
Geographical and Syntactical
Integration of Geospatial Data

Master Thesis in Computer Science

Kristian Lunde

December 11, 2005
Halden, Norway

 Høgskolen i Østfold
 Avdeling for Informasjonsteknologi

Abstract

A map repository is a collection of geospatial data that describes elements of the world.
The geospatial data describes features geometrically and semantically. One of the crucial
tasks a map repository has to support is the integration of new data, and the updating of
already existing features. This thesis deals with the problem of integrating and updating
geometrical features in a map repository. The integration is viewed both from a geometrical
and a syntactical point of view.

The geometrical integration process section of this thesis contains one theoretical part
and one practical part. The theoretical part of the geometrical integration process contains
a detailed description of the problems that arise when trying to merge data sets which
are different from each other. When the problem has been thoroughly described, one or
more solutions to these problems are described. The practical part describes a step by step
process of doing a geometrical integration. The practical geometrical integration process is
based on the solutions which are sketched in the theoretical section.

The second major element of this thesis is the syntactical integration of geometrical
data. Similarly to the geometrical integration, the lazy integration is divided into a theo-
retical and a practical section. The theoretical part uses a method called lazy integration
originally developed for semantical data, as a foundation to build a lazy integration method
for geometrical data. The main objective with lazy integration is to preserve the structure
of the integrated data set. Using this method, it is possible to store geospatial data that
have different structures and information in one GML file. The practical section uses the
lazy integration process on two different problem cases.

Both the theoretical and practical part of this thesis contain real world examples to
define and describe problems and solutions.

i

Acknowledgements

I would like to thank Gunnar Misund for valuable guidance and supervision throughout
this master thesis. I would also like to thank Linda Kjeldsen, Hilde Steinheim, Mats Lindh,
Christer Stenbrenden and Bjørn H̊akon Horpestad for a lot of fun when we wrote our
master theses. Thanks goes to Morten Granlund for the helpful inputs on writing a master
thesis. Kudos goes to Harald V̊alerhaugen for his help and guidance on the lazy integration
approach.

At last I would like to thank the JUMP team. Without the development of the JUMP
workbench much of my work in this thesis would have been much more troublesome.

ii

Prerequisites

The readers of this master thesis should have knowledge similar to a bachelor degree in
computer science. It is also preferable with thorough knowledge about geographical infor-
mation systems. It is preferable that the readers also possess some knowledge on standards
as XML [15], GML [17] and XML schemas [31].

iii

Contents

Abstract i

Acknowledgements ii

Prerequisites iii

1 Introduction 1
1.1 Revision . 2

1.1.1 Incremental Update . 3
1.1.2 The OneMap Project . 4
1.1.3 The Peer-Review Process . 4
1.1.4 Where is Incremental Update of Geospatial Data Used 5

1.2 The Structure of The Thesis . 6

2 Background 7
2.1 Geometrical Integration . 7

2.1.1 Map conflation . 7
2.2 Syntactical Integration . 13

2.2.1 Geography Markup Language . 13
2.3 Lazy Integration . 13

2.3.1 Geometrical Integration . 14
2.3.2 Semantic Integration . 14
2.3.3 Syntactical Integration . 15

2.4 Data Sets . 15
2.4.1 VMAP0 Data . 17
2.4.2 VMAP1 Data . 17
2.4.3 DNC data . 17

3 Related work 18
3.1 JCS Conflation Suite . 18
3.2 JTS Topology Suite . 19
3.3 JUMP Unified Mapping Platform . 19
3.4 Open JUMP . 21

iv

3.5 Automatically Annotating and Integrating Spatial Datasets 21
3.6 Integration of Heterogeneous GML Sources 22
3.7 Automated Conflation of Florida State Highway Data with Larger Scale

County Data . 23

4 Geometrical Integration 24
4.1 Geometrical Integration Scenarios . 24

4.1.1 Area of Interest . 24
4.1.2 East River, La Guardia Airport . 24
4.1.3 Jamaica Bay . 25

4.2 Cleaning Data Sets . 27
4.2.1 Dangling Edges . 27
4.2.2 Gaps and Overlaps . 30

4.3 Geometrical Integration Problems . 34
4.4 Boundary Alignment of Geometrical Features 34

4.4.1 Indecisive Integration . 35
4.4.2 Integration of Closed Geometries . 45

4.5 The Geometrical Integration Process . 48
4.5.1 Geometrical Integration With JUMP 50

5 Syntactical Integration 60
5.1 The Multi Source Polygon Problem . 61
5.2 Metadata . 64
5.3 Lazy Integration . 68

5.3.1 The XML Schemas . 68
5.3.2 Using Lazy Integration . 72

6 Discussion and Conclusion 78
6.1 Discussion . 78
6.2 Conclusion . 79

Bibliography 80

A List of Terms 83

B Source code 85
B.1 JUMP Templates . 85

B.1.1 GML Input Templates . 85
B.1.2 GML Output Templates . 86

B.2 Lazy Integration Schemas . 87
B.2.1 Request.xsd . 87
B.2.2 FeatureCollection.xsd . 87
B.2.3 utils.xsd . 89
B.2.4 Coastline.xsd . 91

v

B.2.5 river.xsd . 92
B.2.6 vmap.xsd . 93
B.2.7 dnc.xsd . 95

B.3 Lazy Integration Result Data . 96
B.3.1 La Guardia Airport . 96
B.3.2 The Jamaica Bay Scenario . 99

vi

List of Figures

2.1 Illustration of the workflow in a conflation process. 9
2.2 Example of coverage alignment . 11
2.3 Data set before a boundary alignment process is applied on them. 12
2.4 Data sets after the boundary alignment were applied. 12
2.5 The Use of External Schemas in Lazy Integration 15
2.6 The Lazy Integration Core . 16

