. 99963358 491908. 999999462, 5458064.
491924. 999999461, 5458064. 99963358 491925. 999999462, 5458079,

</491%971.999999466,5458120.9996336 491953.999999466, 5458017. 9
CDat a

<Li neString>
</ Pol ygon>

</Feature>

XML software and technologies

Considering that GML is XML, we can benefit from a broad range of applications and
standards to develop, transform and parse the data. From day one there were tools
available for these tasks, which must be considered a great argument for choosing
GML, not only for exchange of geographic data, but in some cases also storage. GML
upholds the principle of separating content from presentation, meaning that presenta-
tion of the datais not up to GML.

Web Feature Server (WFS)

The Web Feature Service Implementation Specification (WFS)[WFS] describes an in-
terface for retrieval of geospatial data encoded in GML. How these data are stored
should be opaque to the client utilizing the service. Data sharing between proprietary
systems will thus be possible if they are accessible through a WFS. WFS is specified
for the HTTP protocol, accepting parameters as key-value-pairsin a GET query.

Through avalid DescribeFeatureType request, the client will be served a GML schema
describing features available from the WFS interface. The schema returned is designed
for the underlying data in particular, meaning that there are no standardized feature
schemas meant to fit al features stored behind a WFS interface. Since GML is meant
to describe, not present geospatial data, it is up to the client parse and style featuresin
any chosen format. GML served from a WFS is not any different from any ordinary
GML document, but a fully functional implementation offers functionality to filter out
features based on geographic or non-spatial property values. When wanting to present
GML acquired from a WFS, an application must either be able to directly make a
graphical presentation of GML, or the GML must be transformed into some kind of
presentation format like e.g. SVG.

Parsing XML

This section introduces some of the methods and libraries available for parsing and
working with XML. When working out a method to work with GML in a generic way,
one or severa parsing libraries like these could be the key elements of success.

We have already seen an example of how to transform XML-structures using XSLT, a
powerful XML-based, functional programming language. There are situations when
we need APIs to access information in XML documents, for editing or merely reading

15

purposes. Y ou will find two basic approaches to this, Document Object Model (DOM)
[DOM] and Smple API for XML (SAX) [SAX]. They are both powerful and widely
adopted standards, but they have fundamentally different approaches on how to parse
XML. All programmers working with XML should be acquainted with the differences
between them and the situations when you should choose one before the other.

Both APIs are platform- and language-neutral programming interfaces, with dozens of
implementations for several different programming languages. All examples provided
within this document are written using Xerces2 Java Parser, but should be easily adap-
ted to other programming languages. Programmatically, DOM is probably the most
high-level method of the two, while SAX represents the effective one, addressing the
fields where DOM lacks in performance. The following sections give a short introduc-
tion to the fundamental characteristics and differences between the available XML
parsing libraries.

Simple API for XML (SAX)

SAX was at first awidely adopted API for XML in Java, but is now available for many
different programming languages, making it an excellent additional APl for parsing
XML. W3C are not in charge of the development of SAX, it is under open develop-
ment as a SourceForge-project SRCF.

SAX is an event-based APl where XML documents are parsed sequentially and events
are triggered dependent of document's structure and content. When using DOM, the
document has to be parsed into a data structure before the content is reachable by code.
SAX parsers parses a document sequentially, meaning that the actual extraction of doc-
ument information starts instantly from the first byte is read from the afile.

Programming SAX with Xerces

When we are parsing documents using SAX, the XMLReader-object is responsible for
the actual parsing. This reader triggers different events to the ContentHandler, depend-
ing on what kind of data is read at the moment. The code in Example 2.6, “Xerces
ContentHandler method signatures.”, shows some of the methods in the interface Con-
tentHandler. These methods should be quite self-explanatory, and if we implemented
the handler to output the argument values, this would reflect the order of the elements
in the document. Remember that you are not able to go 'backwards' in the event-stream
when using SAX, if you have interest in the prior elements, the only way to gain access

to preceding parts of adocument isto store it as a parser reachesit.

Example 2.6. Xer ces ContentHandler method signatur es.

oubl}c voi d charactersg harl1 i nt start int length) throws org.xm . sax. SAXExc
public void endDocumnen 2 t rows org. xm . sax. SAXExcept i on;

public void endEl ement ring nanespaceURI String local Name, String gNane)

hrows org. xmnl . sax. cet|o

public vord startDocuma tg throws org. xm . sax, SAXExcepti on;

public void startEl enent (Stri n namespaceURl, Stri ngxl ocal Nane, String gNane,

or g. i(m sax. Attributes atts) t rows org.xnl.sax. SAXExcepti on:

Document Object Model (DOM)

The main characteristic of DOM is that it keeps the document in-memory, stored as a
tree-structure, making it possible to access, add, delete, manipulate content in a non-
sequential way. DOM s actually divided into levels, each level providing additional
functionality upon the other. So far level 1 and 2 are Recommondations to W3C from
the DOM Working Group, which are now working on the level 3 specification. The
somewhat atered illustration underneath (Figure 2.3, “DOM Level 2 Architecture
(DOM Activity Statement)”), taken from the DOM Activity Statement, show an over-
view of the functionality offered by DOM level 1 and 2 APIs.

Figure2.3. DOM Level 2 Architecture (DOM Activity Statement)

XML software and technologies

{ DOM Level 2 Architecture)
|

. Core { DOM Level 1 Architecture }
{with Namespaces)
AA
| ; |
XML 1.0 : HTML
e i
i i
Range | Traversal Views |
i i
i 1 i
1 i 1
Events i Style Sheets
i
" |
| | | |
o User Interface | | Cascading
Mutation Events HTML Events Events Style Sheets
[
!
Cascading
Mouse Events Style Sheets 2
— [nherits -—-® Depends on

Methods provided to navigate the tree and gaining random access to nodes or node-
sets, makes this approach an easy pick for many developers. However the advantages
of DOM are in some cases considered the disadvantages. Keeping large document in-
memory exhausts resources, thus it is important to have a good reason for using DOM.
If you just want to traverse a document, possibly to gather data to create object-in-
stances, the overhead of using DOM makes it a bad choice. However if you access the
data randomly and often, the time spent to read and make a data structure of the docu-
ment might be worth the cost of storing it in memory.

Programming DOM with Xerces

There are dozens of XML parsers supporting DOM and SAX. | have chosen Xerces
Java Parser in my work, one of many Java implementations of the interface specifica-
tion. Some parser do aso offer additional functionality that might cover functionality
not defined in the interfaces, this might be an important point to remember, because
utilizing such functionality will make your software dependent upon one certain type
of parser library.

The first step creating a DOM-parser is to instantiate the
org.apache.xerces.parsers.DOMParser, then pass a String with the document path to

18

the parse-function. The DOM Parser will then build an in-memory tree consistent of the
information from the file. The content is now accessible from the parser by calling the
method getDocument() (Example 2.7, “ parse a document into DOM-structure”).

Example 2.7. par se a document into DOM-structure

'D'd\/Parser parser = new org.apache. xer ces. par sers. DOVPar ser () ;
%arser parse "instance.xm"):
or g. w3c, dom Document docurrent par ser. get Docunent () ;
ca ch gjsava i 0. I(]Exceptlon e) {

prin tackTr ace
System exit(

The document-instance represents the whole document, and offers methods for both re-
trieving and adding data. The document and the sub-nodes all implement the interface
Node, giving a standard set of methods for traversing the document.[NODE]

Scalable Vector Graphics (SVG)

GML describes properties and geometries of features, how data should be presented is
however not described in a GML document. SV G can be used to present GML content
as amap. SVG is another specification based on XML, meant to provide markup for
vector graphics. To be able to view SVG documents graphically it is required to have
software made specifically for this purpose; Adobe] ADO] has developed the most ad-
opted piece of software for displaying SVG, the Adobe SVG Viewer. This provides plu-
gin functionality for web-browsers so that SVG content can be displayed directly from
the web. Batik[BAT] is another implementation of the SVG specification, made in
Java and available as an open source library made for presentation and altering of
SVG. There are a number of libraries and specifications that can be used to convert
GML into SVG. One strong candidate is XSLT, stylesheets that can be fed into any
XSL-parser together with a GML document to instantly provide the desired output.
The simplicity of XSLT stylesheets, makes them an easy choice for XML altering.
Most programming languages are equipped with the possibility to run XSL transforma-
tions on XML documents, thus making XSL one of the most portable choices (Fig-
ure 2.4, “Simple GML to SV G transformation™).

Figure 2.4. Simple GML to SVG transformation

GMH XSLT

h 4

XSLT Engine

SVG map

GML does of course contain geographic data, but in most cases the meta-information
contained in each feature is just as important for utilizing software. Meta-data can also
be contained in SV G together with the geographical markup. By implementing script-
ing such as ECMAScriptf ECMA] we can achieve dynamic behavior much like in
XHTML[XHTML] or other web-standards. The graphical elementsin SVG can trigger
scripting code for actions such as mouseover, mouseout, onload, onclick and so on.
Events can also be triggered as a result of the lifecycle of the document in the viewer,
these include e.g. onunload, onerror, onscroll and onzoom. In addition to this function-
ality SVG animation is specified through the Synchronized Multimedia Integration
Language 1.0 (SMIL) specification[SMIL].

Chapter 3. GML software

A lot of tools are available to work with GML in some way. These tools have |oaders
and writers to import GML data into the application. Many of them are open source
libraries, still under development. The applications covered in this chapter do all load,
write or alter GML data, but they handle the issue of different application schemas dif-
ferently. Some requires additional metadata in their own proprietary format to interpret
instances of one particular vendor version. There are also examples of unreliable tech-
niques, like recognizing application elements merely on the basis of their element
names. This section attempts to give insight in the solutions implemented by different
participants of the GML community.

JUMP - Unified Mapping Platform

JUMP[JUMP] is an open source GUI-based application for viewing, editing and pro-
cessing spatial data. JUMP utilizes the JTS Topology Suite[JTS], also developed by
Vivid Solutiong[VIV], to implement the OpenGIS Simple Features Specification[SFS].
The JUMP Workbench is designed for both development of conflation algorithms, in-
voking of these and as a general-purpose tool for the visualization and edition of spa-
tial data.

To be able to process generic GML, you have to specify a GML Input Template,
identifying collections, features, geometry and non-spatial properties. By using an in-
put template you are able to extract a single FeatureCollection from a GML file, mean-
ing that you have to specify multiple input templates in order to import more than one
collection/layer.

JUMP can interpret and write JUMP GML , without the need of templates specified by
the user. However templates are still used, written and read from the start of the GML-
instance. For additional functionality, the application can be extended by providing
plugins. Users can also write their own drivers to different data sources, alowing the
application to work with proprietary formats.

Figure 3.1. Technical architecture of JUMP (JUMP Technical
Report[JTEC])

21

GML software

WorkBench

Plugin Framework i CursorTool Framework | Layer [;
GuUl ist Layer view

Li
e
Cursor Carsor Carsor
Plugin (| Plugie || Pleght] "

170 APL

Shapefil Other
R Drivars
Drivers

GML Spatial Wilities

Drivers

APls

Feature API

JUMP can aso act as a client to OGC Web Map Service (WMS)[WMS] servers,

providing an interface to create and edit WMS queries Figure 3.2, “JUMP screenshot
(JUMP Technical Report)”.

Figure 3.2. JUMP screenshot (JUMP Technical Report)

22

JUMP Workbench i ;lglil

Flle Edit Layer View Tools QA Conflate Roads Clean Window Help

&) @A R == | QB LB @] =] sl O

B

=l i Working
. i [OF Parcels

J00:00:04 (Load Dataset) §1194723.1, 401779.8) ||

Considering the Cambridge example found in the GML2-specificationfGML20], we
can provide two input templates, making it possible for JUMP to interpret the GML
files correctly. By specifying the collection-element, the feature-element and the asso-
ciated geometry element, JUMP reads and displays the features found. If feature-ele-
ments has additional properties, not provided by the basic GML types, these goes into
the same input template as a column-element if we want to import them into the suite.

If we want to display the River-element in JUMP, we specify atemplate where Collec-
tion-element is CityModel, FeatureElement is River and GeometryElement is
gml:centerLineOf (Example 3.1, “Template for River-feature™).

Example 3.1. Template for River-feature

<?xm_ version="1.0" encodi ng="UTF-8"?>
<JCSGWLI nput Tenpl at e> .
<Col | ecti onEl ement >Ci t yModel </ Col | ecti onEl enent >

at ur eEl enent >Ri ver </ Feat ur eEl enent >
one}ryEIenent> m : cent er Li neOr </ Geonet r yEl enent >
np

<Fe
<Ge
JCSGWL ut Tenmpl ate>

</

If the River-type had any additional non-spatial properties, these could be listed after
the GeometryElement. The Road-element, found in the same file has two properties,
classification and number. These must also be listed in the template, for the application
to be able to read them and for the user to be able to edit and view them in the editor.

Example 3.2. Template for Road-feature

<?xm_version="1. 0" encodi ng="UTF-8"?>
<JCSGWLI nput Tenpl at e>
<Col | ect i_onEl enent >Ci t yModel </ Col | ecti onEl enent >
<Feat ur eEl enent >Road</ Feat ur eEl enent >
<Georet ryEl ement >l i near Geonet ry</ Geonet r yEl enment >
<Col umbDef eni ti ons>
<col um> o)
<name>cl assi fi cati on</ nane>
<type>STRI NG/t ype> o
<val ueel emrent el enent nane="cl assi fication"/>
<val uel ocati on position="body"/>
</ col um>
<col um>
<nane>nunber </ nanme>
<t ype>| NTEGER</ t ype> . .
<val ueel erent el enent nane="nunber"/ >
<val uel ocati on position="body"/>
</colum>
</ Col umbDef eni ti ons>
</ JCSGMLI nput Tenpl at e>

The type-, value- and valuelocation-elements provide information to the application
where to find the property-values, and what kind of values they contain. The classifica-
tion is a string, and the number is an integer. The values will not be validated against
any restrictions made in schemas, and the list of possible types to specify within the
template only represent a small subset of values compared to the amount found in
XML schema. The file cambridge.xml can now be loaded into JUMP. We load the file
as two layers, one with the road-template and one with the river-template. Each tem-
plate provides one layer of information, and can be edited separately.

The idea of specifying input templates is easy understandable and pretty straight for-
ward. As long as users are working with a pretty limited set of features, the time spent
creating them manually will probably be quite insignificant. On the other hand, if we
want to make use of severa different document conforming to different
GML 2-dialects, this processisnot at all ideal.

GML software

The plugin functionality of JUMP should make pretty straight forward to extend the
program with extra functionality. An automatic template generator could be avery use-
ful plugin, one that could be realized using the solutions presented in this thesis. It is
important that the schema analysis can be done in the most portable manner, because it
is important to predict what kind of programs that would actually benefit from schema
analysis. XSLT libraries are available for most programming languages, while imple-
menting the analyzer in Java or any other programming language that requires compil-
ing will make it less portable.

GeoTools

The development of GeoToolgGTP] started at The University of Leeds in 1996. The
first version was targeted at the applet API, this does now exists as GeoTools-Lite,
while the further development of a more broad library continues, taking full advantage
of existing Java technologies to develop an open source Java library for development
of OpenGlIS solutions. GeoTools is divided into separate modules, each implementing
different requirements. A subset of these modules will be sufficient for most de-
velopers, but as a whole they cover alot of ground when it comes to development of
OpenGI S solutions. The Geotools FAQ states that “ The aim of the project isto develop
a core set of Java objects in a framework which makes it easy to implement OGC-
compliant, server-side services or provide OGC compatibility in standalone applica-
tions or applets.”, furthermore they describe the strategy of implementation as “The
GeoTools 2 project comprises a core API of interfaces and default implementations of
those interfaces’ [GFQ)]. GeoTools are committed to implementing the standards set by
the OGC. This ensures that GeoTools is developed according to OpenGIS specifica
tions, formalized through OGC's structured committee programs and consensus pro-
Cess.

GeoTools strive to support as many geographical data formats as possible, making
them accessible for the vast amount of functionality implemented in the GeoTools-
suite. Different geospatial formats are transformed into the GeoTools feature represent-
ation format through different implementations of a DataStore or DataSource frame-
work. In order to make proprietary data available to GeoTools, a new implementation
must be built upon your data source, following the guidelines of implementation.
Among others, GeoTools support PostGIS, GML2.0 and MySQL data.

The DataStore interface is closely related to the OGC Web Feature Server Specifica

25

tion, described in the section called “Web Feature Server (WFS)”, where a feature is
describes as an atomic unit of geographic information. The FeatureType determines the
properties of the Feature. In addition each Feature has an uniqueid.

GeoTools DataSource (GMLDataSource)

The GMLDataSource is an implementation of the DataSource interface, meant to
handle GML 2.0, loading features from GML into the JTS topology suite. The imple-
mentation is however pretty "hard coded", the recognition of certain elements from
GML isactually done by partial and full string comparison of element names. The fol-
lowing snippet shows how the native GML geometry properties and elements are
coped with during SAX-parsing.

Example 3.3. GM L DataSour ce r ecognition of geometry elements.

i f ;n spaceURI . equal s(GML_ NAI\/ESPACE)? i ,
[] 1f geomet eass It on down the ter chain
i f (BA OVETRY IYPES. Cont ai ns(l ocal Nane)) {
parent georret GX_St art | ocal Na atts
} else TYPES cont ai ns(| ocal Nane)) {
parent geomet‘rYSu E ocal Narre) ;
} else if”(COORD S_NAME. equal s(| ocal Nare)) { .
[l if coordinate, seT one of the internal coordinate nethods
coor di nat eReader , i nsi deCoordl nates(true, atts);
buffer = new StringBuffer(
} elseif g NAI\/% ualsiocaINarre)) {
coor di nat eReader . | nsr eCoord(true);
buffer = new StringBuffer():
} elseif SX NAME. equial s(| ocal Nane)) {
coor di nat eReader . i nsi deX(true);
} else if (Y_NAME. equal s(| ocal Nane)) {
coor di nat eReader . i nsideY(true);
} else |f SZ NANE. equals(local me)) {
) gI(Jg(radl nat eReader . i nsideZ(true);
) parent. st art El enent (nanespaceURl, | ocal Name, gNane, atts);
els
J [* aII{non GWL el enents passed on down the filter chain wthout
:/rmd| fication
) parent. st art El enent (nanmespaceURl, | ocal Name, gNanme, atts);

If none of these tests, possibly the first one isn't true, the handling of this elementSart
is passed directly on to the parent ContentHandler in a chain of handlers. Figure 3.3,
“GMLDataSource SAX filters’ shows the data flow through the provided filters of the
DataSource implementation, where the top ContentHandler; GMLFilterDocument con-
trols the flow of data as shown in the program listing above. This fraction of code is
actually found in the startElement-method in GMLFilterDocument.

Figure 3.3. GM L DataSour ce SAX filters

zinterfaces zinterfaces zinterfaces zinterfaces: zimterfaces
XMLFilter EntityResohrer DTDHandler ContentHandler ErrorHandler
A A = A
_______ S ' 1

I

I

|

XMLFilkerimpl

GMLFitterDocument GMLFilter Geometry GMLFilterFeature GMLReceiver

+: GMLFilterGeametry +. GMLFilterFeature +. GMLReceiver —

The GMLDataSource works perfectly well when working with certain vocabularies,
but it does indeed fail on others, because it is assumed that naming is done using a cer-
tain convention. Another quick 'hack' is to be found in the class GMLFilterFeature,
where featureMember- and featureCollection-elements are recognized merely on the
basis of their names (Example 3.4, “Recognition of features in GMLDataStore”). The
comments of the author clearly indicate that this solution is not optimal concerning
how the elements are identified. As soon as the elements have different names, it is
uselessto utilize this code to find features!

Example 3.4. Recognition of featuresin GM L DataStore

[publ}_c v0|d startEl ere nt(Strlng namespaceURl, String | ocal Nane,

String gName, Attributes attsS) thro vvs SAXExceptlon{

if ; ocal Nane endsWthF1 Col | ecti on” L
/] if we scan the schemm this can’ be done better.

MESPACE = nanespaceURl ;

[/ _|og.de (starting a collection with nanespace " + NAMESPACE + " and
Name + al Nane) ;

) return;

/1 if it ends with Menber we'll assunme it's a feature for the time being

GML software

[l nasty hack to fix nenbers of multi |ines and pol ygons
I f (local Nane.endsWth("Menber")
I'l ocal Nane. endsWth("Stri ngI\/Enber'I‘\)E
f&& !iocal Nane. endsWt h(" pol ygonMenber")) {
o

By defining a schema where the features and feature collections are defined with
names not ending with 'Collection’ or '"Member', the features of the instance document
will no longer be available to the GML DataSource. Figure 3.4, “Extending and substi-
tuting featureCollection” shows a perfectly legal way to extend a FeatureCollection,
and at the same renaming it. If we want the GMLDataSource implementation to be
able to parse documents where this collection is present, some code altering is neces-
sary.

Figure 3.4. Extending and substituting featur eCollection

[]
=xaelement name="HaldenByMight" type="HaldenByMight Type" substitutionGroup="gml:_FestureCollection' -
[-]
=xz complexType name="HaldenByMight Type"=
=xzcomplexCortent=
=xsextenzion baze="gml: AbstractFestureCollectionType"=
=xzattribute name="lastupdated" type="x=z dateTime" uze="optional"i=
=lxzextension:=
=hes complexContent=
=ixzcomplexTypes

(-]

The primary drawback of implementing access to your data using DataSource-inter-
faces, is that one DataSource only provides access to one feature type. There are also
some issues regarding performance, as al the features are loaded into memory. The
implementation is therefore best suited for small data sets. Access to subsets of fea-
turesis possible by implementations of Filter or Query.

GeoTools DataStore

DataStore supersedes DataSource as interface for data access. It provides all the basic
functionality found in DataSource, along with many improvements. The most obvious
improvement when it comes to functionality, is support for multiple feature types for

28

each DataStore. This makes it possible to read multi-feature documents using one
DataStore.

DataStores a so improves performance when working with a big data sets. Features can
be loaded and manipulated one by one, not exhausting limited memory resources. It is
still possible to gain access to feature collections, as in-memory structures if this is
needed.

For working with features, GeoTools provides two interface specifications. Expression
and Filter. Expression-classes are implemented to perform calculations on features, re-
turning a generic object. Expressions are usually composed of other Expressions. Fil-
ters are implemented to be able to extract features that satisfy certain criteria. Filters
can perform tests on attributes and geometries of features, and reports back whether a
feature satisfies the filter condition or not. A Filter can be wrapped in a Query, to
provide more complex conditions. David Zwiers has started the devel opment of a GML
DataStore, the project was recently added as a branch of the GeoTools project. The
GMLDataStore is intended to be OGC GML 2.1 compliant. Most likely the DataStore
implementation will make use of schema parsing in order to interpret document con-
tent, but the details are still unknown.

Cleopatra

This project is a proof of concept for generating Scalable Vector Graphics (SVG) on
the fly from GML. It is intended to act as a publishing layer between a GML data
source and the end user. The conversion process in parameter driven and
customizable] CLEO]. The process of publishing generic GML data as SVG is not
automatic. The plugin requires a configuration settings XML file, defining XPaths to
indicate which features and non-spatial data fields to expose. Example 3.5,
“Configuring Cleopatra’ shows a small fraction of the configuration file for Cleopatra,
where XPaths to specific parts of the document are provided. For each application
schema and document, this configuration file must be present for Cleopatra to parse the
data correctly. By pointing to external Cascading Style Sheets (CSS), the features' geo-
metries are styled for viewing.

Example 3.5. Configuring Cleopatra

[<ill]this has various GV application Schema specific xpaths -->

<settings: xpat hs>

<I-- absolute xpath that will find features -->
<settings:feature>//osgb:topographi cMenber</settings:feature>
<I'-- relative xpath fromfeatlre to feature type -->
<settin s:featureTKp >./*F1]/osgb:thene<[sett|ngs:featureType>
<I-- relative xpath fromfeaturé to attribute data--
<settings:attributeData>./*[1]/*[text() and count(text()) = 1]
</settipgs;attributeData>
<l-- relative xpath fromattribute data to data name-->
<settings:attri but eDat aNane>l ocal - name()
<[settings;attributeDat aNane>
<l-- relative xpath fromattribute data to data val ue-->
<settings:attributeDataVal ue>. /text()
</settings:attributeDataVal ue>

</seit|ngs:xpaths>

The configuration files for Cleopatra are pretty thorough and complicated, which aso
makes the viewer very customizable. There is no tool provided for creation of such
files, so they have to be made manually. A schema parser could provide support for re-
cognition of generic feature types and properties so that the creation of these files
would be easier. Treating feature- and property types based on their ancestors could
also be possible in applications like Cleopatra. One example is styling, where every
feature, which is descendant of a certain GML feature type, should be styled in a cer-
tain way. This relationship is only possible to recognize through a schema analysis.
This is a Figure 3.5, “Cleopatra demonstration screenshot” is a screenshot from a
demonstration found at Schemasoft's homepage.

Figure 3.5. Cleopatra demonstration screenshot

GML software

~SchemaSoft Map Demonstration——

50
~— -
“'\,‘ — —
\‘x‘ |
\ |
\‘._ II
[
|
|"h' N —— Il
| T TT———
| T— -I- [
i | T | : | \ Buildings: Area value
| | | 1 |
— | | ,'II | | [! B show map colaring
& 1% Sl e e |] ~t
\\J_ ! 'If B (r) | e Of— Ny o
— Y \/ | f | LS| y L . =T
LAV alaliny |
.'/ <
r 1
A '
\\\.
\\
Y
Y
Y
Y
\ -
\ B G0-80 0%
\ \ . B &0-100 22%
\ =100 50%
% 1
"-_._ Legend
!
W /
N\ Y / Land
"-..' Water
Y b Buildings
e N, \ Roads-Tracks-And-Paths
Rail

GO Loader

Snowflake Software Ltd.[SFL] has developed specialized software for working with
GML data. They offer a free Ordnance Survey (OS) MasterMap [OS] viewer that is
made specifically to work with data based on the OS application schemas. Ordnance
Survey is a government department and executive agency, providing a broad range of
products and services. Surveying and topographic mapping of Great Britain is the basis
for their activities, one being digitally storing the geospatial data and offer it as OS
MasterMap GML. Even though the free viewer only supports OS MasterMap, they of-
fer aviewer for generic GML, but not as freeware.

The GO Loader is developed to serve the purpose of "modeling, loading and mainten-
ance of content delivered in GML into an Oracle Spatial / Locator database.". The

31

most exciting fact about this loader, is that it analyzes the application schemas for the
instances to be loaded, and therefore it does not require any additional meta data, to be
able to parse and load the data into the database. Since thisis commercial software, we
can only speculate how the schema parsing is done, but the process is most likely done
by utilizing some implementations of XML parsing libraries, like the lightweight SAX
or the more complex DOM. An aternative, possibly combined with the mentioned
ones, isof course XSLT.

As correctly pointed out on Snowflake's website, there are numerous benefits of this
approach. The ability to read new sources of GML without writing any kind of transla-
tion software or input/output templates, might be the most significant advantage over
other similar tools. Especialy if you are frequently loading GML data, based on un-
known application schemas, you will benefit over and over again. Just as a growing
number of other geospatial software, GO Loader is written in Java, making it possible
to execute it on a number of platforms.

Chapter 4. Handling arbitrary GML
sources

The preceding chapter hopefully gave insight to some of the applications somehow de-
pendent on utilizing GML for various purposes. They are all exposed to the problems
related to the handling of generic GML. The implementers have all chosen different
strategies for the task, some more reliable than others. This chapter covers and dis-
cusses the problems that arise when you programmatically want to work with on be-
forehand unknown vocabularies of GML. Additionally, it covers profiling of GML, a
well-known strategy to restrict the loosely defined GML rules regarding both allowed
structure and content of documents.

Handling arbitrary GML

GML application schemas are developed from the base GML schemas, replacing ab-
stract types and declaring substitution groups. The development is often done in layers,
leaving the final application schemas with datatypes extending or restricting base GML
types indirectly through other application specific types. This naturally increases the
complexity in finding back to the source, even though it is clearly feasible when con-
sidering for example schema validators. These make sure that instance documents con-
form to their schemas, meaning that they validate the grammar against the base data

types.

Developers of applications and toolkits such as GeoTools and JUMP strive to make
their software support as many data formats as possible. GML2 is difficult to deal with
in a generic way, because the elements defined in the schemas feature.xsd and geo-
metry.xsd, are not sufficient and not intended to serve as the only schemas for instance
documents. They define a meta-language, to be used as a basis for other another meta-
language. Elements like Feature and _FeatureCollection and their corresponding
datatypes are abstract. This means that it is a requirement for application schemas to
define their own datatypes, deriving and substituting for these. Handling arbitrary
GML sources in a generic way is not atrivial task, nevertheless, it should be a sought
after functionality in many programs, considering e.g. some of the applications presen-
ted in Chapter 3, GML software . Most systems does handle one GML vocabulary
only, nevertheless, this does not necessarily mean that the data format is not interesting

33

Handling arbitrary GML sources

in some other context than that served by this specific application. Open source toolKkits
for analyzing GML schemas could provide some assistance for application developers
to make software less vendor specific. Figure 4.1, “Basic GML application schema’ il-
lustrates how a simple GML 2.0 application schema is designed. Through utilization of
the base GML datatypes, found in the two schemas feature.xsd and geometry.xsd.

Figure4.1. Basic GML application schema

-\:-:irrpm[b-b-
r—-—=--"--""""""""""""""""""""""""""== =
: “<Import=> :
M I
| | ' |
smetaclasse =<import=> ametaclasss i N
feature.xsd geometry.xsd links.xsd
|
|
|
<<import== I
|
e
|
|
|
smataclasss
application schema
s

|
=<lnstance of>>
|
|
|
|
]

GML application instance

A simple GML application schemaisillustrated in Figure 4.2, “HaldenByNight applic-
ation schema’. This schema is created to model the places to go when day turns into
night in the small town of Halden. The element HaldenByNight is the root element of
application documents, making it an instantiation of a FeatureCollection complex type.
Figure 3.4, “Extending and substituting featureCollection” shows how this type is de-
clared in the schema, namely as an extension of gml: AbstractFeatureCollection, where
GML is the namespace abbreviation for the GML-namespace. The element is declared
to substitute for the gml: _FeatureCollection, in accordance to the GML 2.1.2 specific-

34

ation. Feature elements and indeed other FeatureCollection elements are enclosed
within the non-abstractgml:featureMember element or possibly a specialized feature
member type, deriving FeatureAssociationType. The fact that a feature collection leg-
ally can be nested inside another featureCollection, makes it clear that schemas and
thereby documents can be built in a recursive manner. This makes GML very flexible
considering how the geospatial data can be modeled, simplifying grouping of related
element in an intuitive manner.

Figure 4.2. HaldenByNight application schema

HaldenByHight Type

r
1
1
1
1

HaldenByHight E}

k]
=
2
=3
S
=
S
2
@
&
-1
LI

Instances of the HaldenByNight-schema is valid GML2, and is therefore also valid
data for the Cleopatra viewer, the JUMP application presented in Chapter 3, GML soft-
ware, or any other application somehow able to work with arbitrary GML. However,
these applications rely on configuration files to be able to handle the generic GML.

Handling arbitrary GML should be straight forward when considering the close rela-
tion between various application schemas, but it turns out not to be. Significant GIS
vendors have addressed the problem with different solutions to the problems. Profiling,
as discussed in section the section called “GML profiling” is one of them, particularly
addressed by Environmental Systems Research Institute (ESRI)[GPR] one of the world
leading vendors of geographic information systems. As earlier mentioned, documents
can be defined in a recursive manner, meaning that a feature collection may be nested

deep inside a hierarchy of other feature collections. This loose restriction on structure,
provides the freedom to indeed model your documents recursively. One of the advant-
ages of this doing this, is that the features and feature collections, can be grouped in ac-
cordance with their relationship and their role within the entire structure. It has been
pointed out that a great deal of flexibility, restricts and makes it complicated to work
out guidelines for interoperability between GML sources.

GML profiling

A profile of GML is a restriction of the basic descriptive capability of GML. These
profiles may either be defined by construct of additional schemas, or as procedural
agreements within an information community[GML20]. Additionaly, a GML profile
may not be defined so that it goes beyond the constraints of the GML specification.
ESRI has taken the initiative to make a common profile for GML. Through meetings
with members of the OGC, a software extension, The OGC Interoperability Add-on for
ArcGIS, has been released to extends their desktop suite, ArcGIS, to act as a client for
OGC WM S-and WFS-based services. By using this extension, GML data fitting a cer-
tain profile can be exchanged between different vendors. Among restrictions coerced
through the profile i GPR]:

* A FeatureCollection should not include endless levels of other FeatureCollection
elements

» A FeatureCollection should include a homogeneous set of features.

» Features should contain well-defined data types.

There is no doubt that by profiling GML, and thereby avoiding unnecessarily complic-
ated application schemas, implementing tools for interoperability between systems is
less complicated. Profiling is however restriction of the abilities of GML, and thereby
the application schemas. Pitfalls may of course be avoided if developers adhere to a
GML profile. A profile defined by the creation of one or several schemas "on top of"
the base GML schemas, can be viewed as a meta-dialect of GML. To describe a sys-
tem as generic because it accepts GML in accordance to one or several specialized
GML profiles, is of course not correct, even if the profile is widely agreed up on by
vendors. A generic parser must be able to read and possibly write arbitrary sources, as
long asthey are valid against the base schemas. Nevertheless, widely accepted profiles,
both the physical and normative, like the ones agreed up on by OGC, have been made

Handling arbitrary GML sources

on basis of field experience and addressed problem issues. Therefore, when designing
application schemas, developers should at least keep topical profiles in mind as
guideline to reduce complexity and encourage interoperability.

Specialized GML profiles could successfully be introduced for particular fields, where
certain modeling features of GML is futile. By such standardization, interoperability
and homogeneousity, is aided. At the same time business specific structures and mod-
eling rules could be introduced into a profile, to make it more specialized towards the
field of interest. For instance transport planning profiles or environmental computing
profiles, can provide specialized functionality commonly needed for utilizing systems.
On the other hand, developing a generic GML profile plunders some freedom and flex-
ibility from GML. As long as there are no such restrictions introduced into the GML
specification itself, generic tools must be able to interpret all profiles of GML.

Project OneMap

Project OneMap is hosted by and coordinated from @stfold University College, Faculty
of Computer Science, Halden, Norway. By combining efforts from several contribut-
ing parties, we hope to collect, manage, process and provide global, comprehensive
and detailed geospatial data, free of charge. The project is designed with three main in-
frastructure components ONE].

The Gateway is the main entry point for users of the service. "The Gateway is a
browser based user interface, for retrieval of OneMap data. Currently this imply a
SVG/Javacript implementation, which provides simple but sufficient navigation and
guery possibilities." [GED], The Gateway is based on the same principles presented
the OneMap GML EditorfOME]. Using the SV G editor, changes can be carried out on
the SVG model before they are submitted to the central server for update of the source
data.

Figure 4.3. OneM ap: Gateway screenshot

37

MNavigator

Legend
|
-
m N2

-
- m vaterbody?2

-
= A5

Finished loading data GML data Refrash x = 30.414215190437748 y = 60.36043818352114

The Clearinghouse represents the modul es related to data submission. Datais collected
through contributions from a wide variety of parties. Clearinghouse focuses on tasks
concerning building, updating and revising the OneMap geodata. The main objective,
namely to accumul ate enormous amounts of geodata, covering the entire globe, is done
in an uncoordinated, consensus driven manner, based on the principles of peer review
[ONE].

Finally, the heart of OneMap, the Repository. This is a distributed storage structure,
where a huge set of XML files are stored and managed to efficiently support retrieval
and updating the geodata comprising the world map. Each feature type, e.g. roads and
buildings, are presented in a global logically consistent layer. These layers are prepro-
cessed into a level-of-detail hierarchy, subsequently they are tiled by adaptive quad-
tree subdivision, so that the size of each tile is below a certain threshold.

Figure4.4. OneM ap: Repository

| |
Level 1 R J—'
Level 2 : !
Lm S
.| Level n T

Obvioudly, the choice of using GML as OneMap data exchange and storage format, is
based on the fact that GML is a widely adopted, open standard specifically designed
for the task. The gathering of data from several different sources would have been im-
possible if the system required data on some sort of proprietary format. Even a request
for data in conformity with a certain GML profile, could imply that submitted data
from important contributors, would require time-consuming transformation to be valid.
In such a system, the best solution could be to store all GML data as close as possible
to its original format as possible. Dependent on in what extent the system is able to
handle arbitrary GML, this can be an option or not. Thiswould require efficient and re-
liable processing and analysis of the data, a very difficult task compared to working
against one GML application schema only. When grouping data in layers, e.g. roads,
buildings, rivers etc., like done in the OneMap system, human interference is required
to recogni ze these features/feature collections. In such a system, a GML dictionary cre-
ator can be just the tool needed for the treating GML generically.

Lazy Integration

There are two main aspects of the integration methodology in OneMap; geometric and
semantic integration. The former ensures geometric consistency when combining data
from diverse sources which describes (parts of) the same geographic entity, e.g. when
building a global coastline based on chunks from national mapping agencies. The latter
is to classify contributed features according to a common Feature Type Catalog. The
OneMap Feature Type Catalog is built incrementally governed by peer review, and
may be view as a thesaurus or a simplified ontology. More details on related ap-
proaches to semantic integration are found in[OBI]. The geometric integration corres-
ponds to the problem often referred to as map conflationfCON]. In the following we
assume that each submitted feature or feature collection may be classified according to
the OneMap Feature Catal og.

Handling arbitrary GML sources

The goal isto design a general strategy where we model each feature class in the Fea
ture Type Catadog as an encapsulating GML class, substituting for the
_IntegratingFeatureCollection, which again is substituting for the abstract
_FeatureCollection element. The integrating feature collection corresponds to a tradi-
tional map layer. Further, we want to restrict a given OneMap integrating feature col-
lection to contain only the kinds of features that are considered to be of the same class
according to the Feature Type Catalog. A given integrating feature collection, e.g.
Buildings, may then contain a set of external feature types defined in the schemas of
the contributing sources, and only these feature types. Another design goal is that is
should be easy to include a new external feature type in a given integrating feature col-
lection.

A result of this method is that each original feature is preserves in the original state.
The only alteration made to a contributing data set is that the feature collections may
be disassembled and distributed to the appropriate integrating feature collections. The
approach may be viewed as a minimal version of schema integration as known in the
domain of federated databaseq FED)].

The theory of data integration is simple, namely to include features and GML typesin-
to OneMap system. A feature are supposed to be included into an instance document as
is, meaning that the system have to be able to handle all features generically. The
schema standard and namespaces does of course allow us to import as many
namespaces into our application schemas as desired, so the focus is on integrating the
datain away so that the system can make use of it.

The strategy for structuring the datain the system is as layers of related features. These
features are not homogeneous in terms of their GML definition, nevertheless they are
heterogeneous representations of the same real world objects.

Figure 4.5. Integrated schema hierarchy

Figure 4.5, “Integrated schema hierarchy” show how the schema hierarchy for
OneMap feature integration is constructed, providing one schema file for each layer.
Thisis naturally just a question about modularization, since all integrating schemafiles
are in the same namespace. All integrated features, are imported from different vocab-
ularies. There are no non-spatial feature types defined in the integration schemas, all

40

are actually integrated from different namespaces. Feature member membership are re-
stricted using the 'barbarians at the gate' approach, presented in the GML2 specifica-
tion, where a FeatureAssociationType is restricted to contain an abstract or non-ab-
stract feature, which other elements must substitute for in order to be a child of the as-
sociation.

As an example, consider Figure 4.6, “River fragments constituting complete river”
where ariver is represented as a feature collection, consisting of features being frag-
ments of the complete river. The membership of ariver is restricted through the integ-
ration schemas, where features qualifying as a fragment of a collection are registered.
When creating instance documents we can now integrate features from other docu-
ments directly into our own document. This can be done by copying them or possibly
by allowing the use of linking to other documents in the integrating schema.

Figure 4.6. River fragments constituting completeriver

This integration of features can give an extremely rich feature set. Schema anaysisis
an important tool for any such application. The next section discusses how to imple-
ment the schema analysis library to most efficiently be able to utilize it in applications
where this kind of functionality is needed.

Implementation discussion

Being able to analyze and handle arbitrary GML could bring a good application to the
next level. Some applications are preconfigured to read a set of known vocabularies,
and often this is sufficient. However, many applications could make great benefits
from being able to interpret new application schemas and thereby being able to work
with their instance documents. Such functionality could be made available in a number
of ways, including e.g. a Web Service or implemented in a code library. No matter the
final solution, it should be kept in mind that the implementation should be portable and
usable in any type of application.

Converting application schemas and docu-
ments

By defining and implementing a method to convert and transform application schemas
and instance documents to a common format, we can store the converted instance doc-
ument in our own proprietary format. We can identify restrictions, extensions, substitu-
tion groups and other relevant information, together with the transformed version of
the documents. This way applications can be programmed to access the data directly.
Now applications can utilize "any" GML, through the converted documents. Fig-
ure 4.7, “ Application using converted GML-documents”.

Figure4.7. Application using converted GM L -documents

Handling arbitrary GML sources

>

Converted GML Instances

<<populates>=>

Application utilizing
common GML.

Application converting W
application documents J <<analyzes>=>

to common dialect.

CCCOnveriss>

‘-B_‘b‘_[_\ w<jpstancas ofxe= ﬁ;_‘b‘_‘l‘

“-ﬂ,,_h___________________,/ —

GML Document Instances GML Application Schemas

XML Schemas provides a great deal of flexibility speaking of structure and content in
the instance documents. We can build schemas able to store the semantics within a
range of different document. These can be designed loose, meaning that it is possible
for users and applications to add aimost any valid XML content, still keeping the entire
document valid. The drawback of such design, is the fact that it proves complicated to
transform or interpret the data, when the content of a final document is unpredictable

43

to parsers or other utilizing applications.

With this approach, the conversion process would be minimal, leaving the interpreting
to aparser or interpreter, thus thereby making the coding of these more complex. Much
of the original data from the application schemas could be kept as found, merely
adding information-el ements in the document, describing the origin of datatypes.

The option to alter instance documents directly, is not optimal. First and foremost,
changing schemas to make room for meta information inside the documents, is like
denying the existence of available meta information in the schemas. This method "cop-
ies" the structure information into the document, duplicating it, but possibly making it
more accessible and processed for utilization. This requires that each instance docu-
ment will have to provide this information, even though they descend from the same
application schemas as an unlimited amount of other documents. Small changes in the
schemas, will also require the reprocessing of every document, to make them up to
date. Finally, you aso have to change the application schemas, to make room for a
meta data section, if you want the documents to validate.

As a solution meant to act as a foundation for applications, to able to deal with generic
GML, itisapoor. Converting original datato a certain proprietary format, means that
any such "generic" parser, must be able to deal one profile of GML only, and to char-
acterize it as generic, would be somewhat incorrect. In addition, the conversion of all
data going into a such parser, will take up an unacceptable amount of resources both
speaking of storage and processing.

Constructing a GML mapping dictionary

By analyzing the application schemas, the structure of the instance documents can be
stored. Aslong as the schemas is not altered in any way, the instances are bound to the
structure and rules of the basic GML2 schemas, specialized by the application schem-
as. If provided a code library for this purpose, applications can access unknown dia-
lects of GML, treating application specific data types with knowledge of their origin. A
solution may be to implement a query-interface, for applications to utilize if origin of
datatypes is of any importance to the application Figure 4.8, “Application utilizing a
schema dictionary”. This approach is much less critical than a conversion of schemas
and documents. A dictionary can be accessed when needed, providing the desired in-
formation about the application GML types. No conversion is necessary, just direct or

gueryable access to the a mapping dictionary.

Figure 4.8. Application utilizing a schema dictionary

Application

Genericar@pplication

Senver or interface utilizing ML
from the datastore, recognizing or E

Mapping Cictionany
Dictionany Inquing Interface

converting instance documents..

Crirect Accessto documents Schemalanalhyzis

T T Z2instance0f=>

GhL Document Instances

Ghil Application Schemas

We can try to see this in connection with the OneMap gateway, if this one time in the
future would utilize generic GML from the repository (see Figure 4.9, “ Retrieve gener-
ic GML from repository”). This design is somewhat different than the current one,
where layers of roads, coastlines etc. are found in separate files. Here we can imagine
the files from different contributors stored as provided, possibly preprocessed into
smaller files because of the support for level-of-detail display. When the gateway re-
guests the coastline layer from the repository, the repository first inquiries a mapping
dictionary, for type-mappings. A layer dictionary, have to be made manually, by se-
lecting the features or feature collections (traced by mapping) belonging to each specif-
ic layer. When this information is gathered, the instance document can be filtered, be-

Handling arbitrary GML sources

fore the layer features inside the desired area, are returned. Access to the mapping dic-
tionary, will probably also be necessary for the viewer, to sort out what kind of geo-
metry types, features have.

Figure4.9. Retrieve generic GML from repository

onemap:gateway onemap; repository onemap:querylnterface ing:amiT: jonar onemap:laverDictionary

showFeatures{area, layers, lp-d]

T
| |
| |

getFealures(area, layers) | 1

h

|
|

getFilterConditions(layer)

P

getAppFeatureTypes()

featureTypes
& __________
|
|
filter{featuraTypes, layer)

validFeatures]_J
k——————————= t+-—-—————-

validFeatures

features
- ns
|
|

I
|
I
I
I
I
> processForDisplay(featuras) |
I
I
I
I
|
I
I

-

The primary source for document information, are of course the application schemas.
Provided that al schemas, both the ones describing the application namespace, and
those imported into the target namespace, are available, we can parse the schemas to
get al the information we need. An XML application, can consist of one or severd
schemas, all with a common target namespace. Several schemas, define the Ordnance
Survey MasterMap namespace, with the OSDNFFeatures.xsd as root, including dir-
ectly or indirectly all the additional ones. Figure 4.10, “Ordnance Survey MasterMap
schema structure (OSMasterMap User Guide)” [MMUG]. Dividing the target
namespace definition into severa schemas is merely a method to organize the schemas
in a more structural way. Related types and elements, e.g. those constituting an ab-
stract, application specific layer, can be found within one file. Alternatively, different
structures, like simpleType and complexTypes, can be split into individual files. Thisis
naturally one of the facts that we have to be aware of, especially considering that even
though the root schema is available, other included schemas might be inaccessible. We
might therefore have a situation where we have a partially available vocabulary.

46

Figure 4.10. Ordnance Survey MasterMap schema structure
(OSMasterMap User Guide)

Schema structure

xmns : xlmk

whirks zcsd

e

fostuves 2esd

xmns :osgh

mpost

QEGeometyTopology xsd

 inchde

databypes.dd

f

EMLSchemadtd

Y

08 SmmpleTypes xsd

O5Meanwes xsd

DS CueryResult osd

inchde . | inchide

D5ComplexTypes xsd

1 inchude

OFDHFFeatmes xsd

AML namespaces

XNk — hifpdaanan.w3.0rg/1999%1nk

gml — http:/www.opengis.net/gml

osgh — htfpy/iwww.ordnancesurnvey. co.ukxml/nameaspaces/osgh

xml = httpeweaw w3.org ML 998/ namespace

mport

There are a number of GML vocabularies available (e.g. OS MasterMap, Top1ONL
etc.), in some cases defining, more or less, the same type of features and geometries.
Considering for instance that a geometry property, defined in another GML vocabulary
fits your needs, you can benefit from the import-mechanism. By importing a
namespace, the constructs in it, will be made available to the importing schema. Thisis

the only way to make use of a schema with a different target namespace than the one
you are defining. If we want to make a complete parsing of a vocabulary, it is aso ne-
cessary to parse the imported namespaces, to find out what kind constructs therein is
utilized by the importing schema.

A GML vocabulary is fully defined through the it's referenced schema. This schema
may, as mentioned, have import and include-statements, to utilize constructs from oth-
er namespaces (import), or possibly include other files from same namespace
(include). For parsing and working with the schemas, we can choose any technology
suited for XML document access. However, it is likely that we need to access the
schema constructs in a random manner, meaning that ordinary SAX-parsing isn't the
right tool for thisjob. DOM however, could prove quite perfect for the job, considering
that we will benefit from the advantage of an in memory structure of the schemas. In
addition, you will probably not find a schema or schema hierarchy so extensive, that
this will fail due to lack of computer resources. Having said that, there are already
available code libraries to access and explorer schema vocabulary.

XML Schema API

The XML Information Set [PSV1], often referred to as the InfoSet, is describes as "a set
of definitions for use in other specifications that need to refer to the information in an
XML document”. The infoset describes what kind information from an XML docu-
ment that should be reported from a parser. A parser reporting the constructs described
in the infoset, is 'in conformity' with the infoset. In addition to a document information
item, revealing information about the document as a whole, the infoset consist of ele-
ment information items and attribute information items, one for each and every ele-
ment and attribute in the document. There are also a number of other items, describing
other possible constructs within a document. The infoset is available through DOM
Level 3 Core, ergo a DOM3-parser can provide information about the document, de-
scribed in the XML infoset[XIS].

XML parsers, supporting schemas, will upon request, validate schema-based docu-
ments. This resultsin an extended infoset, capturing validation results and type inform-
ation based on how elements and other constructs are defined through the schema. This
augmented infoset is called the post-schema-validation infoset (PSVI) [PSVI], but even
though the information in this infoset is useful for many computing tasks, there was
until recently, no common interface specification for accessing it. In December 2003,
IBM and X-Hive submitted the XML Schema APl [SAPI], a specification that defines

Handling arbitrary GML sources

an interface to dynamic access and query of the PSVI. In addition it defines an inter-
face for loading XML schema documents. The XML Schema API is platform -and lan-
guage-neutral, like DOM and SAX, and is already implemented in the Apache Xerces2
Java Parser and Apache Xerces C++ Parser. The information found in a schema, is of
course crucial information for 'schema aware' applications, e.g. advanced XML editors,
schema editors or any other thinkable application in need of XML metadata informa-
tion. Using the XML Schema API to access either schemas directly, or through a docu-
ment being parsed, we can build schema aware applications without the requirement of
building our own schema parser.

By using the XML Schema AP, it is possible to build base-type-aware libraries for
GML parsing. For efficiency, data being of importance to the application can be stored
and accessed on demand. Using Xerces2 Java Parser to parse XML and access the
PSVI, we have a very powerful framework for working with GML documents, op-
posed to for example using a 'lighter' implementation where we anayze the schemas
using XSLT. Ideally, we will see a very flexible framework for analyzing and working
with arbitrary GML. The drawback is that the specification is rather complex, which
will make it very time consuming to program against the specification. Example code
is aso rare, and there is no question that implementations of this API is still pretty un-
documented and untested.

It should be noted that this API is for accessing XML Schemas in general, and offers
no functionality specific for GML or any other profile of XML. Using this an imple-
mentation of this API, will serve as a foundation for the schema specific constructs,
while all GML logic must be implemented from scratch. Galdos Systems has de-
veloped a Java-based API, GML4J [G4]], to facilitate working with GML. This project
is open source, with a beta release available for download. It seems like the project is
in hibernation, considering that this beta is dated April 2, 2002. In addition, document-
ation is scarce, likewise open source implementations utilizing the API. Considering
these facts, it was decided not to delve deeper into using this project, even though it
surely could offer great functionality.

Parsing schema with XSLT

The most lightweight method to parse the GML applications schemas, isto use XSLT,
transforming the information in one or several schemas, into more accessible meta-
information encapsulated in one mapping file. Thereafter, additional XSL transforma-
tions can be applied to an instance document, to provide desired output. If this second

49

transformation is made for generic GML, is up to the programmer, but a mapping file
will provide up-to-date information about the schemas. A probable use-case would be
a transformation made for one certain vocabulary of GML. By parsing the schemas,
and transforming the documents using the mapping file, small changes and additional
constructs extending the original schemas, could appear ‘transparent’ to the transforma-
tion because it can threat new types according to what kind of parent type it derives.
Mapping files can easily also be parsed into data structures and utilized in GML-
applications, no matter the implementing language.

The Last Call Working Draft of XSLT 2.07?? was released February 15, 2004, and ac-
cording to the document, the working group is planning to advance the specification to
become a Candidate Recommendation. This version represents significant increases in
capability of the language, also considering that XPath 2.0 [XP2] is developed along-
side XSLT 2.0, and will be a part of XSLT 2.0 functionality. Perhaps one of the most
significant changes, considering XSLT for our purpose is that while XSLT 1.0 com-
pletely ignored all element information, obtainable from a DTD or Schema, XSLT 2.0
documents takes into account such information.

GML design issues

So far the gateway only utilizes one type of GML, OneMap GML. You would prob-
ably never see atotally generic viewer for GML, the reason is simply that it is too easy
to design GML in a 'proprietary’ way, not considered for common purposes. For in-
stance, best practice guidelines for GML application design, recommends that applica-
tion types derive as specialized GML base types as possible. Designers are however
not bound to this guideline, meaning that they e.g. can build their own LineString-type
extending the general AbstractGeometryType, instead of using or deriving the provided
gml:LineStringType. A schema aware parser, will then be able to tell that it is dealing
with a geometry type, but not be able to tell how such atype should be dealt with. This
might prove as the main obstacle, making a generic viewer for GML. In some cases the
necessary base geometry types are not available, thus requiring designers to build their
own types. Drawing such types without any human interference, will probably not be
possible. However, they can be identified by a GML generic application, making the
schema parsing valuable, in spite of the fact that it is not totally generic.

When designing GML, properties and instances are interleaved, meaning that "a fea
ture instance contains feature properties, each as an XML element whose name is the
property name". Furthermore, "these properties contains another element, whose name

is the property value or instance; this produces a 'layered' syntax in which properties
and instances are interleave". To distinguish properties from instances, instances of
GML classes starts with uppercase letter, while properties start with lower case. Fig-
ure 4.11, “Interleaved instances and properties’, shows how the root element Halden-
ByNight is written with uppercase first letter, because this is an instance element of a
FeatureCollection. Further, the element has some properties, one being a
gml:featureMember, holding another element instance, namely a application specific
FeatureCollection, Surrounding, with additional properties and instances.

Figure4.11. Interleaved instances and properties

=7ueml version="1.0" encoding="UTF-3"7=
=HaldenByMight [..]=

=gml: festureMember=
=Surroundings=
=gl boundedBy=
=gml:Box=
=gml coord=
=gl =0 S=igmlx=
=gml Y =05<gml Y=
=Jgml coord=
=gmlcoord=
=gl H=dd=igml: 2=
=gl = 36=igml Y =
=fgmlcoord=
=jgmlBox=
=igmlboundedBy=
=gl festuretember=
=River=
=gl name=Tista=fgml name=
=gjmlcerterLineCOf=
=gmlLinestring=
=gmlcootdinates=5.00.5,15.058.0,19.014.0, 240 200, 30,0 22,0, 32.0 260, 34.0 36.0=fgml coordinates:=
=gl LineString=
=fgmlcenterlineOf-
=River=
=fgml: festurehember =
=/surroundings=
=Jgml: festureMember =

[..]
=MaldenByMight=

What kind of information is significant for a schema parser? First and foremost, for an
application wanting to utilize the GML, to e.g. build a SYG document, recognizing
geometric instances is crucia. This can of course be hard-coded in proprietary soft-
ware, but when dealing arbitrary GML, the element names vary, so does the type
names. Associ ation-types can represents propertiesin GML; in GML2, we find Featur-
eAssociation- and GeometryAssiciation-types. The featureMember-element is the only
represented FeatureAssociation, while there are a number of GeometryA ssociation-ele-
ments. Examples are pointProperty, polygonProperty, lineSringProperty, and some

Handling arbitrary GML sources

more descriptive, substituting for these; centerOf, extentOf and centerLineOf. Fig-
ure 4.12, “Definition of PolygonPropertyType” shows how the PolygonPropertyType
is defined, restricting GeometryAssociationType, dictating that an instantiation either
encapsulates a gml:Polygon or points to one, using a simpleLink, defined in the
XLinks-schema. Through associations, property values can be restricted and con-
trolled, for example by only alowing certain feature members inside specific feature
collections. Lack of document knowledge, will of course make it nearly impossible to
threat such GML.

Figure 4.12. Definition of PolygonPropertyType

=element name="polygonProperty” type="gmlPalygonPropertyType" substitutionzroup="gml. _geometryProperty"i=

[.]

=camplexType name="PalygonProperty Type"=
=annotations=
=dacumentation=
Encapzulates a single polygon to represent coverage or extentof
propeties.
=idocumentation=
=lannotation:=
=camplexCantent=
=testriction baze="gml Geometry AssocistionType"=
=gequence minCcours="0"=
=glement ref="gml:Palygaon"r=
=fzRguUences=
=gttributeGroup ref="xlink: simpleLink"f=
=gttribute ref="gmlremoteSchema" use="optional"!=
=irestriction=
=lcomplexContent=
=fcomplexType=

We do acknowledge that the geometric instances are very important when wanting to
do calculations or wanting to transform GML into e.g. SVG; without these it is im-
possible to do any kind of mapping onto a coordinate system. We do probably also
agree that subtypes of AbstractFeatureType and AbstractFeatureCollectionType are
important to identify, to make it possible to view content related to the geometric prop-
erties of features and feature collections. Furthermore, when all geometries are in
place, and the map is drawn, the non-spatial properties are important. GML instances
can be very rich on non-spatial content, related to different features or feature collec-
tions within the document. These must of course be available, read-only or not. Fig-
ure 4.13, “Retrieving additional information about a feature” shows an example of how
non-spatial properties can be retrieved, through accessing a feature, drawn out using
one or several geometric properties. Considering that project OneMap, has developed a

52

GML Editor, able to handle GML2 compliant documents, it would be very interesting
putting effort into making this editor able to handle generic GML.

Figure 4.13. Retrieving additional infor mation about a feature

Feature Information
Member of: HaldenByMight
Type: NightSiteBarType
Properties = http:www opengis.netigml =
no:hiof.onemap:gml-appschema:examplel = age limit; 18

beer_pnce: 35

The number of predefined geometric types and propertiesin GML2, is very limited. In
many cases, the types provided are sufficient to model the features, but this still leaves
room for defining custom property names, to further enhance the relation between in-
stances. In the HaldenByNight-example, a complex type, LinearRingPropertyType, is
defined, deriving gml:geometryAssociationType, encapsulating a gml:LinearRing (see
Figure 4.14, “Definition of LinearRingPropertyType’). Several similar geometric
property types are defined in the base schema features.xsd, however none encapsul at-
ing a LinearRing-element. By instantiating these geometric types, we define properties
like centerLineOf, location, coverage etc., ergo role names describing the relation
between features or feature collections, and their properties. The roles do not necessar-
ily hold a geometric property; the GML implementation specification describes an al-
ternate view of this object model, the functional view.

Example 4.1. Object moddl: functional notation

ext ent O (House) = Pol ygon
address(House) = String

Figure 4.14. Definition of Linear RingPropertyType

[..]
=xzcomplexType name="LinearRingProperyType"=
=xz annotation=
=xz documentation=
Encapzsulates a LinearRing, 1o be uzed az a geometric property
=rezdocumentation=
=fezannotation=
=xzicomplexContert=
=xz restriction baze="gml FeometryAzzocigtionType"=
=¥ sequence minoDocours="0"=
=xz element ref="gml:.LinearRing" minDOccurs="1" maxOccurs="1"r=
=lNz EeguUence:
=fxzrestriction=
=hzcomplexCortent=
=hzcomplexTypes

[..]

Maybe the functional view, is more intuitive, when discussing the importance of the
properties. As shown, property names vary, depending on what information they actu-
ally describe represent inside an object. A school-feature, can e.g. hold two geometric
properties, school YardExtent and pupil AreaCoverage, both encapsulating a Polygon. If
we want to transform the document into a SVG map, the best solution would probably
be to have a different style on the two polygons, maybe as a dotted line for the pupil-
AreaCoverage and as a filled solid polygon for the schoolY ardExtent. A set of OS
MasterMap style definitions, is found in the user guide???. These definitions are de-
fault stylesfor presentation of datawithin OS MasterMap. All definitions are presented
using SVG, and are can be used as reference for customers implementing their own
viewers. To sum up, it will be nearly impossible to style GML automatically, because
there are no way to know how the authors want to represent the features styling-wise.
Some OS MasterMap features do not have a styling, so some will not be drawn when

Handling arbitrary GML sources

the styling is applied. The reasons vary, there might be features that are more valuable
as structural data, than viewable data, for example.

Undoubtedly, converting GML to a graphical format, without any other styling than a
default one, will not serve use as avery attractive view of the data. Styling data, having
knowledge of it, will give a more correct and intuitive view of features, presenting
them in their correct role. At the same time, constructing a graphical view, maybe even
one where it is possible to edit the data, will be sufficient for many purposes. This can
be done by merely identifying the subtypes of the base GML types, mapping the geo-
metric ones to a coordinate system, and making it possible to access the data within a
features, through its graphical representation.

Cascading GML Analysis

For most users, applications like JUMP and Cleopatra are used to work with one GML
vocabulary only. Specifying the mapping files manually is therefore not a too signific-
ant obstacle to overcome. Nevertheless, if atool was available for users, enabling them
to analyze their schemas and at least do a partially automatic generation of these tem-
plates, this would be a significant improvement.

When GML isvalid, and all schemas are available from the URLs specified, informa-
tion about the origin of application specific types can be extracted from the schemas.
Schema parsing will thus be the primary source of meta information about GML
vocabularies. However, relying on the schemas being available, especially when ex-
changing data over the Internet, requires a tad of naive optimism. Most applications
that are meant to handle heterogeneous GML will probably succumb to broken schema
links. Is it so that unknown GML is worthless to analyze if the application schema(s)
are inaccessible? We introduce a method to handle heterogeneous GML that allows for
missing meta information, either as a result of broken schema links or incongruity
between schemas and instance documents. This method is cascading, invoking a chain
of methods to analyze a document's elements.

By combining the forces of structural knowledge of all GML documents, and the spe-
cific knowledge of each vocabulary defined through the application schemas, we will
now try to outline a robust solution for analysis of GML schemas and documents. The
framework is extensible to encourage implementations of new methods for document
analysis.

55

Schema analysis

Schema analysis is a pretty straightforward task, even though it is a cumbersome one.
Validating parsers do for example have to parse schema vocabulary in order to check
structure and values in an instance document. When dealing with GML schemas, we
can be certain that the vocabularies have a targetNamespace, telling us which
namespace is being described in the file(s). One file can contain the whole vocabulary,
or it may use the include element to bring in other files also describing the same (or
no) namespace. The schema can utilize the constructs of the included schema, just as
constructs within the same file. A good example of this modular design is the GML 3
schemas, where developers usualy utilize a subset of all the available schemas.
However, bear in mind that the includes are recursive. If you want to bring in elements
or types defined in another namespace, the files have to be linked to in your schema,
using the import element. This element allows for utilization of another vocabulary, by
specifying the desired namespace and the physical location of the schema file. Fig-
ure 4.15, “Defining a GML vocabulary” shows how the file components are related
when working with XML schemas.

Figure 4.15. Defininga GML vocabulary

xsi:schemal ocation

xsd:import

(different namespace)

xsd:include

(same or no namespace)

xs1 =" http://www.w3.0rg/2001/XMLSchema-instance”
xsd = "http://www.w3.0rg/2001/XMLSchema”

When analyzing schemas, the main objective isto find out how elements relate to other
elements, and possibly if they are directly or indirectly derived from a GML type. By
gaining easy access to this information, a utilizing application can treat elements de-
pending on their base type. Features, feature collections, properties and other elements
can be treated in a generic way, meaning that the application can work with heterogen-
eous GML documents in a sensible way. There is nothing mysterious about making a
mapping file of a vocabulary, but it greatly ssmplifies meta-data access for applica-
tions. All element declarations in the schemas are described in an XML file which con-
tains information about instance type, and possibly GML base type, substitution group
and GML base substitution group. The following example shows an element, Night-
SteBar, mapped from a schema into a mapping file. The instanceOf element contains
the name and namespace for the type this element is an instantiation of. This can be a
GML type, a user defined type, or maybe even one of the types defined in the XML
Schema vocabulary. If the element is only indirectly descending from a GML type, the
gmiDerivedType element contains the name and namespace (always being GML
namespace) of the type it derives from. The same logic applies to the substitutesFor
element and baseSubstitutesFor element. In this example it is obvious that NightSte-
Bar is a generic GML type, but the relationship is only visible through a chain of de-
rivation. Part of the analyzed schema is listed underneath the mapping file, to illustrate
how derivation is mapped to a TypeMap element.