3.1 JUMP Screen shot . 20

4.1 Data Set Tiles . 25
4.2 Main Tile . 26
4.3 Jamaica Bay . 27
4.4 Dangling Edge Example 0 . 28
4.5 Dangling Edge Example 1 . 29
4.6 Dangling Edge Example 2 . 31
4.7 Dangling Edge Example 3 . 32
4.8 Dangling Edge Example 4 . 33
4.9 Integration Process Step 1 . 34
4.10 Integration Process Step 2 . 35
4.11 Integration Process Step 3 . 36
4.12 Integration Process Step 4 . 36
4.13 Jamaica Bay With Different Data Sets . 37
4.14 Jamaica Bay Indecisive Merging, Edge Vertices 38
4.15 Jamaica Bay Indecisive Merging, Human Assisted 38
4.16 Jamaica Bay Result of Indecisive Merging 39
4.17 The Island Problem . 40
4.18 The Island Problem, Regular Integration . 40
4.19 The Island Problem, Regular Integration, Result 41
4.20 The Island Problem, Left Side Peninsula Method 42
4.21 The Island Problem, Left Peninsula Method, Result 42
4.22 The Island Problem, Center Peninsula method 43
4.23 The Island Problem, Center Peninsula method, Result 43
4.24 The Island Problem, Right Peninsula Method 44

vii

4.25 The Island Problem, Right Peninsula Method, Result 44
4.26 The Island Problem, Island Method . 45
4.27 Face Integration . 46
4.28 Face Integration, Identifying Nodes . 46
4.29 Face Integration, Rerouting The Line Segment 47
4.30 Face Integration, Result . 47
4.31 Face Integration, With a Margin . 48
4.32 Face Integration, Identifying Margin Nodes 49
4.33 Face Integration, Margin Result . 49
4.34 La Guardia Integration Step 1 . 51
4.35 La Guardia Integration Step 2 . 52
4.36 La Guardia Integration Step 3 . 53
4.37 La Guardia Integration Step 4 . 54
4.38 La Guardia Integration Step 5 . 54
4.39 La Guardia Integration Step 6 . 55
4.40 Jamaica Bay Integration Step 1 . 56
4.41 Jamaica Bay Integration Step 2 . 57
4.42 Jamaica Bay Integration Step 3 . 58
4.43 Jamaica Bay Integration Step 4 . 58
4.44 Jamaica Bay Integration Step 5 . 59
4.45 Jamaica Bay Integration Step 6 . 59

5.1 The Lazy Integration Structure . 69

viii

Chapter 1

Introduction

This thesis deals with the integration of geospatial data. This includes both the geometrical
and syntactical integration of geospatial data.

Mankind has always used maps to navigate in its surroundings. These maps have been
illustrations of the surroundings and displayed important information. A map is a scaled
down illustration of the world and our geographical environments. For the common user it
is important that the map is displayed correct. However, a map is only correct in a limited
period of time. The world and our geographical environments are constantly changing.
These changes may be influenced both by nature and by humans, they can also be small or
large scaled. Small changes may be a slope failure or an alteration of a road. A large change
of the environment is for instance the earthquake that lead to the tsunami incident in the
pacific in December 2004. The earthquake moved large islands with several centimeters.
The dynamic environments require that maps are updated and corrected from time to time.

A map repository is a collection of geospatial data which describes elements of the world.
The geospatial data describes geometrical and semantical features. One of the crucial tasks
a map repository have to support is the integration of new data, and the replacement of
already existing features. This master thesis deals with the problem of integrating and
updating geometrical features in a map repository.

Geometrical integration is the process of integrating geometrical features from one data
set into another data set. It is similar to a map conflation method called boundary align-
ment. Map conflation is a difficult and troublesome problem area, and boundary alignment
is the easiest of the conflation methods. Other map conflation [40] methods are out of scope
in this thesis. The geometrical integration process integrates a section of data to an already
existing data set, this section of features are new and lie adjacent to already existing fea-
tures. The integration of new data into an already existing data set does not go painlessly.
Problems that occur in this process can occur from different reasons. The two main reasons
are errors in the structural build up of the file or geometrical errors in one or both of the
data sets. These errors result unaligned data sets. Line segments that cross data sets can
and most likely will not coincide without any modifications. To solve this problem the data
sets have to be aligned along their common borders. This means that the line segments
that cross the border of the update area become coherent, and result in one data set, with

1

continuous line structure. To approach the geometrical integration, JUMP [22] will be used
to perform a geometrical integration. There will also be sketched solutions to the problems
that are pointed out.

The geometrical integration does the integration of two geometrical data sets, however, it
does not say anything about how these data should be integrated syntactically. Syntactical
integration deals with the process of integrating several data sets to one data set. The
process of integrating new data into an already existing data set syntactical is problematic.
It can often result in loss of information or precision. These problems occur when features
are converted from their original state into the structure of the new data set. Loss of both
information and precision are of course an unwanted side effect of the syntactical integration.
To solve this problem a method called lazy integration will be explored, to see if it suites
as a method of integrating geometrical data syntactically. Lazy integration has earlier been
used as to integrate semantical data into one data set.