Example 4.2. Type maps from example data

<TypeMap id="d1lel3">
<apPE emrent >]
<l ocal nane>Ni ght Si t eBar </ | ocal nane>
<nanespace>no: hi of : onemap: g : appschena: exanpl el</ nanmespace>
</ apPEI enment >
<i nstanceOr >]
<l ocal nane>Ni ght Si t eBar Type</ | ocal nane>
<nanespace>no: hi of : onemap: gm : appschena: exanpl el</ nanmespace>
</instanceC} >
<gni Der | vedTgpe>
<l ocal nane>Abst r act Feat ur eType</| ocal nane>
<nanmespace>ht t g: /I www. opengi s. net / gm </ nanmespace>
</ gm Deri vedType
<substit ut esFor > .
<l ocal nane>_Ni ght Si t eFeat ur e</ | ocal nane>
<nanespace>no: hi of : onemap: gmM : appschena: exanpl el</ nanmespace>
</ subst i tut esFor >
<baseSubsti t ut esFor
<| ocal name>_Feat u
<nanespace>nttp;/
</ baseSubsti t ut esFo
</ TypeMap>

>

re</ | ocal name>

lw. opengi s. net/ gm </ namespace>
r

Handling arbitrary GML sources

Example 4.3. Schema definitions of mapped types

Lxs Llenent name="Ni htSlteBar t ype="Ni ght Si t eBar Type"
subst|tut|onC}oup- ht Si t eFeat ur e" />
<xs: el ement name=" N|g tSiteFeature” ?n1 AbstractFeatureType"
abstract="true" substitutionG oup=' gn1 Fea ure'
<XS: conplexTyEg nane="N ght Si t eBar Type" >
<xs: conpl exCont ent >
<XS: extenS|on base="N ght Sit eType" >

</ Xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
<XS: conplexTyEg nane="N ght Sit eType" abstract="true">
nt ent >

<xs: conpl ex
<xs: ext ensi on base="gmnl : Abstract Feat ureType" >

</ Xs: ext ensi on>
</ xs: conpl exCont ent >
FIXSjconplexType>

When parsing an XML document into another one, XSLT[XSLT1] can appear as an
obvious choice of implementation language. Even though some operations can appear
cumbersome, XSLT offers what is required. XSLT 2.0 is at the time of writing classi-
fied asa'Last Call Working Draft' at W3C. The Saxon8 'basic' XSLT and XQuery pro-
cessor, implements the "basic" conformance level for XSLT 2.0, XPath 2.0 and
XQuery 1.0 processing[SX]. Using some of the functionality from XSLT 2.0 to simpli-
fy the implementation, we have developed a schema parsing XSLT stylesheet that
parses one or several vocabularies into a mapping file. The stylesheet can either follow
the schemalocation attribute value from an instance file, or alternatively a specified
'root' schema or amanually provided schemal ocation string provided as command line
parameters to the stylesheet. All elements defined globally or inline in one of the
vocabularies, are mapped by the stylesheet, traversing all linked schemas to find the
origins of application specific types.

A bundle with sample data and the transformation stylesheet is available for download
and testing from our web server[CODE]. We have tried to collect a subset of test data,
representing both simple application schemas, more complex ones with include and
import statements, and finally one representing Lazy GML Integration as it will be
used in Project OneMap.

First, our small ‘hello world' application schema and instance document. It models fea-

58

tures in the small city of Halden, Norway. The vocabulary is fully defined with one
schema file, and should impose no serious challenge for the schema parser. The ele-
ments are instantiated from types indirectly deriving and substituting for the base GML
types. As we can see from Figure 4.16, “Halden-by-night vocabulary mapping”, the
elements are mapped, typewise, but all restrictions and extensions done from the base
types are not information available from the mapping file. It isimportant to note that if
the schema-parsing is supposed to be used in an editing environment, the changes car-
ried out on the properties, have to be checked for validity against the original schemas,
before the data update is finalized.

Figure 4.16. Halden-by-night vocabulary mapping

<?xml version="1.0" encoding="UTF-8" 7=
- <bm:MappingDictionary xmins:xsd="http://www.w3.0rg/2001/XMLSchema" xml

xmins:xsi="http:/ /www.w3.org/ 2001 /XMLSchema-instance" xmlns:bm="no:k
stud.hiof.no/~haraldva/schema/MappingInterface.xsd" >
+ <documentNamespaces>

- <typeMaps:=>
- <TypeMap id="d1e7">
- <appElement>
<localname>=HaldenByNight</localname:
<namespace>no:hiof:onemap:gml:appschema:examplel </namespace>
<fappElement>
- <instanceOf:
<localname=>HaldenByNightType</localnamez>
<namespace>no:hiof:onemap:gml:appschema:examplel </namespace:=
</instanceOf>
- «gmlDerivedType>
<localname=AbstractFeatureCollectionType</localhame:
<namespace>http://www.opengis.net/gml</namespace>
</gmlDerivedType>
- <substitutesFor>
<localname>_FeatureCollection</localname >
<namespace>http://www.opengis.net/gml</namespace>
</substitutesFor>
</TypeMap>
<TypeMap id="d1e9">
<TypeMap id="dlell">
<TypeMap id="d1el13">
<TypeMap id="d1el5">
<TypeMap id="d1el7">
<TypeMap id="d1e19">
<TypeMap id="d1e23">
<TypeMap id="d1e25">
<TypeMap id="d1e78">
<TypeMap id="d1e80">
<TypeMap id="d1el05" >
<ftypeMaps>
</bm:MappingDictionary>

e S S TR T S S S

So, let's move on to a more complex dataset. A broad range of companies has em-
braced GML, and adopted it as their data interchange format. Ordnance Survey, the
UK national mapping agency, provides detailed, property rich, spatial and non-spatial
data of UK as GML. The schemas are naturally quite complex, even though they have
striven to keep them as simple and easy accessible as possible. The vocabulary is
defined through a number of schemas, al in the same namespace, logically modular-
ized (see Figure 4.10, “Ordnance Survey MasterMap schema structure (OSMasterM ap
User Guide)”).

Handling arbitrary GML sources

Since the elements in the OS MasterMap schemas, are all in the same namespace, the
issue here, is to navigate through the include statements, parsing the elements as they
occur. If the schemas are parsed directly from their location at the Ordnance Survey
web server, there is of course an issue of the reliability of internet connections and
speed. However, as soon as the schemas are mapped, the mapping file would answer
all guestions regarding the relation between the application specific types and the base
GML types. One of the OS MasterMap features, mapped to the dictionary format, is
shown in the listing underneath. From the mapping information it is obvious that the
feature is created in accordance with the best practice guideline, (indirectly) deriving
from AbstractFeatureType and (indirectly) substituting for _Feature.

Example 4.4. Typemap for OS M aster Map type BoundaryLine

[<Typ]el\/lap i d="d2e48" >
<aPpEI ement > .
<l ocal nane>Boundar yLi ne</ | ocal nane>
<nanespace>http://ww. or dnancesurvey. co. uk/ xm / nanespaces/ osgbh</ nanmespace>
</ appEl ement >
<i pnstanceO >
<| ocal name>Bounda
<panespace>http:/
</instanceCf >
<gm Der i vedTXBe>
<l ocal nane>Abstr act Feat ureType</| 0
<namespace>http://ww. opengi s. net/
</ gm DerivedType>
<sibst it ut esFor>
<l ocal nane>_Boundar yFeat ur e</ | ocal nane>
<nanespace>nttp://ww. or dnancesurvey. co. uk/ xm / nanespaces/ osgbh</ nanmespace>
</ subst |t ut esFor >
<baseSubsti t ut esFor >
<l ocal nane>_Feat ur e</ | ocal nane>
<panmespace>nttp: // ww. opengi s. net/ gm </ nanmespace>
</ baseSubsti t ut esFor >
[</ Tyioel\/ap>

ryLi neType</| ocal nane>
/ Wwww. or dnancesurvey. co. uk/ xm / nanespaces/ osgb</ nanmespace>

cal nanme>
gm </ nanespace>

If URLs in included or imported schemas are invalid, the information from these will
of course not be mapped. This means that there will be missing vocabulary type-maps
for elements declared in these files. In addition, type-tracking for element in available
files could prove incomplete if their type hierarchy isfully or partialy defined in these
files. When using SAXON as XSLT engine, an error message will be produced if the
document is unavailable, however this will not inflict on the further parsing of the
vocabulary.

Structural analysis

61

A schema analyzer may in some cases fail to provide a complete mapping file for an
application schema. There might be several reasons, including missing or unreachable
schema files and not entirely consistent schemas, leading to ambiguous or incomplete
results. In such cases we can attempt to parse the instance documents and analyze their
content based on the structure of the elements. The GML specifications will offer us
the basic rules, and the document can be parsed filling out missing pieces in the map-
ping dictionary.

GML documents should be built according with some basic structural rules (GML
2.X):

e The root element must be directly or transitively descended from
gml: AbstractFeatureCollectionType.

» Relationships between classes (e.g. features/feature collections) should be repres-
ented through associations and/or properties, possibly restricting membership. A
property can contain simpleTypes or other classes. This is the fundamental con-
struction model. Thereis no basic restriction of how deep nesting can be.

In GML 3, however, it is bit more complex. However, as long as we stick to GML 2.x,
the base framework is restricted enough for us to be able to do fairly simple structure
analysis. A common way to model application schemasis to define new properties and
roles, describing the vocabulary more accurate in your ‘own words, but stick to the
base geometric constructs. To provide maximum interoperability between heterogen-
eous GML sources, developers should strive to inherit as specialized base GML types
as possible. Thisway a generic analyzer can operate on the data more accurately.

Using what we know about type relationships, identification of elements should be
possible based on their parent, children or neighbor elements.

Manual analysis

When schemas are incomplete, inaccessible or instance documents are not in accord-
ance with the information parsed from a schema, we will try to parse documents and
analyze them based on their structure and the known types within. This will sometimes
succeed, but can not be considered a foolproof method. There might occur situations
where there is a question whether an element is one of two possible, or maybe there

aren't any presented options. This is where the software surrender, and we should
present to the user the unidentified elements, trusting that he will fill out the missing
pieces.

Cascading process

This section describes the process and framework for combining the forces of several
analyzing methods. This process is based on SAX-parsing of instance documents,
where the GML elements are mapped to an internal tree-model with name, namespace
and meta-information. Information concerning the origin of elements is attempted re-
vealed by so called resolvers, all implementing the interface GMLTypeResolver. The
implementation is done in Java, using JAXP to SAX-parse the instance
document[JAXP]. SAX parsing is event based, meaning that the parser generates
events when it reaches specific constructs in an XML document. By implementing
ContentHandler interface the parser reports a number of events to this class. Among
others, each start and end element is reported and caught by the registered Con-
tentHandler (see Figure 4.17, “ContentHandler methods”). The outlining of structure
and partial implementation of this framework was done by Gunnar Misund, as an ex-
ample of how adictionary type resolver can be used in a broader context when analysis
GML document content.

Figure 4.17. ContentHandler methods

Handling arbitrary GML sources

GMLResolver ContentHandler

startDocumenty...) startElement(...) endElementf(...)

(Event m’ggere{D Gontmue parsmaq-

yes
Is the element
resolved?

no

Event triggered

Is the element
resolved?

ore resolvers in pre-
resolver chain?

Event triggered

Are schemas
loaded?

Parse schemas

yes

Maore resolvers in
post-resolver chain?

v yes

h yes
Schema h 4
mapping Invoke next pre- : =
dictionary resolver Continue parsing Invoke (m]axt) post-
resolver

In addition to the element being added to the internal tree-representation, the resolvers
are invoked here. A chain of pre-resolvers attempts to identify the element in the star-
tElement method, while all non-resolved elements are attempted resolved by a chain of
post-resolvers when reaching the endElement method (see Figure 4.18, “Resolver
chains’). The number, order and type of resolvers are specified using an array of re-
solvers. If an element is fully identified, there will be no further attempts to resolve
them, both pre and post. Therefore it is important that resolvers relying on qualified
guesses do report correct types. The framework can be extended to support partially
resolving, meaning that an element can be structurally identified as one of a number of
types. Thereafter the element identification can be further limited by subsequent re-
solvers based on the pruning aready done.

Figure 4.18. Resolver chains

64

GMLResolver resolver chains

Pre-resolver chain

Base GML
schemas

<<knows>>
GML Type Type mapping
Cache resolvar Resolver resolver

Start -or end-

Post-resolver chain

element

4D A

<<Additional resolvers>> I

/N

Resolver chain invaker

\

Cache resolver

7

GML structural
resolver

<<knows=>

GML design
rules

Resolver

Mapping
dictionary

N

<<Additional resolvers>> I

Chapter 5. Schema parser and GML
viewer

The primary objective of my work is develop a framework to use for the handling of
arbitrary GML. The result will be a foundation to use in different software, working
with GML in some way. This chapter presents a solution where GML vocabularies are
transformed into dictionaries, where type information for each element is stored in an
easy accessible XML structure. These dictionaries does not contain information not
found in the schemas, but considering that type information for XML vocabularies can
be scattered across an amost unlimited amount of files, these dictionaries are very
helpful. Y ou will also be presented to a proof-of-concept GML viewer; aGML to SVG
stylesheet able to present arbitrary GML. Through the generated SV G and the connec-
ted scripts, the features can be viewed and both type and element information can be
accessed through their geometry.

Parsing schemas

| chose to use XSLT to parse the schemas, making a mapping dictionary in XML
format. As mentioned, this is the most lightweight method, still very powerful when
dealing with transformation of XML. First it was important to recognize what kind of
information which should be taken from the schemas into a mapping file. It is possible
to build entire derivation hierarchies, identifying all super-types of a type. However,
the most crucia information, is if a vocabulary's type is deriving from a base GML
type, and if so, what typeis it deriving. | do acknowledge that more detailed informa-
tion can be important for some applications, but to visualize the ideas presented in
former sections of this document, | consider the GML base types, and possible the sub-
gtitution groups as the most important type information found in GML application
schemas.

Mapping dictionary schema

It is important to keep in mind why we want to parse the GML schemas, namely to
find out how the elements are related to the base GML types. The mapping file will in-
clude the following information:

66

Schema parser and GML viewer

» Thetarget namespace, in other words the vocabulary being described.
» Related namespaces, being those present in the applications schemas.
* Type mappings, one for each element declared in the application schemas, locally

and globally.

Each type map will contain:

The element's name and namespace (grouped using a complexType)

» If the element's type is GML derived, either a gmiType- or gmiBaseType-element,
depending on the element type being a direct instantiation of a GML type or just an
instantiation of aderived GML type.

» If the element substitutes for a 'proprietary’ element, a substitutesFor-element,
naming the substitutionGroup-value.

» If the element indirectly substitutes for a GML-element, a baseSubstitutionGroup-
element, with the name of the GML type as value.

These data will hopefully provide a sufficient amount of information to an application
or other stylesheet, utilizing arbitrary GML. Examples from a mapping file will be
presented together with the schema transformation. The schema defining the mapping
dictionary isfound in the section called “GML Schemato Mapping Dictionary”.

Parsing GML application schemas

If we want to map elements in an instance document, we have to look at the element-
declaration-tags in an XML schema. These can either be globally defined, or declared
inline a global type or element. Figure 5.1, “How to traverse schemas’ shows a some
constructs found in the HaldenByNight-schema, which will hopefully shed some light
on how element-types can be traced.

Figure5.1. How to traver se schemas

67

[..]
=xzelement name="night iteBar" type="MightSiteBarType" substiutionzroup="_Night SiteF eaturei= @
=xaelement name="huildingoutline” type="LinearRingPropertyType" substitutionGroup="gml. _geametryFroperty"r= @

=xscomplexType name="Night SiteBarType"=

=xg complexContent=
=xz extension base="NightSiteType"=

LHEEeyUENCE:
=xaelement name="age_limit" type="xz: nonMegativenteger"’=
=xzelement name="beer_price"=

=nEEimpleTypes
=xarestriction base="xz doukle"-
=xzminExclusive value="0"/=
=xzimaxinclusive value="100""=
=fxarestriction=
=fs simpleTypes=
=iz element=
=l EequUenCes
=ixzextensions=
=M complexContent=
=hscomplexTypes

=xscomplexType name="NightSiteType" abstract="true"=

=xE complexContent=
=xz extenzion base="gml: AbstractFestureType"=

=XE FeUEnCE=
=xzelement ref="buildingCutline"’=
=fnE seqUence=
=iz extenzion=
=iz complexContent=
=ixzcomplexTypes

=xz annotation=
=xz documentation=
Encapsulates a LinearRing, to be used as a geometric property
=iz documentation=
=kxs annotation=
=xg complexContent=
=xz restriction base="gml.Geometry &szociationType"=
=¥z Eequence mindcocurs="0"=
=xzelement ref="gml.LinearRing"’=
=3 EequUenCes
=z restriction=
=M complexContent=
=iz complexTypes

[..]

=xzcomplexType name="LinearRingProperty Type"= @

This element is an instantiation of NightSteBar Type(c). Elements can occur inin-
stance documents of the schema, and the type therefore has to be mapped.

This elements represents a property, arole to be used between a feature and geo-
metry. The Linear RingPropertyType, which this element is an instantiation of, is
not a GML type, and we will therefore track this type too.

This is a type-declaration, and if no element is directly or indirectly instantiation
from this type, it will not be mapped. However, the NightSteBar is, and therefore

atrace will show that this type is derived from the NightSteType (d); further tra-
cing is required. This type does however have to inline elements, one an instanti-
ation of the base XML schema data type nonNegativelnteger, and one a restric-
tion of another schema-type, double. Further tracing will not be necessary for
these types, now knowing that they do not descend from the GML schemas.

Thisisthe NightSteType, from which, among others, the NightSteBar Type(c) de-
rives. When tracing the NightSteBars type, we will eventually find this type. This
is also where the tracing is completed, and we can come to the conclusion that
NightSiteBar is derived from a base GML type, namely the AbstractFeatureType.

The type-definition of the LinearRingPropertyType, deriving from
gml: GeometryAssociationType. Tracing elements to this type clarifies that the
property is a geometric one, not what kind of role the geometry has to the feature.

Figure 5.2. Type-mapping of the NightSiteBar -element

(]
=Typehap=
=appElement=
=localnames=nNight=SiteBar=Aocalname:=
=namespace=nahiof.onemap: gml appechema example =inamespaces
=fappElement=
=gmiDerivedType derivedBy="extenzion"=
=localnames=AbstractFesture Type=ocaliname:=
=namespace=http it opengis netiaml=namespace=
=fgmiDerivedType=
=zubstitutesFar=
=localname=_MightSiteFeature=localname=
=namespace=nohiof.onemap gml appechema example] =fnamespaces=
=izubstittesFor-
=hazeSubstitutionGroup=
=localname=_Feature=localname=
=namespace=http: ity opendis netigml=nameszspace:=
=haseSubstittionGroups=
:J'Ti yReMap=
[...

ONOMONO,

a The appElement contains the name and namespace of the element being mapped.

b.

This element is derived from a GML type; the top GML element is stated with

Schema parser and GML viewer

name and namespace. The attribute derivedBY, states whether the direct derivation
from the GML type is by restriction or extension, not necessarily whether the ele-
ment derivesits parent by restriction or extension.

c. If the element declaration has a substitutionGroup-attribute, the element name and
namespace for which it substitutes is stated here.

d. If the element substitutes directly or indirectly for a base GML type, the element
name and namespace is contained in the baseSubstitutionGroup-element.

Generic GML Visualization

In order to test both the cascading GML analysis and the lazy integration strategy, we
have implemented a simplistic GML to SV G transformation. The main ideais to visu-
alize the geometric constructs and provide easy access to the non-geometric properties
of the features. Transformations are done on GML instances, and the SV G application
can not load data from other sources. However, this is made to outline strategies for
handling instance documents, when there are mapping files present.

By accessing a mapping file constructed using the cascading method presented above,
the transformation stylesheet can convert any valid GML 2.x instance document into a
SVG document (see Figure 5.3, “Utilizing dictionary to parse arbitrary GML"). It is
however required that the cascading analysis succeeded in identifying the elements in
the GML application schemas describing a document. The structure of the final SVG-
document is identical to the GML file, in terms of nesting of features and feature col-
lections. If the transformation comes over unknown elements, it will not continue pars-
ing the sub-tree of this element.

Figure 5.3. Utilizing dictionary to parse arbitrary GML

70

Application

Genericor gpplication

Sencer or inteface utilizing Skl " ing Dicti
from the datastore, recognizing or ---- - E app:nf |-fl tanany
converting instance documents.. Distionany Inquiry merace

Crirect Accessto documents Schemalanalhyzis

T T Z2instance0f=>

GhL Document Instances

Ghil Application Schemas

Styling of the different features has not been an issue in this work. Therefore, we have
only introduced a very limited way of styling, only making it possible to apply one
style for all features from one namespace. This is of course not adequate if more than
one type of feature from a namespace is integrated into a vocabulary. The OneMap
GML editor, presented at SVG Open 2003[GED], is alightweight SV G editor for edit-
ing and displaying GML 2.1 compliant data. The server converts GML to SVG, for the
client to display it and offer editing possibilities. One of the stated challenges for fur-
ther work was to develop a more robust method regarding what kind of data the applic-
ation was able to utilize and edit. By implementing the next editor version, using the
principles described in this article, the editor will be able to handle arbitrary GML, as
opposed to only utilizing a specifically created GML format.

The integration example from the preceding section has integrated features from Ord-
nance urvey, GML2 spec example, Norkart and OneMap. Applying the SVG trans-
formation on these data results in a map containing all integrated feature (see Fig-

ure 5.4, “Integrated GML transformed to SVG”).

Figure5.4. Integrated GML transformed to SVG

The styling is as simple as possible, allowing users to specify custom styles for each
namespace present. Thisfile isthe specified when converting. All namespaces, that has
not been applied a user style, will get a default style. The style to specify isidentical to
the value of the SV G style attribute, and is applied to al features using a named class.
If the user wants to specify a custom style, a style as that listed underneath will be
stored in a separate file, and then the filename is passed to the transformation as a com-
mand line argument.

Example 5.1. Simple feature styling

<style;styles xnm ns:style="userstyle" target Nanespace="userstyle">
<styl e;styl e>
<styl e: hanespace>def aul t </ st yl e: nanmespace> . . .
<style:styl estring>stroke: bl ack; stroke-width: 0.05% fill:white; fill-
opaci ty: 0; O</styl e:stylestring>
</s }/I e: st}/l e>
<style:style>
<Styl e: hanespace>ht t P: [[www, onemap. net </ styl e: nangspace>
<_st?/l e: stylestring>stroke: bl ack; stroke-w dth: 0.05%
fill:green</stylelstylestring>
</styleistyle>
</style_styles>

Schema parser and GML viewer

Even though the GML to SVG transformation can be applied to al GML 2.x data
provided a mapping file is available, the integration namespace has introduced an at-
tribute that can be used on a feature collections representing a feature layer, e.g. roads
or rivers (Figure 5.5, “SVG integrated layer visibility”).

Figure5.5. SVG integrated layer visibility

Zoom in
Zoom out

v Coastline
v Rivers
+ Roads

T

Original View

v Improve Quality
View Source
Save SVG as ...

Helo J—

It is pretty trivial to draw the geometries of GML in SVG, considering that most geo-
metry types in instance documents are original GML elements. The transformation do
however a'so map the non-spatial element types and values into the SV G file, making
it possible for usersto review their GML data. By clicking on the different features, in-
formation stored in the features, together with the type information can be accessed
(Figure 5.6, “Feature information window™). As for now, the feature type information
given is pretty thorough, maybe a bit to extensive for an ordinary viewer, but as a valu-
able supplement for companies wanting to review their GML data, not having a propri-
etary viewer.

73

Figure 5.6. Featur e infor mation window

: Feature Information - Microsoft Internet Explorer

Name: River

http://www_opengis net/examples

RiverType
http://www.opengis.net/examples

gescripton

ttp:// s, opengis. net/gml

The river that runs through Sandvika.

Name: [
Nomespace: (e
Sadikselva

Neme: ey
Nomespace: (sl

Value: GEOMETRY PROPERTY

For quick viewing of GML data, the transformation can be applied to a type-mapped
file without the need of any styling at al. Default styling will then be applied to all fea-
tures. ToplOnl example data will e.g. be converted into a SVG file as shown in Fig-
ure 5.7, “ Ordnance survey datawith default styling”.

Figure 5.7. Ordnance survey data with default styling

Feature Information - Microsoft Internet Explorer

Feature Information
Y .irivitcGebicd
Nemespace_ (ypwswee—y

7 Data type information

AdministratiefGebiedType

http//www_gdme.nl/tdn

Properties

L, cp10_id
Namespace: [t

Ve [m
nstames of [Name [

Name:

http//www.w3.0rg/2001/XMLSchema

object_begindatum

Namespace: ~ [ICSAUNEECNEIERS

Value.

2001-12-17T13:24:10+02:00
Name: dateTime

http://www.w3.0rg/2001/XMLSchema

Chapter 6. Conclusions and further
work

GML type dictionaries can, as shown Chapter 5, Schema parser and GML viewer , be
helpful when working with arbitrary GML. They encapsulate important element and
type information that can be used to threat documents in a generic way. Using XSLT
as extensive as | did when developing the solutions presented in this thesis, does of
course have both pros and cons. Many tasks can be cumbersome to do using XSLT,
and performance is a very critical issue when choosing a strategy. In this chapter | will
conclude my work and discuss some of the implementation choices that were of im-
portance for the results achieved. Finally, | will try to sum up to what extent | feel |
succeeded and, equally important, where | regard my solutions as unfinished or inad-
equate.

Type dictionary

The stylesheets for generating dictionaries from GML applications schemas was suc-
cessfully finished and tested on a range of GML vocabularies. Entire vocabularies
were mapped tracing import and include elements inside the schemas. The nature of
XSLT sometimes makes it difficult to do trivial tasks, like error handling, navigating
documents and in particular debugging. Only in the latter stages of development, did |
try to make use of some of the XSLT 2.0 functionality, because the implementation
and documentation of this standard still is on an early stage, and | did not want to get
into undocumented bugs, considering that some of the stylesheets grew quite heavy.
Only when | got to the stage of tidying my stylesheets, did | use some XSLT 2.0 func-
tionality like functions. This was only for the purpose of readability, not functionality.
There are no fancy environments programming XSLT and XPath. There is XSLT 1.0
debugging and XPath visualizing capabilities in XmISpy and some other tools, but
they are not always able to cope with complex documents and their value is therefore
limited. | stuck to mostly using XmlSpy during development, because of the XSLT de-
bugger, but in the end when | introduced XSLT 2.0 in my stylesheets it was merely the
coloration of XML elements that was of any assistance. This situation can get quite
frustrating, and small problems tend to take a lot of time searching through Internet
and newsgroups for answers, to trivial problems because poor quality of documenta-
tion. Therefore | would like to mention the possibility that there are flaws in the code,

76

Conclusions and further work

even though this shouldn't really be needed to point out when we are talking about
software.

| did not get the chance to test the stylesheets on big schema hierarchies, meaning in
the range of from about hundred to several thousand files. Most applications and users
would proabably never require mapping of such structures, but nevertheless, | take it
that transforming would be quite resource extensive and slow. The reason is simply
that the traversing of documents and searching for elements and data types, are the
most exhaustive operation done in the stylesheets. The search is done recursively
depth-first, and because of the nature of not being able to have globa parameters in
XSLT, al paths to all linked documents are traversed before the search ends. If the
design of the vocabulary is done in away, where the same file hierarchy isincluded in
several related files, this hierarchy and it's sub-hierarchies could all be traversed a
number of times even after the data type being searched for is found. Figure 6.1,
“Schema hierarchy search problem” tries to explain this problem in more detail. These
problems would not even be an issue using e.g. Java, as | planned from the beginning.
Nevertheless, XSLT is very powerful mechanisms when converting from one XML
format to another.

Figure 6.1. Schema hierarchy search problem

7

<eglement name="a" .../>

When parsing the file main.xsd, the stylesheet might parse an element substituting for
the element a defined in the file subdoc3.xsd. This element will thus be searched for,
so that the stylesheet can search for the origin of this element. The search will be done
by following the import and include elements in the schema file. By traversing to sub-
doc3.xsd following two import-statements, the element is identified, and this element's
type-information is mapped before the recursive search nest back to the main.xsd.
Now, there is no information available for the parser to know that this element is actu-
aly already mapped. It will therefore also follow the include-statement through sub-

doc2.xsd to subdoc3.xsd, and record the information one additional time. Because of
this problem the output dictionary get repetitive occurrences of type mappings, and we
get a performance problem. Interrupting this is however difficult, and the searching al-
gorithm may possibly be rewritten to avoid thisissue.

The mapping stylesheets was implemented for use with GML2, but will work just as
well for GML3 schemas. The reason is that they simply identify types and elements
based on their namespace. Applying the mapping stylesheet on GM L3 schemas, should
therefore be just as successful as on GML2 schemas. The dictionary creation was
tested on the U.S. Census Bureau's TIGER/GML schemag TIG], which are based on
GML3. The viewer however is dependent on recognition of base spatial and non-
gpatial types, and will require some programming to adapt to GML 3 documents.

GML Viewer

The generic GML viewer presented in the section called “ Generic GML Visualization”
was implemented in SVG, using ECMAScript for browsing functionality. As proof of
concept this implementation captured the essence of generic GML handling. However,
each document has to be transformed manually from GML to SVG, thus not making
the solution very scalable. If intended for use when visualizing several GML sources, it
will be necessary to implement some functionality e.g. through servlets or CGI for
loading and managing of GML resources. If blessed with more development hours it
would have been interesting to build the generic GML viewer as a client of WFS serv-
ers. WFSs normally serve their data as GML, and do aso have functionality to get
GML schema descriptions of al the individual feature types the server contains. The
transformation is successfully tested on a number of different GML sources with suc-
cess. It could be a very helpful tool for easy, graphical accessto GML data, for devel-
opment purposes.

A simple styling mechanism (illustrated in Example 5.1, “Simple feature styling”) was
just partially implemented, and is used to define styling for features from different
namespaces. When we integrate several features from the same namespace, we end up
with only one type of style for all features, even though it is probable that they should
be styled differently. Sadly | did not find time to implement any smart styling for the
generic GML to SVG transformation. The Styled Layer Descriptor (SLD)[SLD] spe-
cification is particularly interesting when it comes to styling individual features. SLD
is used to individually style layers retrieved from WMSWMS] servers, posting an
XML document to the server, including among other variables the styles which certain

Conclusions and further work

features should be displayed with. Typically, not al layers or features are stylable, but
e.g. a layer buildings may be stylable, making it possible to provide certain rules for
certain buildings. The styles can be applied to all buildings in one layer or some build-
ings fitting a given profile; afilter. A somewhat similar method could be used for styl-
ing GML features in SVG documents. A feature type or super type of several features
could be addressed in an SLD-like document, and all types or sub-types could then be
styled with the style given. This document could e.g. provide certain styles depending
on the generic GML type of the object, like polygon or point. Apart from a somewhat
imperfect styling configuration, the generic GML viewer stylesheets are very illustrat-
ive examples of how a type dictionary could be utilized for accessing arbitrary GML,
and does provide instant access to all non-spatial properties.

The GML to SVG transformation was done using XSLT. The XML dictionary is ac-
cessed directly and small modifications on the structure of the dictionary would require
reconstruction of the GML to SVG transformation stylesheet. If | could start from
scratch, | might have chosen to implement a framework for the dictionary in a higher
level language, using SAX to load the structure into a framework that would enable
easier access to data analysis and higher level access to them. This would allow cre-
ation of an interface specification, where changes to the dictionary structure could be
transparent to utilizing software. Considering that a fully functional GML viewer needs
an operating environment, e.g. through a web application or an ordinary application,
such an implementation could prove useful. Having loaded the dictionary into a more
programmatically accessible data structure, there is a shorter way to providing an en-
vironment for generic GML handling, through different applications both for analysis,
transformation and styling and viewing of GML or possibly also atering and analysis
of the dictionaries.

80

Bibliography
[ADO] Adobe Systems Incorporated [http: //mww.adobe.com] .

[AMG] OGC Abstract Specifications
[http://www.opengeospatial.org/specs/ ?page=abstract/]

[BAT] Batik, Apache XML project [http://xml.apache.org/batik/] .

[CLEO] Cleopatra, Publishing GML data as interactive SVG maps
[http: //www.svgopen.or g/2003/paper s/cleopatral] . Alison meynert.

[CODE] <hema transformation and generic GML2SVG stylesheets
[http://mww.onemap.org/harald/bundle.zip] .

[CON] Transformation of Datasets in a Linear-based Map Conflation Framework. . Y.
Doytscher, S. Filin, and E. Ezra. Surveying and Land Information Systems, Vol
61, No. 3, 2001.

[DOM] Document Object Model [http: /Mmww.w3.0org/DOM/] .

[DTD] Document Type Definitiion [http://mww.w3.org/TR/REC-xml/#dt-doctype]
(described in XML 1.0 Recommendation).

[ECMA] ECMAScript Language Soecification
[http: //www.ecma-inter national .or g/publications/standar ds/Ecma-262.htm] .

[EDI] Distributed GML Management with SVG Tools
[http: //www.svgopen.or g/2003/paper §/DistributedGmlManagementWithSVG/] .
Gunnar Misund, Henning Kristiansen, and Mats Lindh.

[FED] Federated database systems for managing distributed, heterogenous, and auto-
nomius databases. . A. Sheth and J. Larson. ACM Computing Surveys, 22 (3),
1990..

[FO] XML Path Language (XPath) Version 1.0 [http://www.w3.org/TR/xpath/] . W3C
Recommondation 16 November 1999.

[G4]] GMLA4J, SourceForge project page [https://sourceforge.net/projects/gmi4j/] .
W3C Recommondation 16 November 1999.

81

http://www.adobe.com
http://www.opengeospatial.org/specs/?page=abstract/
http://xml.apache.org/batik/
http://www.svgopen.org/2003/papers/cleopatra/
http://www.onemap.org/harald/bundle.zip
http://www.w3.org/DOM/
http://www.w3.org/TR/REC-xml/#dt-doctype
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.svgopen.org/2003/papers/DistributedGmlManagementWithSVG/
http://www.w3.org/TR/xpath/
https://sourceforge.net/projects/gml4j/

Bibliography

[GED] Distributed GML Management with SVG Tools. Gunnar Misund, Henning Kris-
tiansen, and Mats Lindh.

[GEX] GML Experiences from the Field
[http: //www.safe.convsol utions/whitepaper §/pdfs' GML%20-%20Exper iences¥o
20From%20the%020Field1.pdf] . Don Murray and Juan Chu Chow.

[GML20] Geography Markup Language (GML) 2.0 Implementation Specification
[http: //www.opengeospatial .org/docs/01.029.pdf] .

[GML30] OpenGIS Geography Markup Languag (GML) Implementation Specification
[http: //www.opengeospatial .org/docs/02-023r4.pdf] .

[GPR] GML Profiling: Why It's Important for Interoperability
[http: //www.esri.comynews/ar cuser/0403/special -section/gml-profiling.pdf]
ArcUser April-June 2003 (www.esri.com).

[GTP] GeoTools project [http://geotools.org] .
[GFQ] Geotools project FAQ [http://mww.geotools.org/FAQ] .
[JAXP] Java API for XML Processing (JAXP) [http://java.sun.com/xml/jaxp/] .

[JUMP] Unified Mapping Platform (JUMP) [http://www.jump-project.org], Vivid
Solutions.

[JTEC] JUMP Unified Mapping Platform, Technical Report
[http: //www.jump-project.org/inc/JUMP/assets JUMP_Technical _Report.pdf] .
Martin Davis.

[JTS] JTS Topology Suite [http://www.vividsolutions.com/jts/JTSHome.htm], Vivid
Solutions.

[MMUG] Ordnance Survey MasterMap User Guide, part 2
[http: //wwww.or dnancesur vey.co.uk/oswebsite/products/osmaster map/guides/use
rguide.html] .

[NODE] Document Object Model Core, Interface Node
[http: //mwww.w3.0rg/ TR'DOM-Level -2-Core/core.html# D-1950641247] .

[P1IM] Project OneMap homepage [http://www.onemap.org], Dstfold University Col-

82

http://geotools.org
http://www.geotools.org/FAQ
http://java.sun.com/xml/jaxp/
http://www.jump-project.org
http://www.vividsolutions.com/jts/JTSHome.htm
http://www.ordnancesurvey.co.uk/oswebsite/products/osmastermap/guides/userguide.html
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-1950641247
http://www.onemap.org

lege.

[PSVI] XML Schema, Post-schema-validation infoset
[http: //mww.w3.or g/ TR/xmlschema- L/#PSVI_contributions] .

[SAX] Smple API for XML [http://www.saxproject.org] .

[SFS] Smple Features Soecification for L
[http: //wwww.opengis.or g/docs/99-049.pdf], Open GIS Consortium, Inc..

[OBI] Ontology-Based Geographic Data Set Integration
[http: //mwww.gdme.nl/oosteronVSTDBM993.PDF] . H. T. Uitermark, P. J. M.
van Oosterom, N. J. I. Mars, and M. Molenaar. Proceedings of International
Workshop on Spatio-Temporal Database Management.

[OGC] Open Geospatial Consortium [http://www.opengis.org] .

[OME] OneMap SVG Map Editor [http://globus.hiof.no/editor/editor.ntml] . GML
Days 2003.

[ONE] The One Map Project [http://www.ia.hiof.no/~gunnarmi/omd/gmidev_02] .
Gunnar Misund and Knut-Erik Johnsen.

[OS] oS Master Map
[http: //www.or dnancesurvey.co.uk/oswebsite/products/osmastermap/], Ord-
nance urvey.

[OSUG] (O MasterMap User Guide, part 2
[http: //www.or dnancesurvey.co.uk/products/osmaster map/pdf/user guidepart2.p

df] .

[RDS] XML Schema: Reconciling Diversity with Sandardisation
[http: //www.snowfl akesoft.co.uk/news/paper s/xml Schema.pdf] . Eddie Curtis.

[SAPI] XML Schema API, W3C Member Submission
[http: //www.w3.or g/ Submi ssion/xml schema-api/] .

[SFL] Showflake Software homepage [http: //mmw.snowflakesoft.co.uk/] . Alison meyn-
ert.

[SLD] Syled Layer Descriptor I mplementation Soecification
[http: //wwww.geoconnections.or g/ar chitectur e/technical/specifications/sl d/styled

http://www.w3.org/TR/xmlschema-1/#PSVI_contributions
http://www.saxproject.org
http://www.gdmc.nl/oosterom/STDBM993.PDF
http://www.opengis.org
http://globus.hiof.no/editor/editor.html
http://www.ia.hiof.no/~gunnarmi/omd/gmldev_02
http://www.ordnancesurvey.co.uk/oswebsite/products/osmastermap/
http://www.w3.org/Submission/xmlschema-api/
http://www.snowflakesoft.co.uk/

_layer_descriptor_1 0.pdf] .

[SMIL] Synchronized Multimedia Integration Language (SMIL 2.0), W3C Recom-
mondation [http://mww.w3.org/TR/smil20/] .

[SPY] Altova XML Spy [http://mww.xmlspy.com], XML application .
[SRCF] Sourceforge, Open Source devel opment website [http://sourceforge.net] .

[SV(] Scalable Vector Graphics (SVG) 11 Soecification
[http: //mwww.w3.0rg/TR/SVG/] . W3C Recommondation 14 January 2003.

[SX] SAXON XSLT and XQuery Processor [http://saxon.sourceforge.net/] . Michael
H. Kay.

[TIG] u.s Census Bureau, TIGER/GML Schemas
[http://aries.geo.census.gov/WebTI GER/CensusTIGERGML Schemas.html | .

[VIV] Vivid Solutions Inc. [http://maw.vividsol utions.com] .

[WFS] Web Feature Service (WFS Implementation Specification
[http: //www.geoconnections.or g/ar chitectur e/technical/specifications/filter_enc
oding/filter_encoding_1 0.pdf] .

[WMS] Web Map Service I mplementation Soecification 111
[http: //www.opengis.or g/techno/specs/01-068r 3.pdf] .

[XHTML] XHTML 1.0 The Extensible Hyper Text Markup Language (Second Edition)
[http: //mwww.w3.or/ TR/xhtml1/] .

[X1S] Document Object Model (DOM) Level 3 Core Specification, Appendix C: Infoset

mapping
[http: //vww.w3.0r g/ TR/2003/WD-DOM-L evel - 3-Cor e-20030609/i nfoset-mappi
ng.html] .

[XML] Extensble Markup Language (XML) 1.0 (Third Edition)
[http: //mww.w3.org/ TR/REC-xml/] .

[XMLNS] Namespaces in XML, W3 document
[http: //mwww.w3.or g/ TR/REC-xml-names/] .

[XP] XML Path Language (XPath) Version 1.0 [http://www.w3.org/TR/xpath/] . W3C

http://www.w3.org/TR/smil20/
http://www.w3.org/TR/smil20/
http://www.xmlspy.com
http://sourceforge.net
http://www.w3.org/TR/SVG/
http://saxon.sourceforge.net/
http://aries.geo.census.gov/WebTIGER/CensusTIGERGMLSchemas.html
http://www.vividsolutions.com
http://www.w3.or/TR/xhtml1/
http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/infoset-mapping.html
http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/infoset-mapping.html
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xpath/

Bibliography

Recommondation 16 November 1999.

[XP2] XML Path Language (XPath) Version 2.0 [http://www.w3.org/TR/xpath20/] .
W3C Recommondation 16 November 1999.

[XSC] XML Schema Part 0: Primer, W3C Proposed Recommondation , 30 March
2001 [http: //www.w3.0r g/ TR/2001/PR-xml schema-0-20010330/] .

[XSL] Extensible Stylesheet Language (XSL) Version 1.0 [http:/Mmww.w3.0rg/TR/xdl/]
. W3C Recommondation 15 October 2001.

[XSLT1] XS Transformations (XSLT) Version 1.0 [http:/mww.w3.org/TR/xdt] .

[XSLT20] XS Transformations (XSLT) Version 2.0, W3C Working Draft
[http: //mww.w3.org/TR/xsIt20/] .

85

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/2001/PR-xmlschema-0-20010330/
http://www.w3.org/TR/2001/PR-xmlschema-0-20010330/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt20/

Appendix A. XSL Transformations
GML Schema to Mapping Dictionary

<?xn1 versi on="1.0" encodi ng="UTF-8"?>

This stylesheet is witten for version 2.0 of xslt. At this time only
experinental |y supported by Saxon.

<xsl : stylesheet versi on="2.0" xmns:xsl ="ht tp /1w, W3. or g/ 1999/ XSL/ Tr ansf or ni'

xn ns: xsd="h R [1w, W3, org/2001/XNLS che

xn1ns xsdold ttP 11 W, W3 0rg/2000/1 / NLSchena
xm ns: app="no; hi of : osgh: appschema"

xn1ns— no: hi of : basenapper‘

xnl ns: xsi "http [T ww. W3. or g/ 2001/ XM_Schera- i nst ance"

xnl ns: bm="no: hi of : basenapper

xm ns: map="no: hi of : basenapper : f uncti ons”

XSl : schenaLocat|on "no; hi o basenapp r

ht t //MMM/Ia st ud. hIOf no/ ~har al dva/ schema/ Mappi n I nterface. xsd">

<xsl : out put t hod=" ““version="1.0" encodi ng= 8' i ndent ="yes"/ >

<I--
There are four paraneteres that can be passed fromconsole to the styl esheet.

Par anet er s:
$basefile -
accessed “P

enanme of a schenma being anal yzed, This paraneter is only
he transformation is done difectiy on a schema.
reconmended if there are circular includes or inports in the
ecause it is used to prevent just this
ining the directory where the schenas are located. This
| when schenas are pointed to
Use full url"s, including preceding slash.
s/nyvocabulary or
g/schenas/)
val u yes the file sent to transfornations
a
t

:—h
——

;m

— DONYN~—h=—+—

$basel oc -
is used by t

wn
350 ~ D
>
=

—Q >

G SOC O

OO ">

POSODT
--—rm—h
~——h
~< 0O
~m =

t
at
S
Ite.

' =2ms,

vocabu ary. The stylesheet w Il then access
ribute of 'the file, and parse the schemas
he location is relative to the I nstance

! _"':TO:T(/):S

be specified. If the instance file is
d to instead pass the $schemaLocati on-

—~Q —AS L
FF OO0 T O3S
_—— @Wm__'m

sheet .
argunent overrides the $basefile and_$i nstance-
the“schemas specified in the string. The syntax is

as with an ordinary xsi:schemalocation-attribute. The
[oc should be specified if the url's to the schemas
e current directory.

rg
i S recommende
| e
is

$schenal ocat i
argunents
t hée

>0

-->
<xsl| : param nanme="basefil e"/>
<xsl| : param nane="basel oc" sel ect =

<xs| : param nanme="i nstance" select="'no'"/>
<xsl : param nanme="schenal ocati on” sel ect= /> <! -- th|s param overrides the
schemalocation-attribute found in an instance-fiie. --

<l--
This variable is meant to be used throughout the styl esheet, where there is
ouLput neant for debugging.

<xsl :vari abl e name="debug" sel ect="boolean('"')"/>

<l--
A few "const ant s"

<xs| varijabl e nane="gm full"” select:"'httP / I www. opengi s. net/8n1'"/>
<xsl|:variable name="Xlink full" select=""h tP [v, W3 or%/199 [xlink""/>
F%f' vari abl e name="xnm _ful " select=""http://ww.w3. org/ XM_/ 1998/ nanespace

86

XSL Transformations

<l--

Thg tenplate to start the transformation
<xsl:tenmpl ate nmatch="/">
<xsl:1T test="$debug"> ,
<xsl : nessage terninate="no"><xsl:val ue-of sel ect="%basefile"/>
</ xs| ; message>
</xsl:if>
<I--

Tth elenent is the root of the nmapping dictionary.
<bm Mappi ngDi cti onary>

<xsl:attribute nane="schenmmlLocati on" namespace="
http://ww. w3. org/ 2001/ XM_Schens- | nst ance"

<xsl :val ue- of Sel ect="'no: hi of : basenmapper
http://ww. i a-stud. hi of. no/ ~har al dva/ schenma/ Mappi ngl nterface. xsd' "/ >
</xsl:attribute>

<l--

Here we map a list of all the nanespaces declared in the first file. This
li1st isn't necessarily conplete, if other

|nEorted or included files declare other namespaces.

<xsl : el ement nane="docunent Nanespaces" >
<xsl:choose>
If the gl obal Paran1schenalocation has been passed to the styl esheet,
the filés pointed to by this string wll

be>parsed
<xsl : when test="$schemnl ocation !="'"">]
<xsl:cal |l -tenplate nane="TraverseSchemalLocati ons" >
<xs| :w t h-param name="base| ocation" sel ect="$basel oc"/>
<xsl|:w t h- param nane="t as sel ect ="' pamespaces _
<xsl :w t h- param nane="schemalLocStri ng" sel ect ="$schenal ocati on"/ >
</ xsl:call-tenplate>
<{xs| en>
<l--
If the instance-paramis set to 'yes', the file being transformed by
t he stKIesheet is an instance file. Therefore
the schemalLocation-attribute of the file is acquired, then passed to

t he TraverseSchemalLocati ons-tenpl ate.

<xsl :when test="$instance = 'yes'">)
<xsl ;vari abl e name="schemas” sel ect ="normal i ze-space(child::*[1]
/ @&si : schemalLocation)"/>

<xsl : choose>

<xsl :when test="$schemas" > _ .
<xsl:call-tenplate name="TraverseSchemalLocations"> .,
<xsl| :w t h- param nane="basel ocati on" sel ect ="$basel oc"/ >
<xsl|:w t h- param nane="t ask" sel ect ="' nanespaces’ "/ >
<xsl : w t h- par am nane="schemalLocStri ng" sel ect ="$schemas"/ >
</ xsl:call-tenpl ate>

</ xsl : when>
<xsl : ot herw se>

<xs| : message term nate="yes"> i
The parameter 'instance! was passed to this stylesheet with
value 'yes', but there is no Xxsi:schemalLocationh-attribute
specified in the provided Instance file.]
The transformatioh requires this to be able to find the
schermas related with the vocabul ary.

</ xsl : message>
</ xsl; ot herw Se>
</ xsl ; choose>
</ xsl : when>
<xsl:othermnse>
|f the instance-paraneter s not passed to the stylesheet, the file
being transformed is actually a schensn,

The i teNapespaces-tenpl at e” out puts the namespaces defined in the
scgena to the mapping dictionary.

<xsl:call-tenplate name="WiteNanmespaces"> .

<xsl:w t h-param name="root" select="current()"/>

</ xsl:call-tenplate>
</ xsl; ot herw se>

</ xsl : choose>

87

</ xsl : el enent >

<l--
The typeMaps-elenents, is the root for all the typemaps in the mapping.
The tenpl ate iterateSchenn takes care
of>|terat|ng one fysical file.
<t ypeMaps>
zgsl'ghoose>
<!--
I f the schenal ocation-paramis passed to the stylesheet, we call the
Traver seSchenalLocat i ons {ust as we di _ _
when writing out the related namespaces. This tinme, the task-argunent
i's however Set to 'typeMaps’', neaning it)
w Il traverse the schenmalLocatjon-string in the same nanner, but this
time do another task with each file.
-->
<xsl : when test="$schemnl ocation !=""">)
<xsl:call-tenpl ate name="Traver seSchemalLocati ons" >
<xs| :w t h- param nane="basel ocati on" sel ect ="$basel oc"/ >
<xs|:w th-param name="t ask" select=""typeMaps' "/> ,
<xsl :w t h- param nanme="schenmaLocStri ng" "~ sel ect =" $schenal ocati on"/ >
</ xsl:call-tenplate>

<{xs|:mhen>
<

vé>are dealing with an instance file.
<xsl : when test="$instance = 'yes'"> _
<xsl ;variabl e nane="schemas” sel ect ="normal i ze-space(child::*[1]
/ @si : schemalLocation)"/>

<xsl:cal|-tenpl ate name="Traver seSchenmalLocati ons" >
<xsl| :w t h- param nane="basel ocation” sel ect ="$basel oc"/ >
<xsl:w th-param nanme="schemalLocString" select:"?schenas"/>
<xsl:w t h- param name="t ask" sel ect=""typeMaps' "/ >

</ xsl:call-tenpl ate>
<{xs|:mhen>
<l - -

The file being transformed is a schemn, we can therefore iterate it
directly without having to traverse a schenalLocation-string.
-->
<xil:othermﬁse>
first a few values to be used in the mapping. These values will be

assed about in the stylesheet,
ut may eventual |y change, when inports and includes are foll owed
ang nmapped.

<xsl:variable name="tns_full" select="string(child::*[1]
| @ ar get Nanespace) "/ >

<xsl:variable nanme="tns_prefix" select="nane(child::*[1]
/nanespace::*[str|ng(h?: tns_full]?"/> _
<xsl :vari abl e nanme= _gref|x" sel ect ="nanme(child::*[1]
/ nanespace: : *[string(.)=$gm full])"/>
<xsl:call-tenpl ate name="IterateSchem" >
<xsl:w t h-param nanme="1| ocat i onRoot Pat h"
sel ect =" map: Get Fi | eRoot ($basefile)"/>
<xsl:with-paramname="tns_full" select="$tns full"/>
<xsl|:w t h-param name="tns"prefijx" selectz"%tns_pref!x"/>
<xsl:w t h- param name="gm “prefi x" sel ect="%$gm “prefix"/>
</ xsl:call-tenplate>
</ xsl; ot herw se>

</ xsl : choose>
</typeMaps>.
</ bm Mappi ngDi cti onary>
</ xsl :tenpl at e>

This function takes a full path to a file, and returns the |ocation of the
file, wwthout the filename at the end.

It is dependent upon the function map:lastlndexC to find the |ast occurence
of the folder delimter

-->

<xsl : func

tion nane:"naP:GEtFileRoot">
<xsl : param nanme="ful | nane"/ >

<xsl : choose>)
<xsl :when test="contains($fullnanme, '/')">

FE-—F?s yar|able nanme="1 ast | ndex" sel ect ="i ndex- of ($ful | name, '/")

as >- - >

<xsl:variabl e nane="1ast| ndex" seIect:"nap:IastIndexCI($fuIInane, BV
string- ength($fu||nane)2 >

<I--<Xsl|:nessage tern nate=" no '><xsl : val ue-

sel ect =" substr in ($ uIInane , , %Iastlndex) /></xs| message>- - >
<xsl :val ue-of select="substrin full name, 1, $l astindex)"/>
</ xsl : when>
<xsl : when test="contaj ns($fu
n

tr
[
dex

In
<xsl| :variabl e name="1ast | ndex 2 select— map: | ast | ndexOf ($ful | nane, "\',
str|ng- engt h($fullnane))"/>
<xsl ue-of select="substring($fullname, 1, $lastlndex)"/>

</ xsl : mhen>
<xsl : othermnse>
<xs| val ue-of select="""'"/>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl : function>

<l--
This function return the |ast index of the $char-argunent inside the $string
argunent -1 if the $char 1s not wthin the $string.
<xs| funct|on name="nmap: Iastlndefo">
<xsl| : par am name=" str|n?
<xsl| : param name="char" 7>
<xsl : param nanme="current | ndex"/ >

<!l --<xsl:nessage term nate="no"><xsl:val ue-of select="$char"/>, <xsl:value-
of select— $string”/ > <xsl:value-of select="$currentlndex"/>
</ xsl : nessage>- - >

<xsl:if test=" not(string
<xsl : value of select="n

</ xsl ;
<xsl:if t est="string-leng
g

)">
unber (-1)"/>
th($char) = 1">

n

—h,

h
<xsl : message termnate="yes">Invalid ar?unent passed to
P iastin exCT($str|n $char, Scurrenfindex). Argument $char shoul d be

< Iy ?Qe character. </ xsl : message>

xslii
EF?I iﬁ test="$current | ndex > string-length($string) or $currentl ndex

>
<xsl : message term nate="yes">lnvalid argunent passed to

map: i astIn efo($str|ng, $char, S$current| ndex Punent $current | ndex
</ha}/e f>I ue between [1, “string-length($string)]</xsl:message>
xsl i

ixs};variable name="| ast Char" sel ect ="substring($string, $currentlndex,

<xs|:choose>
<xsl . when test="$l ast Char = $char">
<xs| val ue- of select=" $current|ndex"/>
</ xsl : when>
<xsl: mhen test="$currentlndex = 1">
<xs| val ue- of select="nunber(-1)"/>
</ xsl : when>
<xsl : ot her wi se>
<xsl : val ue- of sel ect=" nap Iastlndexcr(substrln?($str|ng, 1,
$currentIndex - 1), $char, $currentlndex -
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl : functi on>

<l--

This function is used to determne the |location of a file, f.ex P

i ncl uded b¥ a schema. It takes the ar gument $currentLocat| on, that ho ds the

| ocation of the file currentl y bei ng parsed. E.g. If the file
http://MMMLn¥s|te.org/schenas schemal. xsd is berng parsed t he

$currentLocation (which 1's passed

t hr oughout the stKIesheet), holds the val ue http;//ww. nmysite.org/schemas/. |f

anewfileis |linked to by this stylesheet, the iink is el ther absolute or
relative to this |ocation: .

This function calls the funciton |sAbsolutePath, to determne if the $newLi nk-

Pa{an1should be concatenated with the $currentLocation, or if the location is
u

deflhed in the $newLi nk-val ue.

-->

<xsl : function name="nmap: GetLocation”>
<xsl| . param nane="currentLocation"/>
<xsl : par am name="newLi nk"/>

XSL Transformations

<l --<xsl|: message term nate="no"><xsl ; val ue- of
sel ect ="concat ($current Location, ' ', $newli nk)"/></xsl: nmessage>-->
<xsl : choose>
<xsl :when test="map: | sAbsol ut ePat h($newLi nk) = true()">
<I--<xsl:nmessage term nate="no">Return: <xsl:val ue- of
sel ect =" $newli nk"/ ></ xsl : message>- - >
<xsl : val ue- of sel ect =" $newlLi nk™/ >
</ xsl : when>

<xsl : ot herwi se>

<xsl :variabl e name="returnval ue" sel ect="concat ($currentLocation
$newli nk) "/ >

<l--<xs|:message term nate="no">j oi ned: <xsl:val ue-of
sel ect =" $returnval ue"/ ></ xsl : nessage>- - >

<xsl : val ue- of sel ect="$%returnval ue"/>
</ xsl : ot herwi se>
</ xsl : choose>
</ xsl:function>

<I--
This takes an_argument $url, and tells if this is an absolute path or not
(rglat|ve one).

<xsl : functi on nane="nap; | sAbsol ut ePat h" >
<xsl : param name="url| "/ >

<xsl : choose>

<xsl :when test="contains($ur|, 'http://') or contains§$url filer /") or
contains($url, ':")"> <I'--the last test’mght indicate a tile-path |ike
e.g. c:\ or d:\ etc.-->

<xsl:val ue-of select="true()"/>

</ xsl : when>
<xsl : ot herw se>
<xsl:val ue-of select="false()"/>
</ xsl : ot herw se>
</ xsl : choose>
</ xsl : function>

<l--
This tenplate provides the functionality to traverse a schemaLocation-string,
el ther passed as ar?unent to the stylesheet, or pointed to by
an>|nstance docunent.
<xsl :tenpl ate nanme="TraverseSchemalocati ons">
<xsl| : par am nanme="basel ocati on"/ >
<xsl| : param nane="schemaLocString"/>
<xsl|: param nane="| ast" select=""""/>
<xs| : param nanme="t ask"/ >
<xsl : param name="parsed" select=""""/>

<I--

The schemal ocation-string hol ds_pair-val ues, nanmespace/location. W
therefore "parse” two and two. The next Token-function is used to
aCQU|re the string |located after a given one.

<xsl :vari abl e nanme="ns" sel ect="nornal i ze-

space(map: next Token $schenaLocStr|n?, $Iast?)"/>
<xsl:variabl e name="[ocation" select="norpalize-
space(map: next Token($schemalLocString, $ns))"/>

<l--

If we successfully got both the $ns and $l ocati on of a nanespace, we either
wite the nanespace-strings of this vocabulary or wite the

tygehhps, dependent upon the value of the $task-param

<xsl:if test="$ns I'= "' and $location I= "' ">

<l--<xsl|l:nmessage term nate="no"><xsl:val ue-of select="%$ns"/>
</ xsl : message>- - >
<xsl : choose>
<xsl :when test="$task = 'nanespaces'">
<!——<xs|:nessa?e tern1nate="no">thLocat|on(%,— <xsl : val ue- of
sel ect =" map: Get Locat i on($basel ocation, $l ocation)"/></xsl: nmessage>-->

<xsl:call-tenpl ate name="WiteNanmespaces" >

90

<xsl:w t h- param name="root")
sel ect =" docunent (map: Get Locat i on($basel ocati on, $location))"/>
</ xsl ;call-tenpl ate>
</ xsl : when>
<xsl :when test="$task = 'typeMaps'">)
<l --<xsl|l: message term nate="no">TraverseSchemaLocations - task=
typeMaps - call IterateSchena w th nodes of <xsl:val ue- of
sel ect =" map: CGet Locat 1 on($basel ocati on, $l ocation)"/></xsl: nessage>- - >

<xsl:call-tenplate nane="IterateSchena">
<xsl:w t h-param nanme="1| ocat i onRoot Pat h"
sel ect =" map; CGet Fi | eRoot (map: CGet Locat | on($basel ocati on
$l ocation))"/>
<xsl :wW t h-param nane="nodes")
sel ect =" docunent (map: Get Locat i on($basel ocati on, $l ocation))"/>
<xs|:with-param nane="tns_ful|" select="$ns"/>

<xs| :w t h- param nanme="scanned" selectz"% arsed"/ >

<xsl :w t h-param nanme="current" sel ect ="$| ocation"/>

<l'--<xs|:wth-param nane="tns_prefix" select="%tns_prefix"/>->

<l--<xs|:wth-param nane="gm “prefix" sel ect="%$gm “prefix"/>->
</ xsl ;call-tenpl ate>

</ xsl : when>
</ xsl : choose>

<xsl:call-tenplate name="TraverseSchemalLocations"> -
<xsl:w t h- param nanme="basel ocati on"” sel ect ="$basel ocati on"/>

<xsl| :w t h- param nanme="schemalLocStri ng" sel ect ="$schemalLocStri ng"/ >
<xs|:wth-param nane="| ast" select:"ilocatlon"/>
<xs|:w t h-param name="t ask" sel ect ="$t ask"/>)
<xsl : w t h- par am nane="par sed” sel ect ="concat ($parsed, $location)"/>
</</Fsl%gall—tenplate>
xsl i

</ xsl : tenpl at e>

<I--
This function returns the next token in a string, after a given $lastVal. E. g.
the call nmap:nextToken('a b c', "b") returns 'c

| SSUE; |If one nanespace or file, is identical to a part of another namespace
or file, the next Token m ght return the wrong val ue, because it
searches for the occurence of one String wthin another, not
S checking if there are several occurences.
<xsl : function nanez"naP:nextToken">
<xsl| :param nane="ful | String"/>
<xsl : param nanme="| ast Val "/ >

<xsl :variable nanme="delimter" select="" ""/>
<xsl : choose>

<xsl:when test="$lastval !'="'"""> .
<xsl:variable name="tenp" sel ect="normalize-space(substring-
after($full String, $lastVval))"/>
<xsl : choose> _ _
<xsl : when t est="cont ai ns($t enp, $delln1ter2"> _
<xsl :val ue- of sel ect="substring-before($temp, $delimter)"/>
</ xsl : when>

<xsl : ot herw se>
| - val ue- of sel ect="$tenp"/>
</ xsl : ot herw se>
</ xsl ;: choose>
</ xsl : when>
<xsl : ot herw se> . .
<xs| ; val ue- of sel ect="nornalize-space(substring-before($full String,
$delimter))"/>
</ xsl : ot herw se>
</ xsl : choose>

</ xsl : function>

<l--
Thi s function outputs the namespaces defined in a file, according to the
foLnat specified In the mappi ng dictionary schena.
<xsl :tenpl ate name="WiteNanespaces">
<xsl : param name="root "/ >

<xsl : el ement nane="t ar get ns" ><xsl : val ue-of sel ect="%root/child::*[1]
| @ ar get Namespace"/ ></ Xsl : el enent >

<xsl:for-each sel ect="%$root/child::*[1]/nanmespace::*">
<xsl ; el ement nane="nanespace" ><xsl : val ue- of sel ect ="
</ xsl : for-each>
</ xsl :tenpl at e>

" ></xsl : el enent >

<l--
x* tenplate |lterateSchema **

This tenpl ates takes care of the mapping of all elenments declared as
descendants of _t he $nodes paraneter pasSed to]
the tenplate. This is throughout this file the root of a file.

Par ameter |ist:

$l ocati onRoot Path -> The | ocation of the file being parsed. This string is
used to determ ne the |ocation of . _ _
r|le?_be|ng pointed to by url's relative to this files
ocati on.
gnodes) -> predecessor of elenent declarations. Usually root of
ocument .
$scanned -> a string consistent of a concatenation of files already
traversed by this tenplate. This is used to]
avol d eternal |oops of inmports or includes.
current -> name of the file current|ly being analyzed
tns_full. -> target nanespace of file being ahal yzed.
tns_prefix, . -> the prefix of the target naneSpace used in this
articular file.]))]
gm _prefix ->the GW prefix used in this file.
not es;

probl ens naY arrise if:))
-> One filTe uses nore than one prefix for it's target namespace. This
option is not fully tested.

-->

<xsl:tenpl ate name="I1terat eSchena" >
<xsl| . param nane="I| ocat | onRoot Pat h"/ >
<xsl : param name="nodes" select="/."/
<xsl| : param nanme="scanned” sel ect= /
<xsl|: param nane="current" sel ect ="3%bas
<xsl : param name="tns_full" select="str
/ @ ar get Narrespaceg />

efile"/> ,
ng($nodes/ chil d::*[1]

-V

<xsl: param name="{ns_prefix" sel ect="nanme($nodes/ child::*[1]
/nanespace::*[str|R?(.):?tns_full]z" >
<xsl : param name="gni"_ptrefix"“sel ect ="map: ful | 2prefi xFunc($gm _full,

$nodes) "/ >

<xsl : message term nate="no">Scanni ng schena: <xsl:val ue-of sel ect="concat (
$l ocat 1 onRoot Pat h, $current)"/></xsl": message>

<I--<xsl:message term nate="no">TNS: <xslI:Val ue-of select="$tns full"/>
P{ef|x: <xsl :val ue-of select="$tns_prefix"/></xsl: message>-->

<!--

If the current isn't contained in the scanned-paraneter, this file isn't
aI;eady anal yzed.

<iil:if test ="not (cont ai ns($scanned, $current))">
For each el ement declaration in this file, we do a typemap, calling the
tegplate Bui | dTypeMaps.
<xsl:for-each select:"$nodes//Fxsd:elenent | xsdol d: el ement) ">
<xsl:cal | -tenpl ate nanme="Bui ng%gg? S" >

[
<xsl|:w th-param nanme="1| ocat i at h" sel ect =" $l ocati onRoot Pat h"/ >
<xsl|:w th-param nanme="root" sel ect ="$nodes"/ >
<xsl|:w th-param nanme="el enent" select="."/>
<xs| :w t h-param nanme="current" sel ect="$current"/>
<xs|:w th-param name="tns_full" select="$tns full"/>
<xsl|:w th-param name="tns_prefix" select:"itns_pref!x"/>
<xsl:w t h-param name="gm “prefi x" sel ect="$gm “prefix"/>
</xsl:call-tenplate>
</ xsl :for-each>

<l--

Then, for each jnclude and jnport-statement in the schema, we call this
tenpl ate recursively, to make sure that all relevant data types are
nagped.