The information on the processes of the geometrical and syntactical integration is im-
portant, and should be stored together with the integrated features. Such information is
called metadata, and is stored together with the geometrical features. Metadata contain
information that is relevant to the data set, for instance the date of the integration process,
the coverage of the feature, the resolution of the feature, the format of the original data,
description and creator. Inconsistency will occur if it is integrated a unknown data source.
It is important to know the resolution of the existing data sets, the original sources. This
information is decisive to further integration processes. For instance it is not desirable to
replace data in the repository with lower resolution. This is why metadata is a vital part in
both the geometrical and syntactical integration process. Metadata will be examined and
used to develop a structure that contains relevant information for the integration processes.

The scope of this thesis is to explore the problems of geometrical and syntactical inte-
gration. Semantical integration is out of scope in this thesis. The purpose is also to sketch
solutions to these problems. It is also a goal to explore the possibilities of geometrical
integration using the JUMP [22] workbench. At last it aims to develop a lazy integration
approach for geometrical data.

1.1 Revision

Revision is the process of confirming the correctness of information and correcting the
errors found in that process. The process of revising information is done with information
where the correctness of the data is not known. It is also done with the result of a process
or product to verify the correctness. A revision process can be performed in small scale,
for instance a person which is checking a letter for typing errors and correcting them is
performing a revision. A small revision is usually performed by few persons. It can also be
performed in large scale; this is usually done with important data. A large scale revision
includes several persons, and over a significant time period. A large scale revision will most
likely require that the finished result has a low error rate. The NASA space shuttles are
objects exposed to large scale revisions. The shuttles need to be as secure as possible to

2

ensure the safety of both humans, and expensive equipment. The revision of the shuttles has
to reveal critical errors that can endanger the mission. The NASA revisions are may be one
of the largest forms for correctness checking in the world. In this setting a revision will be
less critical but indeed important to the consistency of the map repository. It is important
to ensure the correctness of geospatial data that should be integrated in the repository. If
erroneous data should enter the repository it would lead to an inconsistent repository. The
correctness of any data extracted from the repository would in that case be unknown. This
is the main cause why new data should be revised before it is added to the repository.

1.1.1 Incremental Update

An incremental update relate to the integration of new data into an existing system. A
repository is a storage system which can store large amounts of data. The repository can
be built in several ways, a repository could be built and all information could only be
added once; it would not allow entrance of new data. The repository could have to be
rebuilt whenever new data was added. The most sensible way to do this however, is by
an incremental update anytime new data should be added to the repository. The use of
incremental update can be performed in different ways depending on the data structure and
information type. An incremental update of a repository enables it to expand at anytime.
With this ability the repository is dynamic to fit different needs at different times. One of
the key features with an incremental repository is that data can be added when it is collected
or available. This means that a repository can start with a small amount of data, and end
up with vast amounts of data. The major advantages with a repository with incremental
update support, is the ability to expand it at any time.

The Bottom/Up Approach

The bottom up approach is a way of storing data sets and storing the changes done on
those data sets. With this strategy the original data sets are stored as they originally are.
Whenever changes are applied on one of the data sets, these changes are stored as patches
in separate files. These patches only contain the changes done on the data set. A new patch
is created every time a new change is done on a data set. A change can apply both for the
original data sets and patches which have been applied to the data set earlier. With this
approach the original data set is kept in its original state. In order to view the data set in
its newest version; the data set has to be loaded and the patches have to be applied to the
data set.

The Top/Down Approach

In contrast to the bottom up approach, the top down approach does not store the original
data sets as they are. When an update on a data set is performed it is changed to fit the
latest change, and a patch is created. The patch contains the changes which are applied to
the original data set. This result in a different way to display the data set. The data set is

3

always updated and correct, but if the original data set should be viewed the patches have
to be applied to the data set. This revert the data set to its earlier or original state.

1.1.2 The OneMap Project

Project OneMap [36] is a long term project that work with geographical data. One of
the main goals of project OneMap is to contribute to an open GeoWeb. It aims to share
geographical information using open formats, developing and distributing tools as open
source. The OneMap philosophy is to keep things as simple as possible. At all times there
are several ongoing sub projects and master thesis in the OneMap project. During the
lifetime of the OneMap project; it has been the source of several publications, presentations
and papers. The OneMap project is an associative member of the Open GIS Consortium.

The thought about simplicity also applies to the physical storage of data. The OneMap
repository is file based, and stored in tiles. A tile based storage system means that the
geographical features are stored in rectangle areas; these tiles are organized with naturally
coherent features that cover a limited coverage classes, for instance a coastline class. Today
the OneMap repository support GML 2 [17] format. Future development may introduce
GML 3 [18] as a standard file format. One of the advantages with GML 3 is the possibility
to store topological information on features.

An OneMap Repository [33] article describe a new design of the repository. It discusses
through several scenarios the possibilities that one might achieve by doing some changes
in the structure of the repository. This article proposes a repository that is able to store
historical data. Historical data would enable the repository to revert a data set to an
earlier edition if that would be necessary. The repository will in that case support retrieval
of historical changes in maps. Historical changes are vital to several systems for instance
emergency rescue operations and monitoring of glaciers. Further on the article describe
storage of metadata together with geometrical features, with is essential in geometrical
integration cases. The article also propose a new view on the storage focus, it is suggested
that a feature based focus could give a more satisfying focus than today’s tile based focus.
The main limitation of a feature based archive is automatically updates of large data sets.
With this argument the feature based focus are somewhat doubtful.

1.1.3 The Peer-Review Process

The OneMap [36] repository has chosen a peer-review process as a revision method to ensure
the correctness of new data. A peer-review process has its origins from the verification
of academically papers and prepublications. In such a process the work of an author is
distributed to other persons with expertise in that area. These persons do a validation of
the work and either accept it, reject it, or propose some changes or enhancement of the
work. This process can be performed in several iterations, which result in a final report or
a publication.

The peer-review process used in the OneMap [36] project is much alike the original
peer-review process. The major difference is the data which should be verified. In contrast

4

to the original peer-review process which reviews papers or prepublications, the OneMap
peer-review process review geospatial data. The purpose with this peer-review process is
to get a correct data set which can be integrated into a map repository. It is required that
the geospatial data is without flaws; this makes the peer-review process very useful in that
situation. The peer-review process is initiated when a new piece of geospatial data should
be added to the map repository. Whenever new data should be added, the geographic area
where the data should be submitted is locked. This is done to ensure consistency of the
map repository. For instance if two updates over the same geographical area were to be
added to the repository simultaneous, this would create uncertainty of which of them that
were newest and therefore most correct. If an update of the repository is initiated while
another update already is in the peer-review process, the second update will be rejected.
The person that initiates the peer-review person is the first person that verifies the data
as correct. When this is done, other persons that have a good overview of the area view
the data, and either accept it or reject it, or propose corrections to the data. During this
process the data might undergo major editing, and might be altered by all persons involved
in the peer-review process. After each alteration every involved persons have to agree on the
alteration. When agreement is reach on the correctness of the data, the peer-review process
is finished, and the data is ready for integration to the map repository. The peer-review
process is not part of the repository, but a separate process that relate to the repository.

The peer-review process has been tested [37] in the OneMap project and worked without
much trouble. One of the drawbacks with the peer-review process is that it might be
very time consuming. The process is also based on human interaction, and it would be
troublesome to automate the peer-review process. Nevertheless the peer-review process is
by no doubt a very powerful tool, which secures the correctness of the data.

1.1.4 Where is Incremental Update of Geospatial Data Used

The use of incremental update of geospatial data is widely used in various areas. The
main users of this approach are grass root projects, volunteer projects, and community
projects. Some companies and organizations may also use this approach, but are not the
main users of this approach. For example community mapping projects around the world
use this approach to store their data, as they collect it manually with their global positioning
system (GPS) [41]. Grass root projects that have need of geographical information in their
projects are users of this approach. There are also many other volunteer projects with
various problems that in some context relate to geographical information. Common for all
these groups are that they do not have the resources to collect all geographical data they
need at once. This information is built up piece by piece; after a while these pieces form
a map of some extent. The possible companies and organizations that use this approach
do most likely relate to volunteer work to some degree, or have a open content view on
geographical information.

5

1.2 The Structure of The Thesis

Chapter 2 gives an introduction to methods and topics which are relevant for this thesis. It
starts with an introduction of the term lazy integration. Lazy integration is the foundation
of the work done in chapter 5. Further on the basic of geometrical integration is introduced.
This topic deals with integration of geospatial data into an already existing geospatial file.
Syntactical integration is the next topic that is introduced. Under the syntactical integration
section, GML [17] is described. GML is a markup language for geographical information.
At last the data that is used in the examples and scenarios in this thesis is presented.

Chapter 3 is a brief introduction to other projects that work with similar problem
statements. JUMP, OpenJUMP, JCS Conflation Suite and JTS Topology Suite are projects
which are described closer in this chapter. Other projects that have worked with geometrical
or syntactical integration are also presented.

Chapter 4 is the first of two research chapters and deals with the geometrical integration
of data. Two scenarios are described here, and used in illustrations through chapter 4 and
5.

In chapter 5 the syntactical integration and lazy integration are in focus. It outline the
problems with syntactical integration and use the lazy integration [38] approach to suggest
a solution. Metadata is presented as an important tool in the syntactical integration.

Chapter 6 give a conclusion of the research. It summarizes the key results and discusses
the result. It also describes further work that can be done on the area.

6

Chapter 2

Background

This chapter gives an introduction to the terms and method which this thesis is built upon.
The term lazy integration is described; introductions to both geographical and syntactical
integration are given. These three topics are the focus of this thesis. At last the data sets
used in the cases are described.

2.1 Geometrical Integration

Geometrical integration is the operation of unifying two data sets. A geometrical integration
involves different tasks. The two main operations that a geometrical integration consists
of is the alignment of line segments from different data sets, and the replacement of a
geometrical features. Many of the problems are alike a process called map conflation. This
section will give an introduction the common approach a map conflation uses. Some of the
methods used in map conflation are easily adapted to the geometrical integration process.

2.1.1 Map conflation

Yuan and Tao [42] define two types of map conflation, horizontal and vertical conflation.
Vivid Solutions [22] has defined a third one in their JCS conflation suite [14], internal
conflation. The differences between these classifications of conflation are:

Horizontal conflation, this conflation type deals with the problem of removing discrep-
ancies between the boundaries of two data sets. Examples of this kind of conflation
could be edge matching of rivers, or roads from two separate data sets or the matching
of adjacent boundaries from different data sets. These kinds of operations are also
known as boundary alignment.

Vertical conflation, work with discrepancies in data sets that are positioned in the same
area. An example of this type of conflation is the removing of discrepancies from two
data sets with different resolution, containing the same type of data and over the same
area. Another example is the matching of roads or rivers from two data sets over the
same area.