<xsl|: for-each select:"$n0des//§xsd:|nclude | xsdol d:include)">
<xsl:call-tenplate name="IterateSchem">
<xsl :w t h-param nanme="1| ocat | onRoot Pat h')
sel ect =" map: Get Fi | eRoot (map: Get Locat 1 on($l ocat i onRoot Pat h,
@chenaLocation))"/>

XSL Transformations

<xsl:wth- parantnane- 'nodes”
sel ect =" docunent E Get Locat i on($l ocati onRoot Pat h,
@chenmaLocat i on)
<xsl|:w th- parantnane— 'scanned” sel ect ="concat ($scanned, S$current)"/>
<xs| :w t h- param name="current" sel ect="@chemalocation"/>
<xsl:w th-param name="tns_full" select="$tns_full"/>
</ xsl : cal | -t enpl at e>
</ xsl ; f or - each> _ _
<xs| for-each sel ect ="$nodes// (xsd:inport | xsdold:inport)">

<_--
If this ipport is pointing to a "known" namespace, we do not want to
analyze them since they are not relevant for the mapping.
-->
<xsl:if test=" ghanespace I= $gm _full and @anespace !'= $xlink full and
@anespace ! xmd full”

<xs|:1f test="%de bu9"> <xsl : nessage term nat e="no">Schena |nport

<xsl :val ue- of sel ect=" anespace /> location; <xs| val ue- of

sel ect =" @chemalocati on"/ ></ xs| : nessage></ xsi :i f>

<xsl:cal | -tenpl ate name="Iterat eSchema" >
<xsl: Wt h- param nane="| ocat i onRoot Pat h"
sel ect =" map: GetF|IeRoot(nap Get Locat i on($l ocati onRoot Pat h,

chenaLocatlon))

<xsl:wth- parantnane— S
sel ect =" documrent E Get Locat i on($l ocat i onRoot Pat h,
@chenaLocat i on)
<xsl:wth- parantnane— 'tns_full" select=" strlngﬁ@hanes)"/>
<xsl : MAth par am nanme="current" sel ect="@chenalLocati on”

</xs| call-tenplate>

</ xsl|:
</xs| for-each>
</ xsl:
</ xsl : tenplate>

<l--
x%x tenplate: Buil dTypeMaps **

This tenplate builds typemap for the provided <el enment >-descendant.

Par aneter |ist:
$l ocat | onRoot Path -> The | ocation of the file being parsed. This string is
used to determne the |ocation of
files being pointed to by url's relative to this files

[ocati on,
el ement -> node conta|n|ng the current el enment be|nP pPed
r oot -> root e|n% t he predecessor of el enent-elenen Thi s
paraneter is passed down through the tenplate-calls, and are used for sone
ur poses,
tn p full -> target nanmespace))
tns pref Rref|x used for the target nanespace in this file.
gm “prefix ->"the prefix used for the nanespace in the current file.

-->
<xsl:tenpl ate name="Buil dTy %ewh s"
<xsl : param name="1| ocat i on
<xs| : param name="root" sel ect—"/ "/
<xs| :param name="tns_full"/>
<xsl|: param name="tns_prefix"/>

<xsl| . param nanme="curtTent" select=" %basefile"/>
<xsl| : param nanme="el ement" sel ect="//(xsd: el enent t xsdol d; elenent? />
<xsl : param nanme="gm _prefix” sel ect="map: full 2prefi xFunc($gm _ful

$root)"/ >

<xsl:if test="$debug">
<xs| message termnate="no" >Bui | dTypeMaps: <xsl:val ue- of
selec ="$tns fuII"/></st nessage>

</xsl:if>

<I--

If the element has a nanme (and therefore is not a ref to another elenent, we

nag it directly.

<xsl:if test="$%el enent/ @ane">

<T¥Pewhp>

An id is nmade for the TypeMap. ¥ou na¥ xperience; we mght get
several identical typenaps In the inal Tile. These are results
of C|rcular inports”or includes in the schema-files which the vocabul ary

93

is consjstant of. These may be renoved by applying the styl esheet
maih.xslt
<xsl:attribute nane="id" select="generate-id()"/>
<appEl epent >
<l ocal name><xs| : val ue- of sel ect=" elenent/ anme"/ ></| ocal nane>
<nanespace><xsl : val ue- of select="$tns_full"/></nanmespace>
</ appEl enent >

<l--
First we record what tyge this element is. If it is an instanti
a conpl exType or S|nple ype, the type is recorded, and possibly
if it's nof a GV t P
Qhervmse|t s a na|ve type.
<xs| choose>

<xs| when test="%el ement/ @ype" >

i ati on of
traced

<_--

First the elenent jnstanced is instantiated, using the type

attribute of the element. The type nay possi bl e have a pre ix. If
so, it's stripped away, and used fo

finding the full nanespace, using the function prefix2full, provided
|n>th|s styl esheet.

<xsl:el ement nanme="instanceO ">

<xsl : el epent nane="1| ocal nane" >
<xsl: choose>
<xsl : when test-"conta|ns($ nt/@?y
<xs| yalue of select="substring-a er($e|enent/@@ype

</xs| when>
<xsl : ot herwi se
<xsl: val ue- of sel ect =" $el enent/ @ype"/ >
</ xsl : ot herw se>
</xsl'choose>
</ xsl : el enent >
<xsl : elenent nane="nanespace’ >
<xsl : variabl e name="ful | ns">
<xsl : choose>

<xsl : when test-"conta|ns($elene nt/ yPe v
<xsl:val ue-of select=" nap ef i x2tull unc(substr|ng-
before($e|enent/@iype , $root)"/>

</ xsl : whe

<xsl : othermns
<xs| val ue- of sel ect ="map: prefi x2ful | Func('', $root)"/>

</ xsl : ot herw se>
</ xsl : choose>
</ xsl :vari abl e>
:ﬁsl:value-of sel ect="%$full ns"/>
<xsl : choose>
<xsl : when test-"$fu s
<xs| val ue- of select='
</ xsl : when>
<xs|:otherMAse>
<xsl :message term nat
nanesPace speC|f|ed f
sel ec $el ermrent /@%/p
<xsl :val ue- of sel ect=
</ xsl : ot herwi se>
</ xsl : choose>-- >
</ xsl : el ement >
</ xsl : el ement >

<xsl:if test="$debug"
</<x|s| Pgssage tern1nate— no" >Bui | dTypeMaps: #1b</xsl: nessage>
xsl:i

| =
"$ful | ns"/ >

e="no">Error parsing schema. No valid
or elenment <xsl: value-of
e"/>. </ xsl: message

"' SCHEMA™ PARSI NG ERROR ">

<l--If the instanceCf - elenent is not a GW type (or sone other known
type), we pust trace th e tyge --
<xsl tvariabl e name="ful
<xsl : choose>
<xsl : when test—"conta|ns($e|enent/§%yP
<xsl :val ue-of sel ect nap ref u
before($e|enent/@§YPe E
</ xsl : whe
<xsl : othermnse>
<xsl:val ue-of sel ect="map: prefix2full Func('', $root)"/>

e ':')">
} unc(substr|ng-

$root)

</ xsl :; ot herwi se>
</ xsl: choose>
</ xsl ; vari abl e>
<xsl:if test="$tng full I= $gn1 full and $tns_full !'= $xlink_ful
and $tns full I'= $xn1_fu||
<xsl: 1T test="$debug">
</<x|s| Pgssage term nat e="no">Bui | dTypeMaps: #2</xsl:nmessage>
xsl:i

<l--
The TrackGNLBaseTyPe tenplate is called, with the |ocal name and
namespace of the elenment we want to
trace the origin of, W are still S|tuated i nside the sane file,
so we can pass on the val ue of the prefixes
ta;get nanespace (tns) we've al ready got.
<xsl:cal | -tenpl ate name="TrackG\VLBaseType" >

<xsl : Wi t h- param nanme="1 ocal name" >

<xsl : choose>
<xsl : when test—"contalns($e|enent/@¥¥
<x§lnyalue of sel ect="substring-a er($e|enent/@pype

</ xsl * when>
<xsl: otherMAse
<xsl :val ue-of sel ect="$el enent/ @ype"/ >
</ xsl : ot herw se>
</ xsl ; choose>
</ xsl : wi t h- par anp
<xsl :w t h- param nanme="nanespace" >
<xs| choose>

<xsl : when test—"contalns($elene nt/ yPe
<xsl :val ue-of sel ect=" nap refixZtull unc(substr|ng-
before($e|enent/@pype $root) "/ >

</ xsl : whe

<xsl: otherMAse>

<xs| val ue- of sel ect ="map: prefix2full Func('', $root)"/>
</ xsl : ot herw se>
</ xsl; choose>
</ xsl : wi t h- par anp

<xsl : W t h- par am name="1 ocat i onRoot Pat h"
select-"$|ocat|onRootPath"/>

<xsl|:w th-param nanme="current" sel ect="%current"/>

<XS 'MAth-paran1nanez"tns_full? select="$tns full"/>
<xs|:w t h-param name="tns"prefijx" select:"%tns_pref!x"/>
<xsl:wi t h-param name="gnl “prefix" sel ect ="$gm “prefix"/>

</xsl|;call-tenplate>
</ xsl : if>
</xs| when>

<l--

The el ement did n
0ssibly be fully
f the elenent s

handl e that here.

-->

ot have a tYpe attrib
or partially defined
and extension or res

u
t

te, meaning that it can
inline.
riction of another type, we

<xsl : when test-"$e|enent//(xsd conpl exCont ent I xsd: S|nPIeCDntent

xsd: S|aneT pe | xsd:conpl exType | xsdol d;co exCont en

xsdold si mpl eCont ent | xsdold S|aneTy e | xsdol d: onplfx ype)
icti

restriction L xsd: ext ension | xsdo d:restr o
xsdold ext ensi on)"
<xsl:variabl e name="typedef" sel ect="%$el ement//(xsd:
xsd: si mpl eContent | x5d:sinpleType xsd: conpl exTyp
xsdol d: conplebentent | " xsdol d; si npl eCont ent 1 Xxsdo
xsdol d: ¢ nPIexType)/(xsd restriction | xsd:ex
.restrict on | xs dol d: extension)"/>

<xs!,nessage tern1nate— no" >Bui | dTypeMaps: #4</ xsl : message>

anpIebentent
| si mpl eType

<xsl : el ement nane="instanceX ">
<xsl : el enent nane="Iocal nane" >
<xsl : choose> .
<xsl| :when test="contains($ty edef/@?)" >
sxsl'yalue-of selectz"sub ring-a ter($typedef/@base

</ xsl ~ when>
<xsl : OthGFMAS
<xsl : val ue- of sel ect =" $t ypedef / @ase"/ >
</ xsl : ot herwi se>
</ xs| : choose>
</ xsl : el ement >

XSL Transformations

gh

A'—O0
X ' e

<xsl : el ement nanme="nanespace" >
<xsl : choose>
<xsl :when test—"contalns($typedef gyase)" >
<xsl : val ue- of sel ect=" nap ref | ul | unc(substr|ng-
before($tygedef/@base E oot)"/>
</ xsl|
<xsl : otherMAse>
<xs| val ue- of sel ect ="map: prefix2full Func('', $root)"/>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl ; el ement >
</ xsl; el emrent >
<{xsl'mhen>
<l--

Now, two options are left. The element is either reference to

anot her type, neaning that this type will be deal wi th when reached,
or

that the element is fully defined inline, Meaning that it is not an
instantiation of another’type, and certainly not indirecly derived

from anot her type.
-->
</ xsl: choose>

, the substitutionGoup-attribute is napped, The current
bstitutionG oup-value is recorded in the <substitutesFor>-el ement.
>th|s value is not a GVL-el enment, the substitutionGoup is traced.
sl : choose>
<l:

I'f the el ement substitutes for a G\ type, we are nearly finished.

<xsl : when test— starts wi t h($el enent/ @ubstituti onG oup
concat($? _pre L)">
test—"$debug" _
</<x|s nessage term nat e="no">Bui | dTypeMaps: #6</xsl: nmessage>
XS

<xs| : el enent name="substitutesFor"

<| ocal name><xsl : val ue- of sel ect=" subs tring-
af ter ($el enent/ @ubstitutionG oup, ?‘/></ ocal name>
<namespace><xsl :val ue- of sel ect =" $gmi _ful | "/ ></nanespace>

</ xsl : el ement >
:/xsl when>
If the el enent has a substitutionG oup- deflnltlon but this isn't a
GWL type, we have to trace the subgroup
f|gd out if it does inherit/substifute fron1a GWL type.
<xsl :when test=" ubstltutlonC?oup">
<xsl:if test="%debug">
</<x|s| Pgssage term nat e="no">Bui | dTypeMaps: #7</xsl:nmessage>
xsl:i

<l--
F|rst we record the subgroup val ue.
<subst|tutesFor>
<l ocal nane>
<xsl : choose>

<xsl : when test:"conta|ns($e|enent/@3ubst|tut|onG?oup, i)">
<xsl:val ue-of sel ect="substring-
afte&ﬁ$elenent/@Bubstltutl0nC¥0up,)yt >

</ xsl en>

<xsl : othermnse>))
<xs| val ue- of sel ect ="$el enent/ @ubstituti onG oup"/>
</ xsl : ot herw se>
</ xs| : choose>
</ | ocal name>
<nanespace>
<xsl . choose>

<xsl : when test ="contai ns($el ement/ @ubstituti onGoup, ':')">
<xsl :val ue-of sel ect="rmap: prefix2ful | Func(substri ng-
before($e|enent/@BubstltutlonC?oup, 1), $root)"/>

</ xsl : when>
<xsl : ot her wi se>
<xs| val ue- of sel ect ="map: prefix2full Func('', $root)"/>
</ xsl : ot herw se>
</ xsl : choose>

96

</ panespace>
</ substi t ut esFor >

<l--

Then we call the tenplate to track the subgroup

-->

<xsl:call-tenplate name="trackGWSubstituti onG oup">
<xsl : W t h-param name="| ocat i onRoot Pat h"

sel ect =" $l ocat i onRoot Pat h"/ >

<xs|:m4th-paran1nanE:"?n1_Pref|x" sel ect="$gm _prefix"/>

<xs| :w th-param name="tns"Tull" select="$tns full"/>

<xs| :w t h- param nane="current" sel ect="$current"/>

<xsl :w t h- param nanme="1 ocal nanme" >

<xsl : choose>])
<xsl : when test:"contalns(@%ubstltutlonC?oup)"
§x§53yglue-of sel ect ="substring-af ter(@ubstitutionG oup

</ xsl . when>
<xsl : ot herw se>

<xsl :val ue-of sel ect="@ubstituti onG oup"/>
</ xsl : ot herwi se>
</ xsl ; choose>
</ xsl:with-paranp
<xsl :w t h- param nane="nanmespace" >
<xsl : choose>

<xsl :when test="contai ns(@ubstitutionG oup '.'2"?
<xsl :val ue-of sel ect="rmp: prefix2ful | Func(substring-
bef ore(@ubstitutionGoup, ':'), $root)"/>

</ xsl : when>
<xsl : ot herw se>
<xsl :val ue- of sel ect ="nap: prefix2full Func('', $root)"/>
</ xsl : ot herwi se>
</ xsl ; choose>
</ xsl :w t h- par an>
</ xsl ;call-tenpl ate>
</ xsl : when>
/?/xskgchoose>
< e >
</st¥Pf> P
</ xsl :tenpl at e>

<l--
* kK ok tenpl ate: TrackGWLBaseType *****

Thi s tenPIate traces the type of a native type, to find out if it directly or
indirectly derives froma -type.

Par ameter |ist:

$l ocati onRoot Path -> The | ocation of the file being parsed. This string is
used to determne the | ocation of .]]
{I|Ef_bEIng pointed to by url's relative to this files
ocati on.
$r oot | -> root of the tree where the subgroup will be searched for
This is the root of a docurment throughout this file.
| ocal nane -> | ocal name_of the eléenment we are currentIY | ooki ng for
nanespace -> nanmespace of the elenent we are currently Tookin or
scanned -> concatenated string, containing the napes of all files that
has already been searched for this & ement. Used to avoid eternal recursion
tns_full -> target namespace _ _ _
tns_prefix -> prefix used for target nanespace in this file.
typeTrack ->this Is an inportant "el ement, used to avoid eterna
recursion when el ement names and tYPes are equal
%current _ ->the file currently bein arsed. _ _
gm _prefix -> the prefix used fof the GV nanmespace in this file. Passed
on within sane file, not passed on when nmoving to another file.
-->
<xsl:tenpl ate nanEf"TrackGNLBaseT¥R§">
<xsl| : param name="1| ocat | onRoot Pat h"/ >
<xsl| : param nane="root" select="/."/>

<xsl| : param nane="I| ocal name’ />

<xsl : par am nane="nanespace"/ >

<I'--<Xsl : param nane="r ecur se" sel ect="bool ean('true')"/> -->
<xsl| : param nane="scanned"/ >]

<xsl : param nane="current" sel ect ="$basefile"/>

<I'--<Xxsl : param nane="dept h" select:"nunber&O)"/> -
<xsl:param name="tns _full" select="string($root/child::*[1]
/ @ ar get Narrespacez s))

<xsl: param name="tns_prefix" select="nane($root/child::*[1]
/ nanespace: : *[string(.)=$tns_full])"/>

<xsl| : param name="t ypeTr ack" selectz"booleanf'fa se')"/ >
<xs|t9aran1nane gm _prefix" select="map: full 2pr f|xFunc($gn1 ful
$r oo

<xsl:jf test="$debug">
<xs| message term nate="no">TrackGWL.BaseType: <xsl:val ue- of
select— $l ocal nane"/ ></ xsl : message>

</ xsl :

<xsl :vari abl e nane= elenent select:"$root//(xsd'elenent | xsdol d: el ement)
ane—strlng($localnane)]

<xsl :vari abl &€ name derlvedelenent select— $r00t//%xsd conplexType

xsd: si IeTyPe | xsdold conpl exType | xsdol d: si nmpl eType) |

string($l ocal nane)]"/>

<l--
We first have to check if we are scanning an application schema that is
al ready scanned. The scanned schemas are _
concatéenated in the Paraneter scanned, the current schema uri is stored in
the paraneter curren
-->
<xs|:if test=" not(contalns§$scanned $current))”
<l'--<xs|:message_term nate="no" ><xsl : val ue- of select— $l ocal nane"/ >
</ xsl : message>-- >
<Xil choose>

The element is defjned with a conpl exType-el enent. However, we still do
not . know whether this elenent is
derived froma gm base tyPe If the derivedEl enment has a
conplebente nt-element child, we knowthat it is a derjved
bly fromgm . If not, we nust recursively flnd the gm base

type, poss
type.

<xsl : when t est =" $deri vedel enent " >

<xsl :variabl e name="gm Deri ved">
<xsl : choose>

<xsl:when test="$gm prefix I=""'">
<xsl :val ue-of sélec "substring-
after($der|vedelenent/ xsd: conpl exContent | xsd: sinpl eCont ent
xsdol d: conplebentent xsdol d: si npl eCont ent)/ (xsd; restriction
xsd: extension | xsdold.restriction | xsdold:extension)/ @ase,
conca%(ngn1 _prefix, "T))T/>

</ xsl
<xsl : othermnse>

<xs| value of select:"$der|vedelenent/(xsd conpl exCont ent
sd: S|np eContent | xsdol d: | exCont ent

xsdold I eContent)/ (xsd: res riction | xsd; exten3|on

xsdol d: res riction | xsdol d: extension)/ @ase"/

</ xsl : ot herw se>
</ xsl : choose>
</ xsl :vari abl e>

<xs| choose>
If the eIenent substitutes for an eIenent fromthe gmnl - nanespace, we
have found what we are |ooking fo

->
<xsl : when test="$gm Derived !="'"'">

<gni Derj vedType>
<l ocal name><xs| : val ue- of sel ect=" %g Der
<nanespace><xsl : val ue- of sel ect="3%gm _ful
</ n1Der|vedType>
</xs : when>
<l--
The elenent didn't substitute for P tyPe therefore we call the
templ at e agaln this time one step closer
a possi bl e“gm -origin.

i ved"/ ></| ocal nane>
| "/ ></

nanespace>

<xsl : ot herw se>

<xsl :variabl e name="tracknane">
<xsl : choose>
<xsl : when test—"contalnsf$der|vedelenent/(xsd conpl exCont ent
xsd: si mpl eCont ent | xsdol d: conpl exCont ent

XSL Transformations

xsdol d s|nPIerntent)/(xsd:restrrctron | xsd: extension
xsdol d:restriction |”xsdol d: extension)/ @ase, ':')">
<xsl:val ue-of sel ect="substring-
aft er ($derivedel ement/ (xsd: compl exCont ent
xsd: st npl eContent | xsdol d: conpl exCont ent
xsdold:srnPIerntent)/(xsd:res riction xsd: ext ensi on
xsdol d: restriction | xsdol d: extensi on)/ @ase, ':')"/>
</ xsl : when> _
<xsl :when test="%deri vedel ement/ (xsd: conpl exCont ent
xsd: si npl eContent | xsdold:conPIexCpnten
xsdold:srnPIerntent)/(xsd:res riction | xsd:extensron
xsdol d:restriction | xsdal d: ext ensi on)/ @ase"
<xsl:val ue-of sel ect="%der i vedel enent/(xsd; conplebentent
xsd: si npl eContent | xsdol d: conpl exCont ent
xsdold:srnPIerntent)/(xsd:res riction | _xsd; extensron
xsdol d:restriction |” xsdol d: ext ensi on)/ @ase"/

</ xsl ; when>
</ xsl: choose>
</ xsl : vari abl e>
<xsl: varrable nane="tracknanespace" >
<xsl : choose>
<xs| when test=" contarnsf$der|vedele nt/ (xsd: conpl exCont ent
d sranerntent | xsdo conpl exCont ent
xs 0 nPIerntent) (xsd:res r|ct|0n | xsd extensron
res

xsdol riction xsdold ext ensi o n? Eb
<xs| va ue- of select— nap: pref|x2 u unc(substrrng-
bef or e(derlvedelenent/(xs Iebentent
xsd: si npl eContent | Xxsdol d: nP ebentent
xsdol d: s| erntent) (xsd: res riction xsd: ext ensi on
xsdol d: restriction |’ xsdold: extensron)/@bas),
$root) "/ >
</ xsl : when>
<xs| mhe te st="$der|vedelenent/(xsd conpl exCont ent
sd: s nple ntent | xsdol d:co Iebente
xsdold Ierntent)/(xsd restriction xsd: ext ensi on
xsdol d: res iction |’ xsdol d:ext ensron?/ e'>
<xs|:value-of sel ect ="map: prefix2ful | Func(" ', $root)"/>

</xs| when>
</ xsl : choose>
</ xsl vari abl e>

<xsl:call-tenpl ate name= "TrackGNLBaseTYRe">
<xsl :w t h- param name="1 ocat | onRoot Pat h"
sel ect =" $I ocat 1 onRoot Pat h"/ >
<xs| :wi th-param nanme="root" sel ect="$root"/>
<xsl :w t h- param nanme="1| ocal name" >
<xsl : choose>

<xsl . when test="$tracknane">
<xsl :val ue- of sel ect="$tracknane"/>
</ xsl : when>

<xsl :otherw se>
<xs| : message term nat e=" yes">Error: Tracing GVML.BaseType
fall ed. El enent | ocal nane; <xsl: val ue- of
select— $l ocal name”/ ></ xsi : message>
</ xsl ; ot her wi se>
</ xsl ; choose>
</ xsl:w t h-paranp
<xsl :w t h- param name="nanespace" >
<xs| choose>
<xsl : when test="$tracknamespace” >
<xsl : val ue-of sel ect="$tracknamespace"/>
</ xsl : when>
<xs|:othermrse>
<xsl :nmessage term nate="yes">Error: No namespace found.
Tracrng BaseType failed. Elenent | ocal nane:
<xsl:val ue-of select=" $l ocal name"/ >. </ xsl : nessage>
</ xsl : ot herw se>
</ xsl ; choose>
</ xsl : mnth par anp

<xs|:w th-param name="current" sel ect="$current"/>
<xs|:w th-paramname="tns_full" select="$tns full"/>
<xsl|:w th- paranrnane— 'tns_prefix" select="$tns_prefix"/>
<xsl| :w t h- par am nane= tnPe rack" seIect="booIean('true'L"/>
<xsl| :w t h-param name="gm _prefix" select="$gnl _prefix"/
</ xsl : cal |l -tenplate>
</ xsl : ot herwi se>

99

</ xsl : choose>
</ xsl : when>

<l--

|f typeTrack=true, this neans that the el enent-declaration is already

found, and we are now]]

searching for this elenents type. If this test->true, it means we are

still searching for

the el ement decCl arati on.

-->

<xsl : when test="%el emrent and not ($typeTrack)">

<x3|:choose>

If the el enent substitutes for an el enent fromthe gnl - nanespace, we
have found what we are | ooking for

togo: handl e a situation where there is an enpty gm _prefix.

§x§l:w@en test="starts-with($el enent/ @ype, concat ($gm prefix,

<gn1DerivedT¥pe> .

<l ocal name><xsl : val ue- of sel ect ="substring-after($el ement/ @ype,
" ")"I></l ocal pame>
<nanespace><xsl : val ue- of sel ect="$gm _full"/></nanespace>

</ gm Deri vedType>

<I--<xsl|:message term nate="no">El ement <xsl:val ue-of
sel ect ="$l ocal hame"/> traced to: <xsl:val ue-of
pe"/ ></xsl : message> -->

:{xsl:mhen>

The el ement didn't.
tenpl ate again, thi
a E033|ble gm-orig

<xsl : ot herw se>
<xsl :vari abl e nane="tracenane">
<xsl : choose>)
<xsl :when test:"contalns($e|enent/@%¥pe, b
§x§lhyglue-of sel ect ="substring-after($ele

</ xsl * when>
<xsl : ot herwi se>
<xsl : val ue- of sel ect =" $el enent/ @ype"/ >
</ xsl : ot herw se>
</ xsl : choose>
</ xsl :vari abl e>
<xsl :variabl e name="t racenanespace" >
<xsl : choose>

r
/
sel ect="%$el enent/ @y
b
t

substitute for a Pn1 tyPe, therefore we call the
s tinme one step closer’to
In.

>
ment/ @ ype,

<xsl :when test="contains($el enent/ yPe)"
<xsl :val ue-of sel ect="rmap: prefix2ful | Func(substring-
bef ore($el enent/ @ype, ':'), $root)"/>

</ xsl : when>

<xsl : ot herw se>
<xsl :val ue- of sel ect ="nap: prefix2full Func('', $root)"/>
</ xsl : ot herw se>
</ xsl : choose>
</ xsl :vari abl e>

<xsl:if test="not(tracenane) or not(tracenanespace)">
<xsl ; message_t erm nat e="yes">Error code:
</Tri’:lc,k1g§l;/LBaseType#01</xsl:massage>
xsl i

<xsl:call-tenplate nanez"TrackGNLBaseTYRe">
<xsl :w t h-param name="| ocat i onRoot Pat h"

sel ect =" $l ocat 1 onRoot Pat h"/> . .
<xsl| :w t h- param nane="| ocal nane" se| ect="$tracenane"/>
<xs|:w t h- param nanme="nanespace" sel ect =" $tracenanespace"/ >
<xsl|:w th-param nanme="tns_full" select="%tns full"/>
<xsl|:w th-param nanme="tns_prefijx" select="$tns_prefix"/>
<xsl:w t h- param nanme="t ypeTrack" sel ect="boolean('true')"/>
</ xsl:call-tenpl ate>
</ xsl ; ot herw se>

</ xsl; choose>
</ xsl : when>
<xsl : ot herw se>))
<xsl:for-each select="%$root//(xsd;include | xsdold:include)">
<xsl:call-tenplate name="TrackG\W.BaseType" >
<xsl :w t h- param nane="1| ocat i onRoot Pat h"

sel ect =" map: Get Fi | eRoot (map: Get Locat i on($l ocat i onRoot Pat h,
@chenaLocation))"/>

<xsl:wth-param nane="root" _

sel ect =" docunpent (map: Get Locat i on($l ocat i onRoot Pat h,
chPenaLocat|on) "/

Xs| :w

h- param nanme="| ocal nane" sel ect="string($l ocal name
h- par am nane="nanespace" sel ect="string

ll/>
nanespace;"/>
- par am nanme="scanned"” sel ect ="concat (String($scanned)

t
t
l:wWth
str|ng(?ﬁurrent))"/>

<xsl:W t h-param nanme="current" sel ect="@chenmaLocation"/>

<l--< sl:MAth-paran1nane:"dePth" select:‘nunberf$degth) + 1"/ >->
<xsl:w t h-param name="tns_full" select="$tns full"/
<I'--<xsl|:wth-param name="tns_prefix" select="$tns _prefix"/>->
<xsl:w t h-param name="t ypeTrack" sel ect="$typeTrack"/>

</ xsl:call-tenplate>

</ xsl ; for-each>

<xsl:for-each sel ect="%$root//(xsd;inmport | xsdold:inpag
<xsl:if test="@anespace! =$gm _full and @anespace=$
@anespace=$xm _full">

</xsl:1f>

re)" >
xIink _full and

<xsl:call-tenpl ate nanE:"TrackGNLBaseTYRe">
<xsl:w t h-param nanme="1| ocat i gnRoot Pat h")
sel ect =" map: Get Fi | eRoot (map: Get Locat | on($l ocat i onRoot Pat h,

chemalLocation))"/>

<xsl:wth-param hame="root" .
sel ect =" docunent naB:thLocatl0n($|ocat|onR00tPath,
@chenaLocation))"/
<xsl|:w th-param nane="| ocal name" sel| ect="string($l ocal name)"/>
<xsl| :w t h- par am nane="nanmespace" sel ect="string($nanespace)"/>
<xsl| :w t h- param nane="scanned" sel ect ="concat (Stri ng($scanned)
string($current))"/>
<xsl:W t h-param nanme="current" sel ect="@chemaLocation"/>
iii;<xil:MAth-paran1nane:"depth" sel ect =" nunmber ($dept h) +
<I--<xsl|:with-param nane="tns full" select="8$tns full"/>->
<I'--<xsl|l:wth-param name="tns"prefix" select="$tns prefix"/>->
<xsl :w t h- param nane="t ypeTrack" sel ect="$typeTrack"/>

</ xsl| ;call-tenmpl ate>

</ xsl : for-each>
</ xsl : ot herw se>
</ xs| ; choose>

</xsl:i1f>

</ xsl : tenpl at e>

<l - -

%xx tenplate: TrackGWVLSubstitutionG oup **

This tenplate traces a substituti onG oup-value, to find out if the substition
is indirectly for an GW type.

Par amet er

list:

$l ocat i onRoot Path -> The location of the file being parsed. This string is
used to determne the | ocation of .]]
{|Ie?,be|ng pointed to by url's relative to this files
ocati on.