7

Internal conflation, this kind of conflation is only in use on single data sets, and is used
in the process of removing overlaps, cleaning of coverages and quality assurance.

The Map Conflation Work Flow

Yuan and Tao [42] define five different steps in the process of conflating geospatial data:

Data pre-processing, this task prepare the data sets for conflation. This process is com-
posed of error checking the data sets, if errors occur these will be fixed if possible. It
also checks that both data sets have the same projection, datum and similar coordi-
nates.

Map alignment, this task merge the two data sets together. If the objects in the data
sets don’t coincide there may be done some transformations to achieve this.

Matching and checking features, this is the most crucial part of the conflation. This
is where the actual conflation is carried out. Features from both data sets that cor-
respond are found on background of some criteria’s for the conflation process. These
criteria’s may be adjacency or nearest distance.

Post match processing, at this point the automated conflation is completed, but this is
not enough, since conflation is difficult to automate without any human interaction.
Post match processing include the human interaction of conflation. Any mismatches
and other errors done by the automated conflation has to be corrected by human
interaction.

Discrepancy Correction or Information Transferring. This is the final step of a con-
flation operation; at this point different processes are applied to the new data set.
These processes correct coordinate errors of matched points, attribute transfer from
both data set to the new data set.

Map Conflation Algorithms

Conflation involve geometric, topological and attribute algorithms, but since this thesis only
evolve around geometric integration other algorithms are briefly described here.

There are several different methods of conflating geospatial data, but all of them have
one thing in common, they need two data sets with similar geographic coordinates to do
the conflation process.

There are two types of quite simple mathematical methods which are used in virtually
every conflation algorithm. The Euclidean method is used to get the distance between two
vertices.

D2 = (X2−X1)2 + (Y 2− Y 1)2

8

Figure 2.1: Illustration of the workflow in a conflation process.

9

The other mathematical method is the Hausdorff distance which calculates the distance
between linear objects. It determines the largest minimum distance between line A and line
B and the largest minimum distance between line B and line A. This is done by moving a
”dynamic circle” along one of the lines so that it always touches the other line, the largest
radius of the circle is the largest minimum distance from line A to line B or line B to line
A. The mathematical formula of this distance is found by:

Dh = max(d1, d2)

These examples of mathematical methods are example of some of the tasks a conflation
process involves. There are needed several other mathematical methods to complete a
conflation process, but this is out of scope in this thesis.

Coverage Alignment is a vertical conflation and matches several vertices in data set A
with data set B, an example of this alignment is road alignment, see figure 2.2. The JCS
Conflation Suite [14] has set some rules for handling this, both of the data sets may have
to be adjusted; this adjustment may involve both moving and inserting vertices of data set
B. The next step will be to insert vertices in data set A to ensure that it is noded correctly
with data set B. When noding there are two options, if two contiguous segments in data
set A match a single segment in data set B the way that a vertex exist in data set A but
not in data set B. A choice can be made to remove the vertex in data set A by merging
the segment or to insert a vertex in data set B by splitting the segment. This choice may
depend on the allowance of editing on the relevant data sets.

Boundary Alignment works with the problem of aligning common edges from different
data sets. This is a set of algorithms that has some requirements to the data sets.

• The coverages can not be overlapping.

• Each coverage has to be clean. A clean coverage is without any errors. A error in this
context is for instance a dangling edge.

• The discrepancies between the data sets have to be small.

The original data sets will not be changed in any way by a boundary alignment al-
gorithm. The output data will consist of a large coverage containing the common edges
aligned with no gaps or overlaps, it will be correctly noded. The boundary alignment algo-
rithm needs one parameter, the tolerance distance that each point should have. Figure 2.3
illustrates two data sets that should be merged together. The edge vertices in the data sets
do not coincide, this result in a non-coherent line structure. After a boundary alignment
process is performed on the data sets these edge vertices coincide, and the line segment are
aligned. Figure 2.4 illustrates the result of a correctly performed boundary alignment.

10

Figure 2.2: Example of coverage alignment

11

Figure 2.3: Data set before a boundary alignment process is applied on them.

Figure 2.4: Data sets after the boundary alignment were applied.

12

2.2 Syntactical Integration

In this setting the term syntactical integration denote the adding of geospatial syntactical
data to another geospatial syntactical file. In many ways geometrical and syntactical inte-
gration are seen as one operation, since the geometrical integration combine two different
data set. It can therefore be difficult to part the terms geometrical integration and syntacti-
cal integration. The main difference is that the geometrical integration does the geometrical
correction and aligning of the data. The syntactical integration does not interfere with the
geometrical information at all. Syntactical integration configures the structural anatomy of
the GML [17] file. For instance this can be where the geometrical integrated information
should be added in the geospatial file. The syntactical integration process also work with
the metadata of the geospatial information, for instance when the geometrical and syntac-
tical integration process were performed, by whom it were performed, what is the original
source of the geometrical integrated data and so on. This information is as essential as the
geometrical information. Even though this information isn’t seen as the vital information, is
it the framework of the geometrical information. Without a proper syntactical integration
process that store vital metadata, will the result be a chaotic structure, with no further
possible integration of new data. The study in this thesis will be file based. Which mean
that syntactical data will be integrated in another file with different syntactical structure.
In this thesis the syntactical integration will be based on the GML [17] file format.

2.2.1 Geography Markup Language

Geography Markup Language (GML) [17] is a dialect of XML [15]. GML instance docu-
ments are built in the same way as XML instance documents. GML is written with XML
schemas [31] and is tailored to model storage of geographical information. It provides a set
of objects used to describe geometrical features, coordinates, coordinate systems, geometry
and measurements. GML was initially developed by Clemens Portele but it is now followed
up by OpenGIS Consortium (OGC) [3]. GML use the OGC simple feature model [39] to
represent geographic primitives. This includes all common feature types as for instance
polygon, linestring, point, rectangle and line. The newest version of GML, GML 3 [18]
support storage of topological information; earlier versions do not have this feature.

2.3 Lazy Integration

Lazy integration [38] is a strategy used in the OneMap [36] project. Lazy integration is
an approach that merges geospatial features into a existing geometrical data set. Common
for the features are that they have a different structural syntax than the data set. Earlier
such integrations have included change of the structural syntax of the geospatial features.
The lazy integration however, does not use this technique. The thought of lazy integration
is that new data that are syntactically integrated into a file should be modified as little
as possible. It can also be called a non-intrusive integration because it does not affect the
geometrically integrated data. To keep the integrated data as close to the original data as

13

possible will avoid loss of precision, both geometrically and semantically. Using this method
also avoid large scale manual work. So far in the OneMap project this integration method
has been used to integrate semantic information.

The lazy integration approach defines its own request schema, which encapsulate all
other classes. The only purpose of the request schema is to unite the other lazy integration
schemas. GML [17] instance documents which use the lazy integration approach are based
on the request schema. A schema called utils defines a set of abstract elements. These ab-
stract elements are the foundation of all other elements used in the lazy integration system.
The feature collection schema is based on the utils schema and defines the overall structure
of a GML instance document based on lazy integration. The elements which are defined in
the feature collection schema are subelements of the abstract elements defined in the utils
schema. A root element is defined in this schema, it also define a encapsulating element,
that surround external integrated features. Integrated features are based on schemas that
are extracted from the utils schema. In this context such a schema is called a sub schema.
Lazy integration support a lot of sub schemas, and each sub schema defines a natural map
layer. The map layers are logical belonging features, for instance coastlines or roads. A sub
schema includes external schemas to support other syntactical structures. To integrate a
new syntactical structure into the lazy system, the structure has to be added to the correct
sub schema/map layer. A new sub schema has to be derived from the utils schema and
included by the request schema. Each sub schema can be expanded with new external
schemas to fit future needs. With these possibilities the lazy integration approach is a ex-
tensible system. Figure 2.5 is a simple illustration of how the lazy integration is used. The
GML instance document is based on the lazy integration schemas, the lazy integration use
several external schemas to support different syntactical structures. In figure 2.6 the inter-
nal structure of the lazy integration approach is described. The Request, FeatureCollection
and utils schemas are the core schemas.

2.3.1 Geometrical Integration

In the process of integrating several data sets, the geometrical integration deals with the
merging and integration of geometrical features and segments. A geometrical feature is a
visual illustration of a real world environmental object. A geometrical feature can consist of
points and line segments. The process of performing a geometrical integration can involve
modifications of features. For instance some line segments in a feature can be replaced by
new line segments, provided by the new data set.

2.3.2 Semantic Integration

Semantical information is information about information, also called metadata. In this
setting semantic information is metadata about geometrical information. Metadata describe
relevant information about a geometrical feature. Such information can for instance be that
a line segment is a road, for example a highway. Another example can be a line segment that
defines part of a coastline, without semantical information is it impossible to know what

14

Figure 2.5: The GML instance document use the lazy integration schemas. The lazy inte-
gration refer to external schemas.

kind of real world phenomenon a geometrical feature represents. Identification of a real
world phenomenon is called classification, and is one of the major problems with semantical
information. For example a bridge is classified as an obstacle in nautical charts. Still in a
road map a bridge will be classified as a bridge or a road. These problems result in an area
with lots of ambiguity. The problem of semantical integration [30] is thoroughly described
in a master thesis by Bjørn H̊akon Horpestad.

2.3.3 Syntactical Integration

Syntactical integration is the process of merging the structural build up of different data
sets. The syntax that defines a geometrical feature is usually built up in a certain way.
Trouble arises when data sets built on different rules shall be merged together. Since they
have different syntactical structure, is it troublesome to merge the files without modifying
the syntactical structure of the integrated data. There are several ways to solve this; one
of the approaches is used in this thesis, and is called lazy integration.

2.4 Data Sets

New York City is one of the biggest and most renowned cities in the world. The interest
of this city come from the fact that it contains many features typical for a city, like roads,
airports, industry and power grids. The geographical placement of the city adds interesting
features like islands, rivers and coastlines. The third and most important reason is that

15

Figure 2.6: The lazy integration structure consists of the core schemas, Request, FeatureC-
ollection and utils. The River and Coastline schema is XML schemas that are subclasses
of the utils schema. The sub schemas import external schemas that is needed to represent
different GML structures.

16

there are much data available about the city. VMAP0 (Vector Smart Map Level 0) [11]
covers the whole world and provides data everywhere, whereas VMAP1 (Vector Smart Map
Level 1) [8] and DNC (Digital Nautical Chart) [12] have available data for certain areas.
New York City is one of the places covered by all three data sets. All data sets are based
on the Vector Product Format (VPF) [20].