$root -> root of the tree where the subgroup will be searched for
This is the root of a docunment throughout this file.

| ocal nane -> | ocal nane of the eléenent we are currentIY | ooki ng for
nanespace -> nanmespace of the elenent we are currently Tookin or

scanned -> concatenated string, containing the napes of all files that

has already been searched for this el ement. Used to avoi d eternal recursion

tns_full -> target nanmespace , , ,

tns”prefix -> prefix used for target nanespace in this file.

current ->the filename of the file currently being parsed
-->

<xsl:tenplate nanE:"trackGNLSubstitutLonG?oup">

<xsl| . param name="I ocat i onRoot Pat h’
<xsl : param name="root" select="/.
<xsl : param name="tns_ful

>
sel ect ="string($root/child::*[1]

/| @ ar get Nanmespace) "/ > . .
<xsl : g;gn1nane:"gn1_pref|x" sel ect ="map: ful | 2prefi xFunc($gm full,

$r oot

<xsl| : param name="1| ocal nanme"/ >

<xsl| : par am nane="nanespace"/ >

<xsl| : param nanme="scanned' /> . A
<xsl : param nanme="current" sel ect ="$basefile"/>

<xsl :variabl e nane="el enent" sel ect ="$root//(xsd: el ement | xsdold: el ement)
[@ane=string($l ocal nane)]"/>

XSL Transformations

<xsl:jf test="$debug">

<xsl : message term nate="no">trackGW.SubstitutionG oup: <xsl:val ue-of
</select— $l ocal nane"/ ></ xsl : message>

XS

first have to check if we are scanning an application schema that is
al ready scanned. The scanned schenas are o)
concatéenated in the Paraneter scanned, the current schema uri is stored in
the parameter curren
<xs| i f test="not(contains(string($scanned),string($current)))”>

<xs| choose>

<I--i'f the element is found (the el ement which is substituted for
anot her placez -->
<xsl :when tes ="$el ement " >

<Xi| choose>
|[f the el ement substitutes for an elenent fromthe gm - namespace, we
have found what we are |ooking fo

<xsl : when test—"starts MAth($e|enent/@Bubst|tut|0nC¥0up

concat(% prefix, '
<base ubsr|tutestor>
<| ocal nane><xsl : val ue-of sel ect ="substri ng-
af ter ($el enent/ @ubsti tutionG oup, {r$ ocal name>

<nanespace><xsl| val ue- of select-p$gn1 ?u
</ baseSu stitut esFor >
</xs| when>

<l--
el ement |sn t s bst|tut|ng for another we have traced the

></ nanmespace>

If this
subst it ut |onGrouP ttribute as |lon as ossi b
The type it substituted for was no type "but one from anot her
nanespac
<xs| when test="not ($el ement/ @ubstituti onG oup)">
<baseSubst|tutesFor>
<l ocal nanme><xs| : val ue- of sel ect=" eIenent/ nme"/ ></| ocal name>
<namespace><xsl : val ue- of select="$tns_full ></nanespace>
</ baseSubsti t ut esFor >
</xs| when>
<l--

The el ement didn't substitute for a Pn1 tyPe, therefore we call the
tenplate again, this t|ne one step closer’to
a possi bl e gm - o ig

<xsl : ot herw se>)
<xsl:call-tenplate name="trackGWSubstit uti onG oup”>
<xsl : W t h- par am name= IocatlonRootP h"
sel ect =" $l ocat | onRoot Path"/>
<xsl :w t h- param nanme="1 ocal nanme" >
<xsl : choose>
<xsl . when test="cont ai ns($el ement/ @ubstituti onGoup, ":")">
<xsl :val ue-of sel ect="substring-
afte &A$elenent/@3ubst|t utionG oup, ':')"/>
</ xsl : when>

<xsl :otherw se
<xs| val ue- of sel ect =" $el ement / @Gubsti tuti onG oup"/ >
</ xsl : ot her wi se>
</ xsl; choose>
</ xsl :w t h-paranp

<xsl :w t h- par am nanme="nanespace" >
<xs| choose>

<xsl : when test—"contalns($e|enent/g%u stitutionGoup, ':"')">
<xsl :val ue-of sel ect=" refix I'l Func(substri ng-
before($e|enent/@Bubst|tut|onG?oup, 1Y), $root)"/>

</ xsl : when>
<xsl : otherMAse>
<xs| val ue- of sel ect ="map: prefi x2full Func('', $root)"/>
</ xsl : ot herwi se>
</ xsl; choose>
</ xsl : wi t h- par anp
</ xsl : cal | -tenpl at e>
</ xsl 7 ot her wi se>
</ xsl : choose>
</ xsl : when>

102

The el enment being substituted for sone place, was not found in this
file. W therefore have to trace the substituti onGoup-attribute into
thg files included and inported.
<xsl : ot herw se>)
<xsl :for-each select="%$root//(xsd;include | xsdold: |nclude)">
<xs| :cal-tenpl ate nane="trackGWL.SubstitutionG oup">
<xsl:w t h-param nanme="1| gcat i gnRoot Pat h
sel ect =" map: Get Fi | eRoot (map: Get Locat | on($l ocat i onRoot Pat h,
@chennaLocation))"/>
<xs|:MAth-paran1nanE:"root" . .
sel ect =" docunent : Get Locat i on($! ocati onRoot Pat h,
@chenalLocat 1 on) "/
<xs|:w th-param name="tns _full" select="$tns full"/>
<xsl| :w t h-param nane="1 ocal name" sel ect="string($l ocal name)"/>
<xsl| :w t h- param nane="nanespace" sel ect ="stri ng($nanespace)"/>
<xs| : W t h- par am nanme="scanned" select—"concat(strlng($scanned),
string($current))"/>
<st:MAth-paran1nane— current" sel ect =" @chemalLocation'/>
<l--<xs|:wth paran1nane ="dept h" sel ect ="nunper ($depth) + 1"/>-->
</xsl:call-tenpl ate>
</ xsl ; for-each>
<xsl . for-each sel ect="$root//(xsd;inport | xsdold:inport)"
<xsl:if testz"@hanespace'-$gn1 full "and’ @amespace=$xl1ink_full and
@hanespace $xm_fu
<xsl: call-tenpl te nane:"trackGNLSubstltutlonC?oup">
<xsl th-par am nanme="1| ocat i onRoot Pat h"
sel ect =" map: tF|IeRbot(nap Get Locat 1 on($l ocat i onRoot Pat h,
@BchenaLocat on))"/>
<xsl: th-pa am nanme=" "
sel ect =" docunent nag thLocatl0n($locat|0nRootPath
@BchenaLocat|on) "
<xsl: th—paran1nane— tns_full" sel ect="@anespace"/>
<xs|:w th-param name="I| ocal nane’ select="string($l ocal nane)"/>
<xsl| :w t h- param nane="nanespace" sel ect ="string($nanespace)"/>
<xsl| :w t h- param name="scanned" sel ect ="concat (St ri ng($scanned),
str|ng($current))"/>
<xsl:w th-param name="current" sel ect="@chemaLocation"/>
<'i;<xil wi t h- param nane="dept h" sel ect =" nunber ($dept h) +
</xsl|;call-tenpl ate>
</ xsl: i f> P

</ xsl: for-each>
</ xsl 7 ot herw se>
</ xsl ; choose>
</xsl:1f>
</ xsl :tenpl at e>

<l--
This function determines the full nanespace, given the abbriviation. $root
hoLds the root of a schema file.
<xsl : function nanme= p Pref|x2fuIIFunc">
<xs|:paran1nane—"ab
<xsl : param nanme="root "/ >

<xsl :vari abl e pame="tenp">
<st:¥aIue-of sel ect="string($root/child::*[1]/nanespace:: *[name() =$abbr]

</xé?:variab|e>

<xsl : choose>
<xsl :when test="$temp !'=""">
<xsl :val ue- of sel ect="$temp"/>
</ xsl: when>
<xsl:otherw se>

<xs| message term nate="no">lnvalid nanesgace prefix. No nanespace
(default or Pref|xed) found </ xsl:messa
<xsl :val ue-of sel ect="' INVALI D NS' PREFI '"/>

</ xsl : ot her wi se>
</ xsl: choose>
</ xsl : functi on>

<l--
This function determ nes the prefix used for a given namespace. $root hol ds
the root of a schema file.
-->
<xsl:function name= P full2pref|xFunc">

<xsl : param nane= "ful

<xsl : param name="root"/ >

<xsl :vari abl e _name="i sPre e nt" sel ect ="bool ean($root/child::*[1]
/ namespace: : *[string(.)=$ful1])"/>
<xsl : choose>
<xsl . when test="8$i sPresent">
<xsl : val ue- of select:'strlnPFn?nE;$root/ch|Id::*[l]

/nanespace c*[string(.)=%fu)" >
<xsl: othermrse>

</ xsl: when>
<xs| val ue-of select="'_NPIF_'"/> <!-- panespace is not present i file

</xs| ot herw se>
</ xsl : choose>

</ xsl; function>
</ xsl : styl esheet >

Stylesheet for removing identical type
maps from mapping dictionary

This transformation converts any GML 2.1.2 data into SVG, given a correct mapping
dictionary, created with the mapElements.xsd listed the section called “GML Schema
to Mapping Dictionary”.

<?xm version="1.0" encodrn =" UTF- 8" ?>

<xsl : styl esheet version=" xm ns: xsl ="ht t p: [/ www. W3, or g/ 1999/ XSL/ Tr ansf or ni
xn ns? xsi ="http: //MMMIMB org/2001/XNLSchena i nstance
xm ns: bme" no: hi of : basenapper ,
<xsl :out put met hod="xm " version="1.0" encodi ng="UTF-8" indent="yes"/>

<xs| tenmpl ate match="/">
nrthPrngD ctionary>
<xsl: copy-of select="/bm Mappi ngDi cti onary/bm docunent Nanespaces"/ >

<bm t ypeMaps>
<XS cal -tenpl at e nane="washTypeMaps"/ >
</ bm t ypeMaps>
</ bm Map PlngD ctionary>

</ xsl:tenpl at e>
<xsl: tenplate nane= mashTypeths >
<xsl . param nanme="transferred el ec

t="'"'"/>
<xsl : param name="current"” selec "/ bm Typeth[l]"/>

<xsl : choose>

sxgl:mhen test="not (contai ns($transferred, concat(' ', $current/ @d,
T<XS co of select="$current"/>
</ Xsh: wheh%.

<xsl'othermrse>
<xsl :message termnnate
sel ect="%clrrent/ @d"/
</xs| ot herw se>
</ xs| : choose>

Po">DupI|cate TypeMap filtered: <xsl:val ue-of

></ xsl : nessage>

<xsl|:variabl e nanme= follomnng sel ect ="$current/foll owi ng-sibling::*[1]"/>
<xsl:if test="$foll | owi ng
<xs| caII % npl at e namre="washTypeMaps" >
ra

<xsl : par am nane=' transferred sel ect="concat (' ', $transferred

XSL Transformations

t" select="%follow ng"/>

Generic GML/Dictionary to SVG trans-
formation

This stylesheet converts a GML 2.1.2 compliant file to SVG, given a correct mapping
dictionary in accordance with the schema listed the section called “Mapping Diction-
ary Schema’. This file can be created using the transformation listed the section called
“GML Schemato Mapping Dictionary”.

<?xn1 versi on="1.0" encodi ng="UTF-8"?>
Th|s transformation stylesheet is made as a proof of concept software, for the
P ping dictionary. It utilizes arb|trarK
ngtfl es transforn1ng themto SVG using the information stored in a mapping
ictionary.

-->
<xsl'stylesheet version="1.0" xm ns: xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns? x| 1 nk=" httP ! [waw, W3. or g/ 1999/ xI i nk
X ns:gn1—"http /MMMIOpengIS net/gm™"
xm ns: ¢="no: hi of : basemapper : consta ts”
xn ns:ng:"no:h|of basemapper 8 N%
xm ns: Xs="http:// ww. w3. org/20 1/ XM_Schena"
xm ns: bme" no: hi of : basenapper
xm ns: met a="no: hi of : onenap gm : et ai nf 0"
xm ns: one=' http //onena org
xm ns: styl e="userstyle"
<xsl : out put method="xm " indent= wes"
doct ype- publ i c="-//WBC//DID SVG 20010904/ / EN'
doctype-system="http://ww. wW3. or g/ TR/ 2001/ REC- SVG 20010904/ DTD/ svg10. dt d"
cdat a- secti on- elenents:”scrlpt cdata style"/>
<xsl :out put nethod="htm " name="htm doc"/>

<l--
constants. xslt holds sone of the base GV nanes.

-->
<xsl :include href="./constants.xslt"/>

ﬁ'-- To be able to retrieve a conmand |ine param we nust declare the param
ere-->

<xs| param name="mapfile"/> .

<xsl| : param nane=" V|embox select=""""/>

<xsl : param name="styling"/>

<xsl : param name="fl at" select- no' "/ >

<xsl :varijabl e nanme="user Styl es">
<xsl : choose>
<xsl : when test=" $st¥I|n
<l --<xsl| ; message er m nat e="no’ >Styl|ng <xsl : val ue- of
sel ect =" $styl|ng [></ xsl: nessa
<xsl : val ue- of select—"docunent $st ling)"/>->
<style:styles xm ns:style="userstyle" Xm ns="userstyle">
<styie:style>

105

<sty|e:nanespa e>defau| </ styl e: namespace>
<stYIe:sterst >stroke: bl ack; stroke-width: 0.05% fill:white;
fil -opaC|t¥ 0.0 style styl estring>
:/?tyle:?tylg
S e:s e
<¥ty|e:%anespace>htt ./ ww gi sline. no</sty| . namespace>
<style:stylestr| >stroke: bi ack; stroke-w dt 0.05% fill:brown;
fil -opaC|t¥ 1</ style: styi estring>
</§tyle:§tyle
<s e:s e>
<¥tyle:%anespace>htt . [[waww. onenmap. net</ style nanespace>
<style:stylestr|n >stroke: bi ack; stroke-w dt 0. 05%
fill:#1BE439</style: styl estring>
:/?tyle:?t I §>
s e:s e
<¥t¥Ie %anespace>http'//MMM/ordnancesurvey co. uk/ xm / nanespaces/ osgb
</ styl e: nanespace>
<ster styles r|n?>stroke bl ack; stroke-width: 0.05% fill:black
fill-opacit styl e:styl estring>
:/?tyle ?t IS
S e:s e
<¥ty|e %a space>htt //MMM/openg|s net / exanpl es</ styl e: nanespace>
<style.styl strln >st r oke: b u Stroke-wi dth: 0.05% fiil:black
fil -opaC|t :0.0<I'style: stylesfr|ng>
</s e:s e
/styl tyl
</style:styles>
/ styl tyl
</ xsl : when>
<xsl : ot herw se>
<siy{eisty{ef>>
5 e: s e
<¥ty|e %anespace>default</style nanespace>
<style styl estring>stroke: bl ack; stroke-w dth: 0.05%
fill:nonel </style’stylestring>
</style;style>
</style:styles>
</ xsl : ot herw se>

</ xsl : choose>
</ xsl :vari abl e>

<xsl|:variabl e nanme= "INFCRMWTIVE MSG' sel ect ="bool ean('')"/>
<xsl :variabl e nane="WARNI NG M5G™ sel ect ="bool ean('true!)"/>
<xsl :vari abl e name="DRAW FLAT" sel ect="bool ean('true')"
<xsl :variabl e name="feature style sel ect ="' stroke: bl ack; stroke-wi dth: 0.03%
stroke-col or: black, fill:ngne
<xsl :variabl e name=’ featurerIIect|onSter select=""""/>
<l-- The variable DICT_ROOT contains the childs of the outernost elenment -->
<xsl :vari abl e
name=' 'gDi ct Root " i
sel ect =" docunent (string($mapfil e))/bm Mappi ngDi cti onary"/>
<I-- We mght need access to the geonetry schema of GW2 for recogni zing
geonetric Bropert|es -->
<xsl:varia

name="gCeomnet rySchem"
sel ect ="docunent (' ./ geonetry. xsd')/ xs: schema"/ >

<xsl :vari abl e
nane="gFeat ur eSchema"
sel ect ="document (" ./feature.xsd')/ xs: schema"/>

<l-- |f there are application specific properties, these the base substitution
roup will be gm: _geonetryProperty. This relationship is to be found in the
Ictionary -->
<l --<xsl|:variable
S80'5c SPRBERTRLG FBim ¢ ypennpsy b Typen
sel ect = ct Roo m e s/ bm e
gbnlbasgSubstitutesFo¥P Pocalna%g GEENET?Y PRCPERTY BASE and
m baseSubst i t ut esFor/ bm namespace= NAMESPACE
bn1|nstanceCI/bnllocalnane $ TRY PRCPE?TY TY E and
n1|nstanceCf/bnlnanesPace— NAMESPACE)
bm gm Deri vedType/ bm | ocal name=$GEOVETRY PRCPERTY TYPE and
m g Deri vedT pe/bnlnanesPace =$GVL_NAMESPACE)
bm baseSubsti t ut esFor/ bm | ocal nane=$GEOVETRY PRCPERTY TYPE and
m baseSubsti t ut esFor/ bm nanespace=$GVL_NAMESPACE) |

/ bm appEl ement/bm | ocal nane"/>-->

<I'--<xsl|:variable
narre— gGeorret ryTypes

sel| ect =" $gGeanet T Schema/ xs: el ement [@ubstituti onG oup=concat (' gm :
$GEOVETRY BASE) 1/ me"/> -->
<!-- The variabl e gFeatureCollections holds the nanes of all the el enments

identified as descéndants of gml:Abstract FeatureColl ectionType -->

<xsl :vari abl e
name="gFeat ur eCol | ecti ons"
%el ectt- $ng09§ Root / bm t ypeMaps/ bm TypeMap/ (bm gm Deri vedType |
m i nstance
bm | ocal nane=$FEATURE_COLLECTI ON_TYPE and bm nanespace=$GVL_NAMESPACE]
/../bm appEl enent"”/>

<l-- The variabl e gFeatures hol ds the names of all the elenents recognized as
types derived from Abstract Feat ureType -->

<xsl: var|able
name= " gleat
sel ect = $gD| ct Root/ bm t ypeMaps/ bm TypeMap/ (bm i nstanceCOf |
bm gm DervedTy
bm | ocal name-gF TURE_TYPE and bm nanmespace=$GVL_NAMESPACE]
bm appEl emrent "/ >

Al'l | ocal nanes recogni zed as |inestring-types
It can be noted that this and the other geone
| ocal nane of an elenment, and there m ght "be s
elenents with

same name, but in different nanespace, However
fur>t her enhancerment is required to make it ful

<xsl :vari abl e
name=" Ag pLi neSt
sel ect ctRo

bmins anced

m 1 nst anceXt
E)bm gm Deriv
m g Derive

/b appE!l ene

|

<xsl :vari ab
n

e stored in this vari abl e.
variables only store the
X ups if there are several

S proof of concept, and

this
ly reli abI

r
gbm% LPENREABLIUORP st G, Tyee ane

rres ace—$G\/L NAMESPACE)

bm | ocal name=$GEOVETRY LI NESTRI NG TYPE and
m nialrrespa/ce =$GVL_NAMESPACE) |

ocal nane

name=
sel ect gAg
bmi s
m I nst a
bm gm De
m n1 Der i edT B
/ bm appE!l ement7 bm

yPﬁg/arrgy bm(]\/l\éllj'%l\Y/aE[NEARRI NG TYPE and
mes ace-$GIVL NAVESPACE

I
a
/[bm | ocal nanme= EGEOVETRY LI NEARRI NG TYPE and
bm nanespace =$ CE)]

| ocal nane’

e
L|
a
n

<xsl :vari abl e
nanme=" Ag Pol ons"
9

sel ect oot/ bm t ypeMaps/ bm Typel\/hPL(bm i nstanceX/bm | ocal nane=
GON_TYPE and bm i nst anceO / bm namespace=3$GVL._ NAMVESPACE) or
m gm Der| ved'l_pe/ bm | ocal narre:éCEOVETRY POLYGON TYPE and
m g Der i vedTy e/ bm nanespace=$GVL_NAMESPACE)]
/b appE!l emrent7 bm | ocal nane"/ >

<xsl :variabl e
nane=" AE pPoi n

ts"
sel ect Di ct Root / bm eMa s/ bm
bmins anceO‘/ bm yP p (]\/I\éﬁ)' E[J NT TYPE and

o
m i nst anceOf / bm nanes Pace $GIVL NAI\/E CE)
Bbm gm Deri vedType/ bm | ocal nane=$CGEQVETRY PG NT_TYPE and
m g Der | vedTyge/ bm nanespace=$GVL_NAMESPACE) | ~
/ bm appEl emrent7 bm | ocal nanme"/ >

<xsl : varlable

name=" ords"
sel ect ct Root / bm eMaps eMa
bm i ns anceO‘/ bm I o PnamsP $CO(R¥)pTYPE and bm i nstanceO/ bm nanmespace=
NAMES PACE)I_ or
bm gm Deri vedType/ bm | ocal nane=$COORD TYPE and
m g Der i vedTyEe/ bm nanmespace=$GVL_NAVESPACE) |
/b appE!l ermrent [ocal nane"/ >

<xsl :vari abl e

XSL Transformations

22{“3& AE o Root! B t ypenaps/ bm
bmins anceCI/ ntl Pnang— CIIP%f Eg TYPE and
n1|nstanceCf bm na ace= $GNL NAVESP. CE%
ntgntDer|ve Type/ b ocal nane=3$COORDI NATES TYPE and
i Deriv e/Pntnanespace =$GVL_NAMESPACE) |

m g edTyE
/b appE!l erment ocal nanme"/
<I-- Now let's find the featureMepber-t Ypes The f eat ur eMenber - el enent from
feature xsd, can be used directly in instance docunent,
or appl |cat|on schemas can restrict the FeatureAssociati onType and substitute
for &ume% er, to restrict menbership inside the featureMenber-elenent -->
<I'--<xsl:variable

nanme=" AgFeatureManbe s"

select %E ctRoo%ébnttypeths/bntTypeth[bntgniDerlvedType/bntlocaInane—
bn1|nstanceCf/bntlocalnane $SFEATURE NENBER TYPE and
m i nst anceOf [bm nanmespace=$GVL_NAVESPACE
bm baseSubst it ut esFor/ bm | ocal nane=$FEAT RE NENBER ELENENT and
m baseSubst it ut esFor/ bm nanespace=$GVL. _NA l
bm substitut esFor/bm | ocal nane=$FEATURE _MEMBER E ENENT and
m subst |t ut esFor/ bm namespace=$GVL_NAMESPACE) | —
/bm appEl enment/bm | ocal nane"/>-->
<xsl :vari abl e .
name=" AgFeaturelve ers))
select Di ct Root/ bm t ypeMaps/ bm TypeMap/ (bm i nstanceO' | bm gm Deri vedType
bm base ubstltutesFor bm substituteskor)|
bm | ocal nane= %FEATURE MEMBER TYPE and bni namespace=$GWL._NAMESPACE)
bn}Localn%Fe FFAFERE:NENBER‘ELENENT and bm nanmespace=$GVL NANESPACEH
m appEl enen

<l--
This variable holds the nanes of all the GW types, being descendants of a
geonetry associ ation type, and

<'—-<xs| var|able nane= ngonetr PropertY Eg select-"($ eSchema
$gGeonetrySchena xs: conpl exT F KXS:COHB ntent/xs restr n/ @ase=
concat ('gm: ", OVETRY_ ASS ATION_TY E)]/@hane"/>-->

<I--

The two follow ng variables stores the geonetrynmenber-elements in defined in
the featureschema. E.g. centerLined, centerO”etc. These are not abstract
elgnents, and can be Used directly in an instance docunent.
<xsl :vari abl e

name="gBaseGeonet r yMenber s"

sel ec $gFeatureSchena/xs el ement [@ubstitutionG oup=concat (' gm :
%GE ETRY. PROPERTY BASE (@ype=cancat (' gm :
GEOVETRY_ASSQOCI ATTON_ T PE) and” not (@bstract="true'))]"/>

<xsl :vari abl e
nane="gBaseCGeonet r yAl i ases"
select—"$%FeatureSchena/xs el emrent [$gBaseGeonetrbenbers/@hane substring-
after(@ubstitutionGoup, ":')]"/>

<l--

The var|able gAppGeonetryPropertie
appEl ement - el enent from

resour ces _ _
if done for all variables. | conbi this with a function called
|sEIenentInAppEIenent to search thro ugh t he appEl erment - nodes.

s i.s however correct. Storinﬂ t he. whol e
he mappi ng dictionary. This can be exhaustive for
ne

<xsl :vari abl e nanme=" ? AppGeonet ryProperti es”
sel ect =" $gDi ct Root I bm t ypeMaps/ bm TypeMap/ (bm i nst anceOf
bntgniDerlvedType)
concat ('g ntlocalnane) $gBaseC£0netrbenbers/@Pype and
ntnanesPace =$GVL _NANVESP. bc
(m | ocal name=$GEOVETRY_ ASS | ATI ON_TYPE and bm nanespace=$GVL_NANMESPACE)

;bntlocalnane =$CGEQOVETRY_PROPERTY_TYPE and bm nanespace=$GV._NAMESPACE)]
/ bm appEl emrent "/ >

<xsl:tenpl ate natch="

<xsl : message terntnate— ">Features in mapping file: <xsl:val ue-of
sel ect =" count§$gFeatures) /></xs| nessage> _ _
<xsl| : message term nate="nho">FeatureCol | éctions in mapping file: <xsl:val ue-

108

of sel ect ="count ($g
<xsl:message termn
sel ect =" count ($gApp

<l--<xsl:for-each
<xsl : nmessage te
</ xsl : message>

</ xsl ;for-each>
<xs|:message te
<xsl :val ue-of s

<xsl : vari abl e nanme=
<xsl : choose>
<xsl :when test=
<xsl : val ue- of
</ xsl : when>
<xsl : ot herw se>

<xsl:call-tenp)
par am nane="box" sel ect="child::*/gnm :boundedBy"/>

<xsl:wth-
</xsl:call-te
</ xsl ;: ot herw se
</ xsl : choose>
</ xsl :vari abl e>

<xsl : el emrent nane="

<xs|:attribute na

<xs|:attribute na

<xsl:attribute na
<xsl : choose>

<xsl :when tes

<xsl; messag

Feat ureCol | ecti ons)"/></xsl : nessage>
ate="no" >Feat ureMenbers 1 n mapping file: <xsl:val ue-of
Feat ureMenbers) "/ ></ xsl : message>

sel ect =" $user St yl es" > . , .
rm nat e="no" ><xsl : val ue-of sel ect="nanespace-uri(.)"/>

rm nat e="no" ><xsl ; val ue- of sel ect="count ($user Styles)"/>
el ect ="l ocal - nane($user Styl es) "/ ></ xsl : nessage>-->

"vi ewBox" >

"not ($vi ewbox :,"g">

sel ect="g2s:flip($vi ewbox)"/>
| at e nanme="vi ewBox" >

| at e>
P

svg" >
neg"mﬁdth">1009&/xsl:attribute>
nme="hei ght">100%</ xsl : attri but e>
me="vi ewBox" >

t ="not ($vi ewBox) " > , .
e _term nat e="no" >Boundi ng box not specified. Please

speci fy viewBox as styl esheet paraneter.</xsl:nessage>

</ xsl : whéen>
<xsl :otherw s
<xsl :val ue-
</ xsl ;: ot her wi

</ xsl : choose>
</ xsl:attribute>

<xsl:attribute na
<xsl :val ue-of s
</ xsl:attribute>

e> ,
of sel ect="$%vi enBox"/>
se>

me="onl oad" >
elect=""Init(evt);""/>

<xsl:variabl e name="root Layers" sel ect="//one: | ayerDescription"/>

<def s>
<xsl:cal|-tenpl
<xsl:w t h-par
</xsl:call-te
<xsl:call-tenp
</ def s>

<¥sl:call-t at

<l--

consi dering that SVG co
coordi hates origi na

transformati on here.

In addition, the viewBo

d|sappeaL.

<g transfornF" nat
<xsl : choose>
<xsl :when tes
<xsl : appl y-
%gFeatures/
gFeat ur es/
</ xSl : when>
<xsl:otherw s
<xsl : appl y-
%gFeature
gFeat ureCo
</ xSl : ot herw
</ xsl: choose>
</ g>

<xsl|:call-tenplat
enpl

<xsl : copy- of sele
</ xsl: el enent >

ate name="addMenuDef " >

Fn}ngne:"rootLayers" sel ect =" $r oot Layers"/ >
ate

ate name="defi neStyl es"/>

e nane="addScript"/>
e nane="witel nt oW ndow'/ >

ordi nat es ori%inates fromthe top left corner, and the
tes fromthe bottomleft. We specify a matrix

x has to be changed, so that the view of the data doesn't

rix(1,0,0,-1,0,0)">

t="$flat = 'yes'">

tenpl ates select="//*[|ocal -nane() =
bm | ocal nane_and nanmespace-uri ()=
bm nanespace] "/ >

e>

tenmpl ates select="child::*[|ocal -nane() =

| ections/bml ocal nane_and namespace-uri ()=
IIgct|ons/bn1nanespace]"/>

se

ct =" docunent ($napfile)"/>

</ xsl :tenpl at e>

<xsl :tenpl ate nane="vi ewBox" >
<xsl : par am name="box"/ >

<xsl :variabl e

$gA|0p000r ds]"/ : :
<xsl :var| abl e name="coor di nat es" sel ect =" $box//gml : coor di nat es

$box//*[| ocal - name() =$gAppCoor di nat es] */ >
<xsl : choose>

Qane:"coord" sel ect =" $box//gm : coord | $box//*[] ocal - nanme() =

<xsl : when test="%coord">
<xsl| :vari abl e nane="x" select:"icoord 11/ gm : X"/ >
<xs|:variabl e name="y" sel ect="%$coord[1]/gm :Y"/>
;xa£é¥?%|?p}g nanme="w dt h" select:"nunber?$coord[2]/gn1:X) -
u X
<xsl| :vari abl e nanme="hei ght" sel ect ="nunber ($coord[2]/gm:Y) -
nunber ($y) "/ >
<l-- to flip the coordinate system we make the y negative and subtracts
t he hei ght [>

<xsl| :vari abl e name="strVB"' sel ect ="concat (concat ($x, ' ', $y), concat ('
', $wdth), concat(' ', $he|ght§)"/>
<xsl:val ue-of select="g2s:flip($strvB)"/>
</ xsl : when> ,
<xsl : when test="%coordi nat es" >
<xsl :vari abl e name="separator" sel ect ="g2s: get Separ at or ($coordi nates)"/ >

<xsl :vari abl e name="x" sel ect ="nornal i ze- space(substring-
bef ore($coordi nates, $separator))”/> _
<xsl :vari abl e name="y" sel ect="nornmalize-space(substring-

bef ore(substring-after($coordi nates, $separator%, v />

<xsl:vari abl e, nane="x2" sel ect ="normal i ze- space(substri ng-
gefore(fubst[}Qg-after(substr|ng-after($coord|nates,$separator),),
separ at or

<Xs :variaL?e nane="y2" sel ect="normal i ze- space(substri ng-
after(substring-after(substring-after($coordi nates, $separator), ' '),
$separator))"/>

<xsl| :variabl e name="w dt h" selectz"nunber(%x2£ - nunber(%x)"/>

<xsl :vari abl e nane="hei ght" sel ect ="nunber ($y2) - nunber($y)"/>

<xsl :vari abl e name="strVB" select:"nornalizersRace concat (concat ($x,
", $y), concat(’ ', $wdth), concat(' ', $height)))"/>

<xsl : val ue- of select="g2s:flip($strVvB)"/>
</ xsl : when>
<xsl : ot herw se>
<xsl| :val ue-of select="'0 -2000 2000 2000'"/>
</ xsl : ot herw se>
</ xsl : choose>
</ xsl :tenpl at e>

<l--

This function takes a vi ewBox-string, nmakes the min-y negative and subtracts

t he hei ght of the]]]]

box. Thi's should be done in relation with transform"matrix(1,0,0,-1,0,0)",
ich turns the draw ng upsi de-down, _

Reason: svg coordinateS has 0,0 as top left corner, while GS and GW has a

y-EX|s wi th positive up and negative down.