2.4.1 VMAP0 Data

VMAP0 is an updated and improved version of the Digital Chart of the World [32]. It
provides worldwide coverage of vector-based geospatial data. VMAP0 includes major road
and rail networks, hydrologic drainage systems, utility networks, major airports, elevation
contours, coastlines, international boundaries and populated places. The data in VMAP0
is derived from either Operational Navigation Chart (ONC) [10] or Jet Navigation Chart
(JTC) [13]. The ONC have a horizontal accuracy of 2040 meters, and the JTC have a
horizontal accuracy of 4270 meters. The vertical accuracy on contours are +- 152.4 meters
and +- 30 meters on spot elevations.

2.4.2 VMAP1 Data

VMAP1 is divided into 234 geographic zones. At the present time only 55 selected areas
are available. The rest of these zones are classified as confidential by the U.S department of
defence. VMAP1 is structural similar to VMAP0, and contains all the standard topographic
vector data types familiar to GIS users. The VMAP1 data content includes 10 thematic
layers, boundaries, coastlines, road, rail and hydrography to mention a few. VMAP1 ac-
curacy can be divided into horizontal and vertical accuracy. VMAP1 product resolution is
based on 1:250000 map scale and the data are also divided into four different classes.

2.4.3 DNC data

The Digital Nautical Chart (DNC) [12] is a vector based product designed to provide an
up-to-date seamless database of the world. It is produced in the standard VPF [20]. The
features are thematically organized into 12 layers or coverages including: Cultural land-
marks, Earth Cover, Environmental, Hydrography, Inland Waterways, Land Cover, Limits,
Aids to Navigation, Obstructions, Port Facilities, Relief and Data Quality. The main focus
of DNC is on coastline, harbour and near coastline/harbour related information. DNC data
has consists of 4 types of data sets, each set having different accuracy. These four data sets
are Harbour, Approach, Coastal and General. The Harbour data set is most accurate, and
the General data set is least accurate. It is worthwhile to note that the DNC Coastal data
set is less accurate than the VMAP1 data set. In this paper we will use DNC Harbour and
Approach data.

17

Chapter 3

Related work

This chapter gives a brief survey of some of the similar projects and software packages
available.

3.1 JCS Conflation Suite

JCS Conflation Suite [14] from Vivid Solutions is an open source package developed with
the Java [27] programming language. The main purpose of the JCS Conflation Suite is to
offer a set of geo-spatial conflation operations. These operations include pre-processing of
data sets and conflation operations.

The pre-processes of data sets are meant to prepare the data sets for the actual conflation
process. If errors occur in the data sets they will affect the result of the conflation process.
It is therefore essential to remove all possible errors from the data sets. The JCS Conflation
Suite has several methods which prepare a data set for conflation. These methods are called
Coverage Cleaning and detect and remove overlaps and gaps automatically.

The two main operations in the JCS Conflation Suite are the boundary alignment and
coverage alignment. The boundary alignment method aligns the edge vertices in neighbour
tiles with each other. JCS support the boundary alignment method on closed geometries
such as polygons and rectangles. The coverage alignment method aligns vertices in data
sets which are overlapping each other.

The JCS Conflation Suite includes several other modules, the road matching module;
it detects differences in two versions of a road network. This includes attribute transfer,
missing sections of a road can be added from one network to another. The precision reduc-
tion module reduces the precision of the coordinates in a data set. This can be done either
by reducing the number of decimal places or by a given factor. The geometry difference
detection module finds differences between two different data sets. The module includes
two ways of determining differences, exact matching and matching with tolerance. Exact
matching requires that the matches are identical, matching with tolerance give a specified
tolerance buffer to each vertices. If vertexes from both data sets are within each others
buffer zone, they are seen as exact.

18

3.2 JTS Topology Suite

The JTS Topology Suite [21] is a Java [27] API implementation of the OpenGIS Simple
Features Specification(SFS) [39], and 2D operations. This means that the JTS Topology
Suite is an implementation of a spatial model, and is capable of representing geometrical
features. These geometrical features include the regular features like Points, MultiPoints,
LineStrings, LinearRings, MultiLineStrings, Polygons, MultiPolygons and GeometryCollec-
tions. The purpose of JTS Topology Suite is to provide an API used to develop applications
which support operations like integration, cleaning, validation and querying of data sets.
The 2D spatial operations implementation use binary predicates to compare geometries for
overlaps and gaps. The analysis methods include operations like intersection, union and
difference. JTS Topology Suite use the Well-Known Text(WKT) file format which is defined
in the OpenGIS Simple Features Specification.

This is a powerful package which in cooperation with other applications and/or APIs
can be the source of very solid and reliable software. As an example of this the JUMP [22]
package, JUMP is built up with the JTS Topology Suite as a foundation package. JUMP
is described further in section 3.3.

3.3 JUMP Unified Mapping Platform

JUMP is a workbench to view and manipulate geo-spatial data. JUMP is a collaboration
project between Vivid Solutions [9], Refraction Research [6] and British Colombia Ministry
of Sustainable Resource Management [1] in Canada. JUMP support both standards such
as ESRI’s shape format [26] and GML [18] from the Open Geospatial Consortium [3]. The
JUMP workbench can create, edit and store geometric data on layer level and in project files.
JUMP allows multiple layers, transparency, labelling, geometry collections and colouring of
geometry and several other viewing options. JUMP is free, open source and developed with
Java [27]. JUMP is composed of three main modules:

• The JUMP Unified Mapping Platform [22] is the framework of the system. This
includes the user interface, the JUMP API and the basic structure of the system as
Input/output operations and some of the spatial operations.