<xsl:function name="g2s;flip">
<xsl : par am nanme="str Vi enBox"/ >

<xsl:variabl e nane="x" sel ect ="substri ng-before(nornalize-
space($strViewBox), ' ')"/> _ _

<xsl:variabl e nane="tenp" sel ect="substring-after(normalize-

space($strVi ewBox), ' ' > . . .
§§§I;var|able nane="y" Sel ect ="substring-before(normalize-space($tenp),

§§§ ;variable nanme="t enp2" sel ect ="substring-after(nornalize-space($tenp), '
<xsl|:variable name="w dth" sel ect="substring-before(nornalize-space($tenmp2),

/

[

/

liya

§x§;:ygriable nanme="hei ght" sel ect ="substring-after(nornalize-space($tenp2),
va select:"concat(concatg$x,
r(), ", $w dth,

1 * nunber (3y))-
concat (' ',

| ue- of " E_' *
$hei ght "), S$height)"/>

XSL Transformations

</ xsl : function>

<xsl :functi on name="g2s: getS

= parator"”>
<xsl : par am name="coor di nat es"/ >

[¢X¢)

<xsl : choose>)
<xsl : when test:"$coord|nates/gﬁs">
<xsl : val ue-of sel ect="%$coordi nat es/ @s"/>
</ xsl : when>
<xsl : ot herw se>
<xsl :val ue-of select=""',""/>
</ xsl : ot herwi se>
</ xsl : choose>
</ xsl:function>

<!--EXaM/Pongons or descendant-->
<xsl :tenpl at & mat ch="*[node EEand (I ocal - nane() =$GEOVETRY_POLYGON_ELEMENT and
nanespace- uri () =$GWL MESP, or

I ocal - nane() =$gAppPol ygons] "

<xsl :vari abl e name="hasCoor di nat es" sel ect ="g2s: hasCoordi nates(.)"/>
<xsl : choose>
<xsl :when test="$hasCoor di nat es" >
<xsl: el ement nane="pol ygon">

<xsl:attrijbute nane="points">

<xsl:cal | -tenpl ate name="gnl Coordj nateStri ng">
<xsl :w t h- param nanme="shape" select="."/>
</ xsl:call|-tenplate>
</xsl:attri bute>
<l--<xsl:attribute nanE:"st¥le">
<xsl :text>stroke: black; fill: none;</xsl:text>
</xsl:attribute>-->
</ xsl : el enent >

</ xsl : when>
<xsl : ot herw se>)
<xsl:1f test="$WARNI NG MSG' ><xsl : message term nate="no">Draw ng
cancel | ed: <xsl :val ue-of select="local-nane(.)"/> no coordi nate
recogni zed, </ xsl : message></xsl:if>
</ xsl ; Ot her wi se>
</ xsl: choose>
</ xsl : tenpl at e>

S

<I--Draw |inestrings or descendant-->

<xsl:tenplate matc :"*|node and (| ocal - name() =$GEOVETRY _L| NESTRI NG_ELEMENT
and nanesgace-url(=$GWVL_NAMESPACE) or [ocar-nane() =

$gAppLi neStrings]’

<xsl :vari abl e nane="hasCoor di nat es" sel ect ="g2s: hasCoordi nates(.)"/>
<xsl : choose>
<xsl : when test="%hasCoor di nat es">
<xsl: el ement name="pol yl I ne">

<xsl:attribute nane="points"> _
<xsl:call-tenplate name="gm Coordi nateString">

<xsl :w t h- par am nanme="shape" select="."/>
</ xsl:cal|-tenplate>
</xsl:attribute>
<l--<xsl:attribute nane="sty|e">
<xsl:text>stroke: black; fill: none;</xsl:text>
</xsl:attribute>->
</ xsl : el ement >

<xsl:1f test="$WARNI NG MSG'><xsl ;: nessage tern nate="no">Draw ng
cancel | ed: <xsl ;val ue-of select="local -name(.)"/> no coordinaté
recogni zed, </ xsl : message></xsl :if>
</ xsl; ot herw se>
</ xsl: choose>
</ xsl :tenpl at e>

S

<l--Draw |inestrings or descendant-->

<xsl:tenplate matc :"*|nodesg and (| ocal - nane() =$GEOVETRY_LI| NEARRI NG_ELEMENT
and nanespace-url(L:$ _ SPACE) or [ocar-nane() =
$gAppLi near Ri ngs]

<xsl :vari abl e name="hasCoor di nat es" sel ect ="g2s: hasCoordi nates(.)"/>

111

<xsl : choose> . , .
<xsl:when test="$hasCoordi nat es">
<xsl: el ement name="pol yl i ne">

<xsl:attribute nane="points">)
<xsl:cal | -tenplate name="gnl CoordinateString”>

<xsl :w t h- param nanme="shape" select="."/>
</ xsl:call-tenpl ate>
</xsl:attri bute>
<l--<xsl:attribute nane:"st¥le">
<xsl :text>stroke: black; fill: none;</xsl:text>
</ xsl:attribute>->
</ xsl : el ement >

</ xsl : when>
<xsl : ot herw se> .
<xsl:1f test="$WARNI NG MSG'><xsl ;: message term nate="no">Draw ng
cancel | ed: <xsl ;val ue-of select="local-nanme(.)"/> no coordi nates
recogni zed, </ xsl : message></xsl :if>
</ xsl : 0t herw se>
</ xsl : choose>
</ xsl :tenpl at e>

<xsl :tenpl ate patch="*[node and (Il ocal - nane()=$GEQOVETRY_PO NT_ELEMENT and
nanespagg-uri) =$GWL NkNESP&EE) or(0 - -
=gAppPoj nts] ">

| ocal - name L . W o
e nanme="point" select="."/>

<xsl:varia

<xsl ; vari abl e nane="coord" sel ect="$point//gm :coord | $point//*[I|ocal -
nane() :$gABP000r ds]"/> , , ,

<xsl| :variapbl e nanme="coor di nat es" select:"?g0|nt//gn1:coord|nates

$poi nt//*[| ocal - nane() =$ APpCbordlnates]"

<xsl :vari abl e nanme="c¢s" Sel ect ="$coor di nat es/ @s"/>

<xsl :variabl e name="cx">
<xsl : choose> i
<xsl| : when test="%$coordi nat es" >
<l--'<xsl:call-tenplate name="Trini>
xsl:w t h- param nane="str | nput">-->
<xsl : choose>
<xsl| :when test="%$cs"> . .
<xsl:val ue-of sel ect="nornualize-space(substring-
bef or e($coordi nates, $cs))"/>
</ xsl : when>
<xsl : ot herw se>
<xsl :val ue- of sel ect =" nor nal
bef ore($coordi nates, ',"))"/
</ xsl : ot herw se>
</ xsl : choose>
<l--</xsl:wth-paranp
</xsl:call-tenplate>-->
</ xsl : when>
<xsl : when test="%$coord">
<xsl :val ue- of sel ect="$coord/gm : X"/>
</ xsl ;: when>
</ xsl : choose>
</ xsl :vari abl e>

Lze—space(substring—

<xsl :varijabl e name="cy">
<xsl : choose> i
<xsl| : when test="%$coordi nat es" >
<l--<xsl;call-tenplate nane="Trinm'>
<xsl:w th-param nane="str | nput">-->
<xsl: choose>
<xsl| : when test="%$cs"> . .
<xsl:val ue-of sel ect="nornualize-space(substring-
bef or e($coordi nates, $cs))"/>
</ xsl : when>
<xsl : ot herw se>
<xsl :val ue-of select="n
after ($coordi nates, ',’
</ xsl : ot herw se>
</ xsl : choose>
<l--</xsl:wth-paranp
</ xsl:call-tenplate>-->
</ xsl : when>
<xsl : when test="%coord">
<xsl :val ue- of sel ect="$coord/gm:Y"/>
</ xsl ;: when>
</ xsl : choose>

mal i ze- space(substri ng-

or
)" >

</ xsl : vari abl e>
<xsl : el emrent nane="circle">

<xsl:attrijbute nane="cx"
<xsl: val ue- of sel ect="%cx"/>
</xsl:attribute>
<xsl:attr|bute nane="cy"
<xsl :val ue- of select="$cy"/>
</ xsl:attribute>)
<xsl:attri bute nanme="r">0.30%/ xsl :attri bute>
</ xsl : el enent >
</ xsl :tenpl at e>
<l-- patterns may not contain variable or paranetres, therefo re t he test
whet her the elenent is a featurerIIectlon i s done |n ide the tenplate, so
that variables may be referenced. -->

<xsl : tenplate mat ch="//* [Iocal-nane(}:$ FeaturerIIectlons/bnllocalnane and
nanespace u F) =$gFeat ur eCol | 'ecti ons/ bm namespace] "
<I'--<xsl: at e”nanme="handl eFeat ureCol | ecti ons" -->

<'-—<xs paran1nane— 'col I ections” select—""/>——>

<xsl:if test="$I NFORMATI VE_MSG' ><xsl| : nessage term nate="n
f?atF egbll ection: <xsl:value-of select=" Iocal-nane()'/> /xsl nmessage>
</xsl:if>
<g>
<xsl:if test="one:layerDescription !=""'">
<xs|.attr|bute nane="1d"><xsl : val ue- of sel ect ="one: | ayer Description"/>
</xsl:attribute>
<xsl:attrjbute nane="title">
<xsl'value-of sel ect ="one: | ayer Descri ption"/>
</xsl:attribute>
<xsl;attribute nane="visibility">visible</xsl:attribute>
</xsl:if>
<xs| appl Iates sel ect ="chil d: lo
RE ELENME ol {

_cal—nane&%EE

NT and nanespace uri () =$GVL_ SPACE) or (Il ocal -
nane L $? Fearureh@nbers/bnllocalnane and nanmeSpace-uri ()=

$gApp eat ur el\/tanbers/ bm namespace)]"/ >

</ xsl : tenpl at e>

<xsl : tegRLate natch "//*[

“SL I-naneL; %FEATURE MEMBER ELENMENT and nanespace-
u

| oca
| ocal - nane g pFeaFureN@nﬁers/bnllocalnane and
namespace-uri (%PAE Featurewbnbers/ m namespace) | "
<xsl:if test—" VE_MSG' ><xsl| : message tern1nate—"no">featurewbnber
<xsl : val ue- of select—"locar name() "/ ></ xsl I message></ xsl :

<g>
<xsl :apply-t | at es selectz"chiId::*[(local—nane()z
$gFeat ur es /bn1 ocal name and nanespace —url(L:$?Features/bn1nanespace) or
(Iocal—nane():$g eatureCol | ecti ons/ bm | ocal name
and nanesgg e-uri ()=
$gFeat ur eCol | ect1 ons/ bm nanespace)]"/ >

</ g>
</st:teanate>

<xs| tenEIate mat ch="//* [Iocal—nanE() =$gFeat ures/ bm | ocal nane and nanespace-
uri () =$gFeat ures/ bm nanespace
<xs| vari abl e nane="current select: current(g"/>
<xsl:if test="$I NFORVATI VE _MSG'><xsl : message terni nate="np">feature
<xs| : val ue- of select— | ocar-name() "/ ></xsl Tmessage></xsl :if>
<xs|:e|enent name="g"
<l--<xsl:attribute nane— 'cl ass" >
<xsl :val ue- of select="'default'"/>
</ xsl: attr|bute>-->
<xsl: var|able nane="feature_ id">
<xsl : choose> .
<xsl :when test="@id
<xs| val ue- of select—"@i|d"/>
</ xsl : when>
<xsl : ot herw se>

XSL Transformations

<xsl :val ue-of select="concat('feature_', generate-id())"/>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl : vari abl e> .
<xsl:attribute nane="ijd">

<xs| val ue- of select—"$feature id'/>
</xsl:attribute>
<l--<xs| attribute name="st

<xsl : val ue- of select="$feature_style"/>
</ xsl:attribute>->
<xsl attrlbute name="cl ass" >

<xsl: choose>

<xsl:when test="S$user Styl es/style:styles/style:style/style:nanespace =
nanes ace-uri()">
<xsl:for-each sel ect="$userStyl es/style:styles/style:st Ie">
<xsl i1 f test="styl e: nanespace = namespace- ur|($curren }
/<XF| value of select="concat (' fstyle" , position())"
</ xs
</ xsl : for-each>
</ xsl : when>
<xsl : ot herw se
<xs| val ue- of select=""default'"/>
</ xsl : ot herw se>
</ xsl : choose>

</xsl:attribute>
<xsl|:attribute nane="onactivate">)
sxes;vg}ge of sel ect="concat (concat (' showreatureData('"'"', $feature_id),
</xs|:a2tr|bute>
<xsl:attribute_ nane="onfocusin">
<xsl:val ue- of sel ect="concat (concat (' setStrokeWdth(''', $feature_id),
III,IIO 2000|L|)||/>
</xsl:attribute
<xsl:attri bute name="onfocusout">]
<xsl :val ue-of se|ect="concat (concat (' setStrokeWdth(''', S$feature_id),
|||, 110:05%|)|)n/>
</xsl:attribute>
<xsl : el enent nane="defs">
<xs| el ement name="net a: Met al nformati on" >
<xs| elenent name="met a: Typel nf or mati on">
<__

Need to store the namespace and | ocal nane in tenporary variables in
order to get conparison to work,
Strange probl em posted it to the saxon-hel p-1list.

<xs| var|able nane="t npNane" sel ect="1ocal - name()"/>
<xsl:variabl e nane="t npNanespace" sel ect="nanmespace-uri()"/>
<xsl : var|ab e name="mapl d"
select- $ ct Root / bm t ypeMaps/ bm TypeMap bn1appEIenent/bn1 alnane
=$t np and bm appEl eient / bm namespace=3$t npNanespace /@d‘
<xs| elenent name="TypeMap" nanmespace="no: hi of : basenappe ">
<xsl: ttr|bute name="xl | nk: type" ><xsl : val ue- of
select-"'3|nP '"/></xs| attr|bute>
<xsl tri e name="xlI 1 nk: href"><xsl : val ue- of
sel ect ="concat ("' #' strlng($napld))"/></xsl attrlbute>

:{XSL elenent>f

- - <XS
select—"$gDF¥tRoot/bn1typeNth/banypeth&bnlappEIenent/bn1|ocalnane
=%t npNane~and bm appEl enent/ bm naneSpace=3t npNanespace] "/ >-->

<! --<xsl|:message terni nate="no"><xsl:val ue-of select="Iocal -
nane()"/></xs| nessage>- - >
<I-- <xsl : message term nat e="no"><xsl :val ue-of sel ect =" nanespace-
ur|()"/></xsl nmessage>- - >

</ xsl : el enent >

<xsl :el ement nane="net a; proPert s" >
<xsl:for-each sel ect="child od E)]">
<xsl T vari abl e name= sAppGEPnet r

"I
sel ect ="g2s: I sEl ement I nAppEl

<xsl : choose>)
<xsl :when test="not ($i s
<xsl:call-tenplate na

e
=§
3

114

<xsl:w t h-param name="property" select="current()"/>

</ xsl ;call-tenpl ate>
</ xsl : when>
<xsl : ot herw se>
<xsl:cal | -tenpl ate nane= VW|tePropert Met a" >
<xs|:w th-param name="property" select— curr
<xsl :w th-param name="1sGeonmetry" sel ect = b
</xsl:call-tenplate>
</ xsl : ot her wi se>
</ xsl : choose>

m/\
=5

(

rue')"/ >

</ xsl ;: for-each>
</ xsl : el ement >
</ xsl : el enent >
</ xsl : el enent >

<xs| : appl y-tenpl ates sel ect="child::*"/>
</ xsl : el ement
</ xsl:tenpl at e>

<xsl : function name=' PZS |sEIenentInAppEIenent">
<xsl : par am nanme="el enment

<xsl:if test=" Iocal—nane&$elenentg $8EaseGbonetryN@nbers/@hane and
nanes ace-uri ($el epent
</<x|s value 0 select— boolean('true')"/ >

XS

<xsl:if test=" ocal-nane&é enentg $%EaseGeonetryAl|ases/@hane and
names ceun(%demmt
</<xis ¥§Iue of select="boolean('true')"/>

xsl:i

<xsl:for-each sel
<xsl:if test="h
nanes ace- ur|(%
<xs ;val ue-o0
</xsl:if>
</ xsl : for-each>

ect =" PMm@mmHyWomH|%W>

n1|o nane I ocal = nane($el enent) and bm nanespace=
el epen

sel ct— boolean(true')"/ >

<xsl ; val ue- of sel ect =)
</ xsl:function> <I'-- end function: g2s:isEl ement | nAppEl enent -->

<xsl:tenpl ate name= VW|teProPertyN@ta">
<xs| param name=' pro ert
<xsl : param nanme="1 sCeonetry" sel ect="boolean('"')"/>

<xsl : choose> .
<xsl :when test="$property . .
<xsl:el emrent nane= neta Property xm : space="preserve">

<xsl :vari abl e name="napi d"
select:"$gD ctRoot/bn1 ypeMaps/ bm TypeMap[bm appEl ement/ bm | ocal nanme=

| ocal - nane($ Pert } and bm appEl efrent / bm nanespace=nanespace-
o [ape 179

<xsl : mhen test =" $mapi d" >

<xsl: el ement name="TypeMap" nanespace="no: hi of . basenmapper ">
<xsl : attr|bute nanme="Xxl i nk: type‘><xs| val ue- of
select=""s Ie'"/></xs| attribute
<xsl : attr|b e nanme=" xI'i nk: href'><xs| val ue- of
select— concat(#, strlng($nap d))"/></xsl:attribute>

</ xsl : el ement >
</ xsl when>
<xsl : ot herwi se>
<xsl : el enent name="nget a: nape- ns" >
<xsl: el enent name="neta;| ocal nane" >
<xsl : val ue- of sel ect=" Iocal—nane($property)"/>
</ xsl: el emrent >
<xsl : elenent nanme=" et a;: nanespace" >
<xs| val ue- of sel ect =" nanespace-uri ($property)"/>
</ xsl : el enent >
</ xsl: el ement >
</ xs| : ot herw se>
</ xsl| : choose>

<xsl : el enment name="net a: el enent Val ue" >
<xsl : choose> s .
<xsl :when test="8$i sCeonetry">

<xsl : conment >GEOVETRY PROPERTY</ xsl : comment >
</ xsl : when>
<xsl : ot herw se>
<xsl:text disabl e-output-escapi ng="yes">& t;![CDATA[</ xsl : t ext >
<xsl :copy-of select="."/>
<xsl:text di sabl e-out put -escapi ng="yes">]] > ; </ xsl : text>
</ xsl : ot herwi se>

</ xsl : when>
<xsl : ot herw se>
<xsl:i1f test="$WARNI NG MG' > o .
<xsl : message term nate="no">Enpty property specification passed to
tenpl ate writePropertyMeta</xsl: hessage>
</xsl.if> .
</ xsl ; ot herwi se>
</ xsl : choose>
</xsl:tenplate> <!-- end tenplate: witePropertyMeta -->

<xsl :function nanme="g2s: hasCoor di nat es" >
<xsl : par am nane="shape"/ >

<xsl : val ue- of sel ect ="boo| ean($shape//
gAppCoor ds] 1 $shape/ / gm : coor di nat es
gAppCoordi hates]) "/ >

</ xSl :tunction>

<xsl :tenpl ate name="gm Coordi nateStri ng">
<xsl : par am nane="shape"/ >

m : coord shape//*[| ocal - nane() =
g| $shape/;*?locgl—nahe()= 0

<xsl : vari abl e name="coords" sel ect ="$shape//gm :coord | $shape//*[| ocal -
nanme() =$gAppCoords] "/ > .

<xsl :variabl e nane="c¢oor di nat es" select:"?shape//gn1:coord|nates
$shape// *[| ocal - name() =$gAppCoor di nat es] "/ >

<xsl : choose> . .
<xsl :when test="%coords">

<xsl:for-each sel ect="%$coords">
<xs| :val ue-of select="gm:X"/>
<xsl| :text>, </ xsl:text>
<xsl| :val ue-of select="gm:Y"'/>
<xsl:if test=" 05|t|on?L I'= count ($coords) ">
<xsl :text> </ xsl:tex

</xsl:if>
</ xsl: for-each>
</ xsl : when> _
<xsl : when t est="$coordi nat es" >
<l--<xsl:call-tenplate nane="Trim >-->
<xsl : val ue- of sel ect ="normal | ze- space($coordi nates)"/ >
<l--</xsl:call-tenplate>-->
</ xsl : when>
<xsl : ot herw se>))
<xsl:1f test="$WARNI NG MSG' ><xs| : message term nate="no">No coordi nates
recogni zed for el ement? <xsl:val ue-of Sel ect="Iocal - name($shape)"/ >
</ xsl: message> </xsl:if>
</ xsl ; ot herw Se>
</ xsl: choose>
</xsl:tenplate >

<l--
This tenpl ate nake
other defined in t

s sure that all elenments that are not handl ed by any of the
hi s docunent, is "silent"

<xsl:tenplate match="text()" />

<xsl :tenpl ate name="addMenuDef" >
<xsl : param nane="r oot Layers"/ >

<nenu id="layer vhu" xm ns="http://ww. onenap. or g/ svgnenu"
onl pad="CGet Posi tion(evt);">

<header >Act i on_nenu</ header > _

<|tem act| on="Zoom n">Zoom &anp; i n</iten

<l tem act i on="Zoonut " >Zoom &anp; out </ i tenp

<separator />

XSL Transformations

<xsl :for-each sel ect="$root L
<xsl:if test="9I NFOQI\/ATI E_
<xsl : value of select="curren tg

a e >

S true(?"><xs| message term nate="no">
)" ><[xs nessa e></xsl:ift>

ggleVisibi ity {current()})"

<|ten1onact|vate-'Javascr pt
checked es" >]
<xsl : ribute nape="id">
<xs|:value-0f sel ect="concat('mu_"', current())"/>
</ xsl:attribute>

<xsl :val ue-of select="current()"/>
</jitenp
</ xsl : for-each>

<separator />

<|ten1act|on-"Cx| |naIV'eW >&anmp; Original View</itenp
<|tem act| on=" rove éual|ty</|tenv

<jtem acti| on=" emSource ng Vi ew_Sour ce</ i t enp

<item acti on=" SaveSnapshotAs" &anp; Save SVG as .<litenp
<separator />

<item action="Hel p">&np; Hel p</it

<i tem act i on="About " >&anp; About SVG Viewer'...</itenp

</ menu>
</ xsl : tenpl at e>

<xsl:tenpl ate name="defi neStyl es">

<style type="text/css"
<xsl:for-each select— $user Styl es/ styl e: styl es/style:style">

<l --<xsl:nessage terni nate="no"><xsl:val ue-of sel ect="styl e: nanespace"/ >
</ xsl : mressage>-- >
<xsl : choose>

<xsl:when test="style: nanes ace = '"default'">
<xsl:text>. default{</xs ext ><xsl : val ue- of
select— style:stylestri ng"/><xs| text >} </xsl:text>

</ xsl : when>

<xsl : ot herw se>
<xs| :val ue-of select=" concat('.fs yI e' str|ng(itio ()?, '{'L"/>
<xsl : val ue-of select="style:styiestring"/><xsl:te } / xsl: text

</ xsl : ot herw se>
</ xsl : choose>

</ xsl : for-each>
</style>

</ xsl : tenpl at e>

<l--
This tenplate wites the javascript into the SVG docunent as a CDATA section
The scrlpt elenent is defined as a
CDATA-el enrent, so that the CDATA is transferred to output.
<xsl:te Iate nanme="addScri pt ">,
<scr|p ¥ﬂ ="t ext/ecmascript">
REPLACE THI' S W TH_CDATA>
var svgdoc;
var ,
ht m Doc
var GWL NANESPACE = "http://ww. opengi s. net/gm"
[l var popup;
Thi s, toggles the visibility on and of for |ayers where the layerld-is
speci

&o t|onal attribute for integratedLayer, in
t /'ww. onemap. or g/ i nt egr at i on- namespace)

funct|0n toggIeV|S|b|I|ty(d? {
var gEl enent = svgdoc. get El errent Byl d(i d);

i f(gEl enent == null) _
alert (' Unknown [ayer id.");

var VISIbI|Ity gEl ement. getAttribute("visibility") == "visible"?
"hi dden i bl &

gEl enent . setAt tri bufe(visibility", visibility);

117

}

var mmul tem = svgdoc. getEIenentById('nnu_' +id);

if(visibility =="hidd) |

mMultem setAttri bute(” checked", "no");
el se

mul tem set Attri but e("checked"”, "yes");

var newhMenuRoot
[ayer vhu")) Menu
e
|

? NL(rint Node(docunent. get El enent Byl d(
I?(newMenuRoot . firstChild,

ars
t ex
T
[

context Menu.r

=p

, con
pl ace
cont ext Menu. first Chi

function getFeaturelnforpati (el ement

var map = el ement . get El enent sByT. g %ENS('no:hiof:onenap:gn1:netainfd
"Typel nformation');
if(map,length !'=0) { .
y%r t ypenap c R? I'tem(0). get El ement sByTagNameNS(' no: hi of : basemapper ',
e ite
yp'd P gypenap getAttribute(' xlink:href');
var current = svgdoc. get El ement Byl d(i d. substring(1));

if(current == null)
return ;

var info = ;

var |ocal =
cur(ent.getEIenentsByTagNaneNS('no:hiof:basenapper','appEIenent').item

var ' | ocal nane =

I ocal . etEIenentsByTaghhnehB& no: hi of : basemapper', 'l ocal nane').iten{0)
.firstChild nodeVa /' I'wor ks

var nanesEace =

I ocal IenentsByTagNaneNS£ no: hi of : basemapper' , ' nanespace').iten{0)
Lfirst nodeVa

info += '<tab|e w dt h="100% >"

info +=' <tr>';

info += ' td' col span="2" cl ass="tdcapti on">Feat ure

I nfornmation</td>'

info +="' </[tr>

info +="' <tr>':

info +=" <td classz"tdsnalIcapt|on">hbne:</td>'

info +=" <td class="tdinfo">" "+ l[ocal nane + '</td>

info += "' </tr>

info +="' <tr>';

info +="' <td class="tdsmal | capti on”">Nanmespace: </t d>'

info +=' <td class="tdinfo"> + nanespace + '</td>'

info += ' </tr>";

info += '</tabl e>

var instan , ,
%ggrent getEIenentsByTagNaneNS(no: hi of : basemapper','instanceX').item

var i nstanceNane =)

i nstance. etEIenentsByTaghhnehB& no: hi of : basemapper', 'l ocal nane').item
(0).firstChild. nodeVa /' I'wor ks

var instanceNS = .

i nst ance. etEIenentsByTagNaneNS£ no: hi of : basemapper', ' nanespace').item
(0). f|rst I | d. nodeVa [| wor

Info += '<table w dt h= % b0

info +="' <tr> : _ _ _

|? g += " <td' col span="3" class- tdcaption">Data type information
< > :

info +="' </tr>

info +=" <tr>'

info +=" <td class="tdsmal | capti on">I nstance of: </td>'

info +=" <td class="tdsmal | caption">Nane; </td>',

info +="' <td class="tdinfo"> " + instanceNane + '</td>'

info +="' </tr>

info += " <tr>'

info +=" <t d> </ td>":)

info +="' <td class="tdsmal | capti on">Nanespace: </t d>'

info +="' <td class="tdinfo">" "+ instance + "</td>

info += ' </tr>"';
info += '</table>";
return info;
} else {
return '’';
}/end get Feat ur el nformati on(el ement)
unction indent(astring, de th
for(var 1=0; .(<dept h g i Y) A
) astring = + astr|ng,
return astring
//end indent(astring, depth)
unction prettyPrint(strin
var depPh = %, (9
var newstring ="'";
firstEl ement "= true
f| agText Search = fai se
fl agEl ement = fal se;
insideStart El ement = fal se;
i nsi deEndEl enent = f al se;
i nsi deText = true;
for(var i=0; i<string.length; i++
vgr char = string c%ar t?i)) A
|f(char =="\"")
har = '",
if(char ==
¥IagEIenent 2 B ;
i nsideText = fal se;
if(!firstElement) {
newstring += '

} else
) firstEl emrent = fal se
if(string.charAt(i+1) =="'/") { //W need a peek, to check figure
out the Tndenting
) nFmstE|ng +=indent('&t;"', depth);
el se
newstring += indent("&t;"', depth+l);
} %Ise if(char == "'>") {
i nsi deText = true; .) . .
fIagTextSearch = true; //This is true until first non-space char is
read.
f(|n3|deEndEIenent)
dept h++;
el se
dept h- -;

i nsi deStartEl enment = f Ise
i nsi deEndEl enent = fa

newstring += '>,

} el'se if(char == && flagEIenent) {
fl agEl erent = fals
I nsi deEndEl ement = frue

newstring += cha
} else |f§ '|nS|deEndEIenent && flagEl ement) {
i nsideStart El ement = true;

newstring, += char;
} else if(_insideText ;
i f(!flagText Search) /1f we have al ready-found non-space
charactéers, the character is passed.
newstring += char;
} .else {
if(char '=" ") {

XSL Transformations

flag ext Search = fal se
newstring +=char;
} else {
//Eb pothing. We don't want preciding spaces transferred to
out pu
}

} else if(|nS|deStartEIenent) {
newstring +=

} else if(|nS|deEndEIenent) {
newstring += cha

}
}
return newstring;
} /lend prettyPrintString(string, depth)
function getProperties(el ement) {
var props

eIenentpgetEIenentsByTagNaneNS(no: hi of : onemap: gm : netai nfo',' Property')

if(props == null && props.length == 0)
return '';
var info =
info += <table wi dt h="100% >';
info += <tr>'; . .
info +="' <td' cl ass="tdcaption" col span="3">Properties</td>'
info +="' </tr>';
[lalert(pro | ength
for(va r(P:OP <prgps)iength i ++) {
var name, namespace;
var typemap. = ,
props.ite) get El ement sByTagNanmeNS(' no: hi of : basemapper', ' TypeMap');
var poi nt edTo;
if(ty enap length 1= 0 b { , ,
var Id = typemap.item(0).getAttribute('xlink:href');
poi ntedTo = svgdoc. get El ement Byl d(i d. substring(1));

ane=
pointedTo.getEIenentsByTaghbnE('Iocalnane').iten(O).firstChiId.nodeV

nanespace— . :
pPlntedTo get El ement sByTagNane(' namespace').item(0).firstChild. nodeV
al ue;
} else {
Drops. tem(i). get El ement sByTagNameNS(' no: hi of : onemap: gm : net ai nf o'
rops
pIogalnama) 9 m(0).first %h Pd nodeVal ue;
nanespa%gnfl) et El ement sBy TagNameNS(' no: hi of : onemap: gnl : net ai nf o'
rops
) pnaPrespace ? m(0).first %h Pd nodeVal ue;
POt YenTi) . get B! emrent sBy TagNameNS(* no: hi of m - met ai nf
rops.itenfi et El enent s agNane no: hi onema nmet ai nf o'
pelgnenthFue i !ten(O?.fiystghiId.nodeVaIu ; P9
val ue = prettyPrint(val ue);
var stripsStart = vaIue.indexCIE*>");
var stripEnd = val ue.lastlndexOf("&t}");
[/ The follow ng bl ock renpves the first and last tag fromthe string,
|nclud|ng the
-tag. It's a bit hair
var stripStart = val ue.indexOf ('
");
var |lastBR oc = value | ast | ndexCf ('
");
|f(IastBRloc !: - L
val ue = val ue. substring(0, value.lastlndexO('
"));

var stripEnd = value.lastlndexOf("&t;");

120

if(stripStart !'=-1) {. ,
) val ue = val ue. substring(stripStart + 5);
if(stripeEnd != -1) { _
yglue = val ue. substring(0, stripEnd);
Strange_thin%. The first lastlndex returns a high nunber,
Lpd|cat|ng that the string contains the &t;
striPEnd = value.lastlndexOr (" <");
if(stripEnd I'= 1)
val ue = val ue. substring(0, stripEnd);
}
}
/*
val ue = val ue.replace(' <", '&It;';;
val ue = value.replace(' >, ">"'); |
va*ye = val ue. repl ace , '');
info += '<tr>
info +="' <td col span="2" cl as :"tdsna ca tlon">hbne </td>
info +=" <td class="tdinfo"> + nane
info += "</tr>'
info += '<tr>
info +="' <td col span="2" cl ass="tds nallcaptlon">hbnespace </td>'
info +=" <td class-"td|nfo" " + nanespace + '</td>
info += "</tr>'
info += '<tr>'
info +="' <td col span="2" cla ="tdsnal | caption’>Val ue: </t d>'
info +=" <td class—"td|nf0"> + value + "</td>'
info += "</tr>'
var nP , .
var ¢ Der|vedTypehhne i nstanceO Nane, instanceO'NS

if(pointedTo !'= null) {

var instanceCOf =
p0|ntedToCPetElenentsByTagNaneNS(no: hi of : basemapper"

I nstance
i f(instanceO™) {

_nstanceCIh%ne =

|nstance item O et El enent sByTagNaneNS(' no: hi of : basemapper

"l ocal naneN% i ten{0).firstChild. nodeVal ue,

i nst anceO =

i nstanceO . item(0 et El enent sByTagNaneNS(' no: hi of : basemapper’,

"nanespace’).iten{0).firstChild. nodeVal ue;

info +=" <tr>';

info +="' <td class="tdsnmal | caption">I nstance of: </td>'

info +="' <td class="tdsnmal | capti on">Nane: </t d>'

info +=" <td class="tdinfo">" + |nstancethbne + '</td>

info +=" </[tr> '

info += " <tr>';

info +="' <t d> </ td>": _

info +=" <td classz"tdsnallcapt|pn">hbnes ace: </t d>'

info +=" <td class="tdinfo"> + instanceOFNS + '</td>

info +="' </[tr>
}
var 9n1DerivedType =
poi n edTo.getElenent y TagNanmeNS(' no: hi of : basenmapper
,?niDer|ve,Type');
[(nPn1EEr|vedTng.length I=0) {

gnf Deri vedTypeName =

gm DerivedType.iten{Q). Elene tsBy %NaneNS(no: hi of : basemapper"

"l ocal nane.).1tem0). stCh| d. nod

7éPn1Der|vedTyDENS =

gnf DerivedType.iten(0Q Elene tsBy NameNS(' no: hi of : basemapper

, ''hanespace).iten{0 |rstCh| d. nodeVal ue;

info +="' <tr>';

info +="' <td col span="2" class="tdsmal | capti on">GW base

</td>

+ gm DerivedTypeNane +

IYPei ;
Info += <td class="tdinfo">'
</ td>
) info +="' </[tr> ';
}
) info += "<tr><td col span="3"> </td></tr>'
info += '</tabl e>";
return info

} //end getPropertles(eIenent)

function showreat ureDat a(i d) E
var def El ement = svgdoc, get IenentB¥
var body et Feat urel nf ornat i on de
body +="get Properti es(defEl enent

|f;/

")
d|alongP
no; scrol | =
var_ oNe
"hei =600,
yes, titl ebar=n
oNewDoc. docunent

id
e

e fChas

wivbdal Di al o
|alogVth

R(

=

0, menubar =no, r esi zab
El ement sByTagNane(" p"
}

}
} //end showreat ureDat a(i d)
function setStrokeVthh(ld SW) i

var el ement = svgdoc. get El enent Byl d |d)

var | egendStyl e elenent get Styl e(

| egendStyl e. setProPerty("stroke wi dt h", sw);
} /7énd setStrokewWdth(id, sw)

function init(evt) i
Tar get () . get Oaner Docu

svgdoc = evt.ge
var newMenuRoot parseXM.(print Node
nt ext Menu
o

"l ayer vhu' ?), co
cont ext Menu. rep aceCh (" newMenuRoot . fi
il

cont ext Menu. fir st Chi
[/ popup =

svgdoc. get El ement Byl d(' abou

</script>
</ REPLACE_TH S W TH_CDATA>

</ xsl : tenpl at e>

|s | ate automati

sp eature infor
|s de endent upon a

I Th|s enabl es out p

several different f

cal
mat
a XS
I

|y
on.
LT because of

<
T
di
I 2.0 parser,
t

I
hi
|
t
a t
0 es.

nf oW ndow' >
f "featureMAndow htm "

P -esca
C " ;

el
re
e- out

" Cont ent - Typeé" ;
> ;

f eat urewi ndow. ht m ' Y,
450pt ; st at us: no; resi zabl e? yes; hel p=

par ent . open("feat ur ewi ndow. ht

generates the htm -file,

) .

bod
m"

I | bars
i nner HTML

replace
esyes, scro

).item(0).

body;

el se
alert{'hb feature information avail able');

//set line thickness
ment () ;

(docunent . get El ement Byl d(
rstChild,

t Feature');

used by the javascript to

t he xsl:result-document

format =" ht nl doc" >

in
p ?V@XV/DTD HTML 4. 01
w3. or g/ TR/ ht m 4/ | oose. dt d" ; > ;

cont ent =" ; text/htm ;

XSL Transformations

> Feature Information& t;/title>
t ~| anguage=" : J avascr i pt " ; &jt :
n set Message()

var . bod docunent . get El enent sByTa Nanme(" ; p" ; item(O
dy. i nnet HTM. C= W ndow: di IogArgu%en? (&q sped). o)

—— —
oT D

Ii'/script>'
g}t style t ype=" ; t ext / css" ; > ;

body’ &
backgr ound- col or: #66CCFF

}
tdsnal | caption {
backgr ound-cal or: #6633FF
font -wej ght: 600;
font:Arial, Helvetica, sans-serif;
col or: #FFFFFF;
) vertical-align:top;

.tdcaption {
background-cal o
font -wej ght: 600;
font:Arial, Hel
font-size: 16EX'
col or: #FFFFFF;

ign:

r: #000000;
vetica, sans-serif;

) vertical - al t op;
.tdinfo {
backﬂround-color #FFFFFF
) wi dt h: 65%
-- > ;
& t7/styl e>
&'t/ head>
&l t: body onl pad=" ; set Message() " ; > ;
⁢pégt;<' g@t; 9e() & g
& t; /[body>
&1!/nnt > !
</ xsl :text>
</ xsl : resul t-docunent >
</xs|:tenp|ate>
</ xsl : styl esheet >

Stylesheet Included Into the gener-
ICGML2SVG.xslt listed the section called
“Generic GML/Dictionary to SVG transforma-
tion”

This stylesheet defines some constant mappings to the base GML types as defined in
the base GML 2 schemas.

123

<’>xn1 ver3| on="1.0" encodi ng="UTF-8""?>

<xsl:styl esheet version="1. 0" xm ns; xsl ="http;//ww W3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl:variabl e nane="GW_NAMESPACE" sel ect=""http://ww. opengi s.net/gnm " "/>
<xs| : vari abl e nane="FEATURE BASE" sel ect= Feature' "/ >
<xsl|:var| abl e nanme="FEATURE TYPE"' sel ect ="' Abstract FeatureType'"/>
<xsl|:vari abl e name=" FEATURE COLLECTI ON BASE" sel ect=""_Feat ureCoI lection'"/>
<xsl : vari abl e name="FEATURE_COLLECTI G\l‘
sel ect ="' Abstract Featur eCol I"ect i onT¥e "
<xsl| :vari abl e nanme="EEATU _I\/E PE" sel ect ="' Feat ureAssom at| onTXpe' "
<xsl| :vari abl e name=" FEATURE MEMBER_ELEMENT" sel ect ="' fea t ureMenb
<xsl| :vari abl e name=" GEQVETRY BASEF" sel ect=""_Ceonetry'"
<xsl|:variabl e nanme="'GEOVE {Y_PR(PERTY BASE" sel ect =" geometryProperty' "
<xsl :var| abl e nane=" GEOVE %Y‘PR(PERTY‘BASE_ELEI\/ENT
sel ect ="' geomet ryProperty' " . .
<xsl :vari abl e name=" INATES BASE' sel ect ="' coordi nates'"/>
<xsl :vari abl e nane= BASE™ sel ect ="' coords'"/>
<xsl| :var| abl e nanme="COORD TYPE" sel ect="' CoordT X:o
<xsl :vari abl e nanme=" OOOQDI’NATES_TYPE“ sel ect ="' ordl nat esType' "/ >

<l-- Those el enents substituting for _Geonetry-->
<xsl:variabl e name="GEOVETRY_ PO NT" sel ect=""'Point'"/>

<xsl|:variabl e name="GEQVETRY L| NEARRI NG ELEMENT" sel ect=""'LinearRi ng' "/>
<xsl :vari abl e name="GEOVETRY_LI NEARRI NG_TYPE" sel ect ="' Li near Ri ngType' "/ >

<xsl| : vari abl e nanme="GEQVETRY PO NT ELENMENT" sel ect="'Point'"/>

<xsl :vari abl e name="GEOVMETRY_PO NT_TYPE" sel ect ="' Poi nt Type' "/ >
<xsl|:variabl e name="GEQVETRY PO YGON ELENMENT" sel ect="'Poly gllon' ">

<xsl :vari abl e name="GEOVETRY_POLYGON_TYPE" sel ect ="' Pol ygonType' "/ >

<xsl| :vari abl e name="GEQVETRY LI NESTRI NG ELENMENT" select=""'LineString "/>
<xsl :vari abl e name="GEOVETRY_LI NESTRI NG_TYPE" sel ect ="' Li neStri ngType' "/ >
<xsl :vari abl e nane="GEOVETRY_ASSOCI ATI ON_TYPE"

sel ect ="' Geomet ryAssoci ati onType' "

<xs| :variabl e nanme="GEQVETRY J:-{ Y _TYPE" select="' GeonetryPropert yTgpe' ">
<xs| :vari abl e name="GEQVETRY_PROPERTY_ PO NT" sel ect ="" poi nt Property’

<xsl| :vari| abl e nanme="GEQVETRY_PROPERTY_POLYGON' sel ect ="' pol ygonProperty' "/ >
<xsl :var| abl e_nanme=" GEOVETRY_PROPERTY_LI NESTRI NG'

select=""1] 1eStr| ngPro [>

<xsl:variab P]VET Y PR(PERTY MULTI POl NT"

select:"'rmt|P0|ntPro ¥e v >

<xsl :variabl e name="GE —T Y PRG:’ERTY MULTI LI NESTRI NG'

sel ect—"' nu t LineStringProperty' "

<xsl :variabl e name="GEQOVETRY_P ERTY MULTI POCLYGON'

sel ect ="' nul ti Pol ygonPr o ert y' ">

<xsl :vari abl e nane="GE PROPERTY_MULTI GEOVETRY"

sel ect ="' nu g GeorretryPropert‘y ">

</ xsl : styl eshe

Appendix B. XML schemas
Mapping Dictionary Schema

This schema defines the structure of a Mapping Dictionary, asit is created by the trans-
formation mapElements.xslt found in the section called “GML Schema to Mapping
Dictionary”, given avalid GML 2.1.2 Schema as inpui.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xs:schemm target Namespace="no; hi of : basemapper
attributeFornDef aul t ="unqual i fi ed" xm ns:xs="htt
xm ns="no: hi of : basemapper™ > .
<xs: el enent nane="Mappi ngDi ctionary">
<xXs:annotation> . . .
<xs:docunent ati on>The root of the mapping dictionary.</xs:docunmentation>
</ xs:annot ati on>
<xs: conpl exType>
<Xs:sequence>
<xs: el enent nape="docunent Nanespaces" type="Docunment Nanmespaces"/>
<xs: el enent ref="typeMaps"/>
</ xs: sequence>
</ xs; conpl exType>
</ xs: el ement >
<xs: el enent name="typeMaps" >
<xs:annotation> | , , , , o
<xs:docunentation>This elenent is child of the Mappi ngDictionary-elenent,
and contains all the el ement-mappings for a schena. </ Xs: docunment ati on>
</ xs:annot ati on>
<xs: conpl exType>
<Xs:sequence>
<xs:el enent ref="TypeMap" m nCccurs="0" maxCccur s="unbounded"/>
</ Xs: sequence>
</ xs; conpl exType>
</ xs: el ement >
<xs: el enent _nane="TypeMap" ty e:"Typeth_Tgpe"/>
<xs:conp|exT¥pe nane="Document _Nanespaces"
<xs: anhnot at | on>
<xs: docunent ati on>A type that represents the tar?ethhnespace and rel ated
nanespaces_defined by an XM. schenma. </ xs: docunmentati on>
</ xs:annot ati on>
<XS:sequence>
<xs. el enent nanE::targetns""type:"xs:url?"nabecurs:"ynpounded"/>
<xs: el ement name="nanmespace" type="xs:uri" mnCccurs="0
maxQOccur s=" unbounded”/ >
</ Xs: sequence>
</ xs:conpl exType> . .
<XS:conp exType name="TypeMap_Type">
<xs: annot at | on>
<xs:docunent ati on>)
Type for storing a schena el ement with:
- the elenentsS nane (1
- _either: a gm Type, neaning this element is a direct instantiation of a

GWL type .) . . .
or a ?FLDerlvedType neani ng that this elements type is derived

c

, (0/1

dire or inditectly froma GV tyPe
- what eléement this element can substitute for (0/1)
- the substitutionGoup elenent, directly or indirectly substitutes
for a GWL type, the GWL el enent (0/1)
</ xs: docunent ati on>
</ xs:annot ati on>
<XS:sequence>

e
p:

‘.
—h

<xs: el enent nane="appEl ement" type="Basic_Type"/>

<xs: el ement name="instanceO" type="Basic_Type" mnCccurs="0"/>

<xs: el enent nane:"gn1Der|vedT¥pe‘ type="Derived Type" mnQccurs="0"/>
<xs: el enent nanme="SubstituteskFor" type="Basic_Type" m nCccurs="0"/>

XML schemas

<xs: el enent nanme="baseSubstitutesFor" type="Basic_Type" m nCccurs="0"/>
</ xs: sequence>]]
<xs:attribute name="id" type="xs:id"/>
<I'--<xs:attribute nanme="nmapld" use="optional" type="xs:id"/>->
</ xs: conpl exType>
<xs: conpl exType nanme="Basic_Type">
<xs:annotation> .))
<xs:docunent ati on>Type to_regresent a basic xm type, with | ocal nane and
nanespace. </ xs: docuirent ati on
</ xs:annhot ati on>
<XS:sequence> _
<xs: el ement name="l| ocal nane” type="xs:strin
<xs: el enent nane="namespace" type="xs:strin
/

II/>
II/>
</ xs: sequence>
<xs:attribute nanme="typeld" type="xs:string
</ xs: conpl exType>
<xs:conp exType name="Derived_Type">
<xs:annotation> T , , ,
<xs:document ati on>A speci al i zation of the BaS|c_TyPe conpl exType, addi ng
an attribute telling If this type is derived by extension or
restriction</xs: docunmentati on>
</ xs:annot at | on>
<xs: conpl exCont ent > _
<xs:extension base="Basic_Type">
<xs:attribute nanme="derivedBy" use="optional ">
<xs: si npl eType> ,
<xs:restriction base="xs:;string">
<xs:enuneration val ue="extension"/>
<xXs:enuneration value="restriction"/>
</xs;restriction>
</ xs:si npl eType>
</xs:attribute
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: schema>

g
g
>

126

Appendix C. Schema and instance
document example

This example consists of a simple schema and instance document.

dens.xsd

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>)
<xs:schenmmn target Namespace="http://ww. dens. cont el enment For nDefaul t="qual ified"
attri but eFornDef aul t ="unqual i fied" xm ns:xs="http://ww. w3. org/ 2001/ XM_Schemna
xm ns="http://ww. dens. com xnl ns: den="http://ww. dens. conm' >
<xs: el enent nanme="ganbl i ng_dens" >
<xs: conpl exType>
<XS:sequence> _ _
<xs:el enent nanme="ganbling _den" type="ganbling_den" m nCccurs="0"
maxQCccur s=" unbounded"/ >
</ Xs: sequence>
</xs:conplexType>
<xs: key nanme="PK Den" > .
<xs:Sel ector xpat h="den: ganbl i ng_den"/>
<xs;field xpath="@en_id"/>
</ xs: key>
</ xs: el enent >)
<xs: conpl exType nanme="ganbl i ng_den">
<XSs:sequence>
<xs: el enent nanme="nanme" type="xs:string"/>
<xs:any m nQccurs="0"/>
<xs: el enent name="machi nes" >
<xs: conpl exType>
<XS:sequence> _
<xs: el enment ref="slot_nachine" m nQccurs="0" naxCccurs="unbounded"/ >
</ Xs: sequence>
</ xs; conpl exType>
</ xs: el ement >
</ xs: sequence>) o
<xs:attribute name="den_id" type="xs:positivelnteger" use="required"/>
</ xs: conpl exType>
<xs: conpl exType nanme="sl ot _nachi ne" abstract="true">
<xs:annotation> ,
<xs: docunent ati on>Abstract datatype defined to be super-type for any type
of slot machine in the system </xs: docunentation>
</ xs:annot ati on>
<XS:sequence>
<xs: el enent nane="nanme" type="xs:string"/>
<xs: el epent nane="id">
<xs:sinpl eType> . .
<xs:restriction base="xs:string">
<xs:pattern value="[A B, C|[0-9]{3}[-]1[0-9]{5}"/>
</xs;restriction>
</ xs: si npl eType>
</ xs: el ement >
<xs: el enent ref="manufacturer"/>
<xs:any m nCccurs="0"/>
</ Xs: sequence>
</ xs: conpl exType>))
<xs: conpl exType name="no_i d_sl ot machi ne" >
<xs:annotation> . R
<xs: document ati on>Denne datatypen er laget for a i
restriction pa conpl exType dat at yper. </ Xs: docunent a
</ xs:annot at | on>
<xs: conpl exCont ent > ., o
<xs:restriction base="sl ot _machi ne">
<XS:sequence>
<xs: el enent nape="nane" type="xs:string"/>
<xs: el enent ref="manufacturer"/>

| ustrere bruk av
tion>

127

Schema and instance document ex-

</ xs: sequence>
</xs:restriction>
</ xs: conpl exCont ent >
</ xs:conpl exType> ., _ -
<xs: conpl exType name="ganbl i ng_machi ne" >
<xs:annotation> , ,
<xs: docunent ati on>Dat at ype for ganbling sl ot machi ne, ergo nachi nes that
pay out prize noney in certain Situations.</xs:documentaftion>
</ Xs? annot at i on>
<xs: conmpl exCont ent >)
<xs: ext ensi on base="sl ot _nachi ne">
<XS:sequence> _ :
<xs: el enment name="m n_bet" type="xs:positivelnteger"/>
<xs: el enent name="nmax_bet" type="Xxs:positivelnteger"/>
<xs: el enment name="max MAnn|ngs type="xs: positivel nteg
<xs: el epent nanme="payback_rate
<xs:si npl eType>
<xs:restriction base="xs:unsignedShort">
<xs: maxl ncl usi ve val ue="100"/ >
<xs: m nExcl usi ve val ue="0"/>
/</xs;reft%|ct|on>
</ xs: sl npl eType>
</ xs: el enment >
</ Xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</xs:conPIexType> . _ o
<xs: conpl exType name="credit_price">
<xs: sI nmpl eCont ent >)
<xs: extensj on base="xs:nonNegati vel nt eger" >
<xs:attribute name="currency" use="optional" default="USD"'>
<xs:si nmpl eType> ., o
<xs:restriction base="xs;string">
<XS:enunerat|on val ue="NO"/>
<xs: enuneration val ue="USD'/ >
<xs:enuneration val ue="EUR'/>
<XS:enuneration val ue="&@P"/ >
</xs;restriction>
</ xs:si npl eType>
</xs:attribute
</ Xs; ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
<xs: conpl exType name="ar cade_gane" >
<xs: conmpl exCont ent >)
<xs: ext ensi on base="sl ot _nmachi ne">
<XS:sequence> _ _ _
<xs: el enent name="credit_price" type="credit_price"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType> _
<xs: el enent nanme="sl ot _nmachi ne" type="sl ot_machi ne" abstract="true">
<xs: key name="PK">
<xs:Sel ector xpat h="den; sl ot machi ne"/>

er"/>

<xs;field xpath="den:id"/>
</ xs; key>
</ xs: el enent >)))
<xs: el enent nanme="ganpbl i ng machi ne" type="ganbli ng _nmachi ne"
substituti onG oup="sl ot _machi ne"/ >
<xs: el enent nanme="arcade_ganpe" tygez"arcade_gane"
substitutionG oup="sl ot _machi ne"
<xs: el enent name="nmanufacturer">
<xs: conpl exType>
<XS:sequentce>
<xs: el enment name="nane’ type="xs:string"/>
<xs: el enent nane="servi ce phone" type="xs:string"/>
</ Xs:sequence>
</ xs; conpl exType>
</ xs: el ement >
</ xs: schema>

128

ample

Instance.xml

<?xm version="1.0" encodln?:"UTF-S"?> .
<?anbl|ng_dens xm ns="http: 7/ ww. dens. com’ xm ns: xsi ="
ht't p: // waww. w3. or g/ 2001/ XM_Schema- i nst ance"” xsiI:schemalLocati on="
http://ww. dens. com dens. xsd" >

<ganbl i ng_den den_id="1">

<nane>Arcade Paradi se</ nane>
<machi nes>
<ar cade %gne> .
<pame>Worl d Rally Experience</nane>
<1 d>A999- 01000</i d>
<manuf act ur er >
<nanme>Ar cade Wor kshop | nc</nane>
<servi ce_phone>111- HELP- ME</ servi ce_phone>
</ manuf act ur er >]]
<credit _price>10</credit_price>
</ arcade_gane>
<ar cade_gane>
<nane>Str eet F|?hter 2000</ nane>
<1 d>A911-12112<]'1 d>
<manuf act ur er >
<name>Ar cade Wor kshop | nc</name>
<servi ce_phone>111- HELP- ME</ servi ce_phone>
</ manuf act ur er >]]
<credit_price>10</credit_price>
</ arcade_ganme>
<ar cade gane>
<pame> Eace Monkey Shoot out </ nane>
<id>Cl12-11123</id>
<manuf act urer >
<nane>Abandoned Ganmes Manuf act ur er s</ nane>
<servi ce_phone>910-111-9721</ servi ce_phone>
</ manuf act urer > _
<credit_price currency="NOK">5</credit_price>
</ ar cade_gane><ar cade_gane>
<pame>@&l axy</ nanpe>
<1 d>A001- 09090</1 d>
<manuf act ur er >
<nane>Mnt ys</ nane>
<servi ce_phone>123- PAYTHEPRI CE</ servi ce_phone>
</ manuf act urer > _ _
<credit_price>10</credit_price>
</ arcade_gane>
<ganbl i ng_machi ne>
<panme>R pO f </ name>
<1 d>B119- 12456</1 d>
<manuf act ur er >
<name>Pi ckpocket Pros</ nane>)
<servi ce_phone>555-666- 777</ servi ce_phone>
</ manuf act Ur er >
<m n_bet >5</ m n_bet >
<max_bet >50</ maxX_bet > L
<max MAnn|ngs>300</nax_MAnn|ngs>
<payback_rat'e>30</ payback_rat e>
</ ganbl i ng”_machi ne>

</ machi nes>
</ ganbl i ng_den>
<ganbl | ng_den den_i d="2">
<name>Critical Torner Casino</nanme>
<machi nes>)
<ganbl i ng_machi ne>
<pame>Tit anl c</ name>
<l d>C119-01333</1 d>

<manuf act ur er >

<nane>JackRot Syst ens</ nane>)

<servi ce_phone>333- LONGDI STANCE</ servi ce_phone>
</ manuf act ur er >

<m n_bet >1</ m n_bet >

<max_bet >10</ maxX_het >

<max_w nni ngs>2000</ nax wﬁnn
r

_ ngs>
<payback_rate>25</paybatc >

i
ate

</ ganbl i ng_machi ne>
<garrbl|nﬁ/5 hi ne>
<pame>Mot her i nl aw</ nanme>
<i d>B234- 99444</i d>
<manuf act ur er >
<name>Moneymaker s</ nane>)
<servi ce_phone>987- MACHI NE</ servi ce_phone>
</ manuf act ur er >
<m n_bet >10</ m n_bet >
<max_bet >100</ nax_bet > o
<max_wW nni ngs>20000</ max_wi nni ngs>
<pﬁ%ﬁack_ra e>10</ paybacKk_rat e>
</ ganbl i ng_machi ne>
<ganbl | ng_machi ne>
<pame>Poker mani a</ name>
<i d>A900- 01555</i d>
<manuf act ur er >
<name>Mercury | nc<
<servi ce_phohe>666
</ manuf act ur er >
<m n_bet >10</ m n_bet >
<max_bet >50</ max_bet >)
<maxX_W nni ngs>1000</ nax_Ww n
<payback_rate>85</payback_r
</ ganbl i ng_machi ne>
</ machi nes>
</ganbllng_den>
</ gahbl i ng_dens>

c
e
9

[(o)my

/ name> ,
-234-567</ servi ce_phone>

ol

Appendix D. GML schema and instance
example

hbn.xsd

<?xm version="1.0" encodi ng="UTF-8"?>
<xs:schenm target Namespace="no: hIOf onenaﬁ appschena hbn" xm ns: xI i nk=
http://ww. w3.0rg/ 1999/ x| i nk™ xm t R IMMM/openg|s net/gn1" xm ns: xs=
http://ww. w3, org/ 2001/ XM_Schema" x ns=" i of : onemap: gn ; appschema: hb
el ement For nDef au t="qualified" attr|buteFornDefauIt—"unquaI|f|ed">

<xs:inport npamespace="http://wwmn opengis. net/gm

schemalocat i on="feat ure. xsd"/ >

<xs: I nport nanespace—"http //MMMIMB or g/ 1999/ xI i nk"

schenmlocat | on=" Xl i nks. xsd” /[>

<xs: el enent nane= FhldenBleght" Ype—"khldenByN|ghtType"
SUbStItUtIOﬂC?OUp—"gﬁ1 FeaturerI ect|on

<xs: el enent nane= Sur'ound|ngs Y 'gnl ; Abstract Feat ureCol | ecti onType"
substltut|onG¥oup— gm : _Feat ur eCo ection'/>

<xs: el ement nane="nightsi t eMenber” ty e—"nghtS|teNEnberType"
substltutlonGroup gim : f eat ur eMenbe

<xs: el ement name="Ni ht Si 't eBar " type—"N|ghtS|teBarType"

substltut|onG¥oup— ht Si t eFeat ure"/

<xs: el ement name="Nght Si t eKebabSt or e” type—"NlghtSlteKebabStoreType"
SUbStItUtIOﬂC?OUp— |%htS|teFeature"/>

<xs:el ement nane="_NightSiteFeature" type=" ?n1 AbstractFeatureType
abstract="true" substituti onG oup —"?n1 _Feaftu

<xs: el ement name="bui | dingQutline" ype—"L|nearRlngPropertyType
SUbStItUtIOﬂC?OUp ‘gm : _geonetryProperty"/>

the el ement nmyCoordi nates are representet here, to prove the point that you
are free to define aliases for basic gnl el ement.
This Is by far not a reconmended thing to do, but it's still possible, and in
sone
-->
<xs: el ement nane="nyCoor di nates" yPe— "gm : Coor di nat esType"
SUbStItUtIOﬂC?OUp_ gm : coordi nat es _
<xs: el ement _name="RIver" type:"RlverType substituti onG oup="gm : _Feature"/>
<XS: conplexTy e nane="Hal denByN ght Ty
<xs. conpl exCont ent > _ .,
<xs: extension base=" gn1:AbstractFeaturerlIect|on ype"> _
<xs:attribute name="| ast updat ed"” type="xs:dateTime" use="optional "/>
</ xs: ext ensi on>
</ Xs: conplebentent>
</ xs: conpl exType>
<xs: conpl exType name="Ni ght Si t eMenber Type" >
<x3'conplex nt ent >
<xs:restriction base=" gn1|FeatureASSOC|atlonType">
<xs:.sequence m nQccur
<xs:el enent ref=" N|ghtS|teFeature"/>
</ xs: sequence>
<xs:attributeG oup ref— xli nk; si mpl eLi nk"/>
<xs:attribute ref="gm :renoteSchema” use="optional "/>
</xs:restriction>
</ xs: conpl exCont ent >
</ xs: conpl exType> . .
<xs:conpl exType name="Ni ght SiteType" abstract="true">
<xs: conmpl exCont ent >
<xs: extensi on base="gnl : Abstract Feat ureType" >
<XSs:sequence> . _
<xs: el enent ref="buildingQutline"/>
</ xs: sequence>
</ xs: extenS|on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
<xs: conpl exType name="Ni ght Si t eBar Type" >
<xs: conpl exCont ent >
<xs: extensi on base="Ni ghtSiteType">

131

GML schema and instance example

<XS:sequence> o
<xs: el enent nane="age |limt" type="xs:nonNegativelnteger"/>
<xs: el epent nane="beer _price">

<xs:si npl eType> ., .,
<xs:restriction base="xs:doubl e">
<xs: m nExcl usi ve val ue="0"/>
<xs: maxl ncl usi ve val ue="100"/ >
/</xs;reft%|ct|on>
</ xs: s e e>
</xs:e|engRt> yp
</ Xs: sequence>
</ xs: ext ensi on>
</ xs: conppl exCont ent >
</ xs: conpl exType>))
<xs: conpl exType name="Ni ght Si t eKebabSt or eType" >
<xs: conmpl exCont ent >]
<xs: extensi on base="Ni ghtSiteType">

<XS:sequence> ,
<xs: el enent nane="kebabprice" type="xs:int"/>

</ Xs: sequence>

</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType> _
<xs:conpl exType name="Ri ver Type">
<xs: conmpl exCont ent >
<xs: extensi on base="gnl : Abstract Feat ureType" >
<XS:sequence>
<xs:elenent ref="gm:centerLineG"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
<xs: conpl exType name="Street">
<xs: conmpl exCont ent >
<xs: extensi on base="gmnl : Abstract Feat ureType" >
<Xs:sequence>
<xs:elenent ref="gm :centerLineO"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>)
<xs: conpl exType nanme="Li near R ngPropertyType">
<xs:annotation>
<xs: documnent ati on> _ _
Encapsul ates a LinearRing, to be used as a geonetric property
</ xs: docunment at i on>
</ xs: annot ati on>
<xs: conpl exCont ent >]
<xs:restriction base="gm : Geonet ryAssoci ati onType" >
<xs:sequence m nCccurs="0">
<xs:elenent ref="gnl:LinearRing"/>
</ Xs: sequence>
</xs:restriction>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: schema>

haldenl.xml

Instance document of application schema hbn.xsd listed above.

<?xm version="1.0" encodi ng="UTF-8""?>
<Hal denByN ght xm ns="no; hi of : onermap: gnl : appschenn; hbn"
x5|:schenaLocat|pn="no:h|of:onenap:P, :apRschena:hbn hbn. xsd" xnins:gn1="
http://mMMLoPeng|s.netagn1" xmns: xI'ink="http://ww. w3. org/ 1999/ x| | nk"
xm ns; xsi ="h IEZ//MMML .org/ 2001/ XM_Schena- | nst ance" >

<gnl : boundedBy>

132

<gml : Box>

<gn1 coor d>
<gnl : X>0. 5<
<gnl : Y>0. 5<

</gm coor d>

<gn1 coord>
gm X>44</ gnl : >
m : Y>36</gm :

</ n1 coord>

</
</gmg boundedBy>
<gnl : f eat ur eMefrber >
<Sur r oundi ngs>
<gn1 boundedBy>
m Box>
<gn1 coord>
<gm : X>0. 5</ gn :
<gm : ¥>0. 5</gm : Y>
</gm : coor d>
<gm coord>
<gm : X>44</ gm : X>
<gn1 Y>36</gm :

</ coord
</ mg Box

</g boundedBy
<gni_: f eat ur eMenber >
<Ri ver >
<gni : nane>Tj st a</ gnl : nane>
<gnl : cent er Li neO»F >
<gn : Li neStri ng>
<rryCoord| nat32558 0

0.
36. 0<
mgm L| neSfr| ng>
</ g center Li ne

Ri ver >

</gn1 f eat ur eMenber >
</ Surroundi ngs>
</ gm : f eat ureMenber >

<n| ht Si t eMenber >
i ght Si t eBar >
m : nane>Hr. Dietz</gmM : nane>
< ui di ngQut i i ne>
<gnl : Li near Ri ng>
<gn1 coor d>
<gn : X>4. 0</ gm : X>
<gnl : Y>8. 0</ gm : Y>

ca
33

5 18.0 8.0, 19.0 14.0, 24.0 20.0, 30.0 22.0,
[myCoor di nat es>

</gm : coord
<gn1 coor
D X>4, O</;;n1 ;XS
1 Y>10. 0</'gm : Y>
</ gn1 coord
<gn1 coor
1 X>6. O</;;n1 ;XS
- Y>10. 0<Fgni @ Y>
</ gn1 coord>
<gn1
X>6 O</;;n1 ;XS
<gn1 Y>12 o</gm :Y>
</ gn1 coor
<g coor
: X>8, O</;;n1 ;XS
:Y>12.0<lgmi: Y>
</ gn1 coor d>

<gn1 coor d>
gm X>8. 0</gm : X>
m :Y>8. 0</gm : Y>

</ gn1 coor d>

<gn1 coor d>
<gn : X>4. 0</ gm : X>
<gnl : Y>8. 0</ gm : Y>

</ m : coor d>

/g L|nearR|ng>
</bu|ld|n i ne>
<age |Im >18</a elimt>
<péer _price>35</beer_price>
</ N ghtSi t eBar >
SiteMenber >

ame>Ganm e Krogs</gm : nane>
I

m:n
ui i di ngQutline>
<gn1 Li'near R ng>
<gn1 coordi nat es>22.0,24.0 28.0,24.0 28.0,28.0 22.0,28.0
22.0, 24. 0</ gm coor di nat es>
</ gm : Li near R'ng>
</ buil dingQutline>
<age |imt>18</ age_l imt>
<peer price>35</Dbeer_price>
</ N ghtSi t eBar >
</ ni ghtSi t eMenber >
<ni ght Si t eMenber >
<Ni ght Si t eKebabSt or e>
<gm ; narre>Lunchbaren</ gm : nane>
<bui | di ngQut | i pe>
<gnl : Li near Ri ng>
<gnl : coor d>
<gnm : X>34. 0</ gm : X>
<gm : Y>18. 5</gm : Y>
</gm: coo(rjg>

< X>40. 0</ gnl : X>
<gnl : ¥>20, 0</ gnl : Y>
</gm : coor d>
<gn1 coor d>
m : X>40. 0</ gm : X>
<gn1 Y>18. 0</ gnm : Y>
</gm coor d>
<gn1 coord>
<gnl : X>38. 0</ gm : X>
<gnl : Y>18, 0</ gnl : Y>
</ gn1 coor d>
<g coor d>
m : X>38. 0</ gm : X>
<gn1 - Y>17.0</gm : Y>
</gm coor d>
<gn1 coor d>
gm X>36. 0</ gnl : X>
m Y>17.0</ gm : Y>
</ gn1 coor d>
<gn1 coord>
<gn : X>36. 0</ gm : X>
<gni : Y>18. 5</ gm : Y>
</ gn1 coor d>
<gm : coor d>
<gn : X>34. 0</ gni : X>
<gm . Y>18, 5</gm : Y>

</ m : coor d>
/g Li near Ri ng>
</ bu| | di ngQut | i ne>
<kebabpri ce>50</ kebabpri ce>
</ Ni ght SI t eKebab$St or e>
</ ni ght'Si t eMenmber >

</ Hal denByNi ght >