• The JTS Topology Suite [21] is an OGC [3] complaint 2D manipulating API of spatial
data. The JTS [21] is developed by Vivid Solutions [9].

• The JCS Conflation Suite [14] is a conflation API, this conflation suite handle both
horizontal and vertical conflation as well as internal conflation. JCS is also devel-
oped by Vivid Solutions. See section 3.1 for a more detailed description of the JCS
Conflation Suite.

Figure 3.3 show a screenshot of the JUMP workbench. JUMP is plug-in based; this
means that third party developers can contribute with new modules/plug-ins which manages
different kind of geometric operations.

19

Figure 3.1: JUMP screen shot.

20

3.4 Open JUMP

The original JUMP [22] project was started by Vivid Solutions [9] and funded by several
other sponsors. Shortly after the first version, the JUMP platform grew to be a popular
GIS application. However, after a while the funding of the project stopped and Vivid
Solutions [9] lowered the activity on the project. At this point the platform was widely used
by world wide GIS communities, and seen as one of the best free GIS software platforms.
One of the main reasons the JUMP [22] platform grew so popular was the easiness of
creating plug-ins, and lots of plug-ins had been created by users of the platform. Two main
co-projects were already working with plug-ins and further development of JUMP [22],
the JUMP Pilot Project [2] and Project SIGLE [5]. These co-projects coordinated and
encouraged the effort of volunteer development of JUMP [22]. These two co-projects formed
the OpenJUMP [4] committee, which oversees the direction of a new JUMP core. The core is
built up by the already existing JUMP core with improvements developed by the volunteer
development community. The OpenJUMP [4] aims to provide a common platform for
development efforts, and will help the developer community to avoid compatibility problems
and avoid duplicate development of plug-ins. At the time of writing OpenJUMP [4] version
0.1 has been released, which is the first version of OpenJUMP [4] released so far.

3.5 Automatically Annotating and Integrating Spatial Datasets

This article [16] was written at the University of Southern California. It describes an
information integration approach to conflate and annotate online geospatial data. They
have developed an application which integrates satellite images from Microsoft Terraservice
with street information from U.S. Census TIGER/line files, and building information from
the web. This is used to identify buildings on satellite images. This application is able
to perform an automatically conflation process which identifies roads in satellite images,
with a certain error rate. The integration process uses what they call control points, these
points are corresponding points in both data sets. These points are used as reference for
the alignment of all other points that have to be aligned. The control points can be found
using Microsoft Terraservice Landmark Service software, or by analyzing satellite images
using vector data. The control point pairs have latitude and longitude values as geospatial
reference. These control point pairs are analyzed and erroneous pairs are removed. A
method called vector median filter is used to filter out insignificant points. Both the control
point pairing and the vector median filter are performed on both data sets. When this is
done the conflation process begins, which starts with the alignment of the control point
pairs. The alignment of other features are done by performing a delaunay triangulation and
piecewise linear rubber sheeting to determine appropriate transformations.

21

3.6 Integration of Heterogeneous GML Sources

The paper is written by Gunnar Misund and Harald V̊alerhaugen and focus on the integra-
tion of heterogeneous GML [17] sources. The integration of heterogeneous GML has two
main focuses, applications which work with heterogeneous GML and storage systems which
can store heterogeneous GML files. The main focuses in the paper are cascading GML
analysis, lazy integration and a generic GML browser.

The goal of a cascading GML analysis is to partially automate the creation of templates
which are used to load GML files into an application. It also solves the problem with
missing schemas or incongruity in a schema. There are developed four methods for retrieving
information on a GML instance document.

The first method is called schema analysis. The objective of a schema analysis is to find
out how the elements in the schema relate to each other. It also checks to see if the elements
are indirectly derived from a GML native type. An application that uses this method can
treat elements as their base type. The information collected from the schema analysis is
used to create a mapping file; the mapping file is a vocabulary of the schema.

A schema analysis may in some cases fail to create a complete mapping file, reasons
for that might be unreachable schemas or inconsistency in the schema. In such cases a
structural analysis can be used; a structural analysis analyzes the content of the GML
instance document based on the elements. To do this some structural rules provided by
GML 2.x should be used. The first rule says that the root element must be directly or
transitively descended from gml:AbstractFeatureCollectionType. The second rule is that
relations between classes should be represented through associations and properties.

If a schema is unavailable, incomplete or instance documents are not correctly in accor-
dance to the schema, the instance documents have to be parsed and analyzed based on their
structure. This is a process called manual analysis and might not always succeed. These
situations require human assistance.

The cascading process is a framework for combining the forces of several analyzing meth-
ods. It uses the methods mentioned above together, to form a powerful analysis tool. The
cascading process was built with Java [27] and used SAX [34] to parse instance documents.
The elements from the instance document are mapped into an internal tree-model.

Lazy integration has its origins from this paper; it describe a non-intrusive method to
integrate data from several sources. This method was used to integrate semantic information
on a feature. This semantic information was collected from several sources. Lazy integration
is described in more detail in chapter 2.

The last topic the paper discusses is a generic GML browser. The generic GML browser
was developed to test the Cascading process and the lazy integration approach. It trans-
forms GML into Scalable Vector Graphics (SVG) [25]; SVG is used to visualize the geometric
constructs and provides easy access to the non-geometric properties of the features.

22

3.7 Automated Conflation of Florida State Highway Data
with Larger Scale County Data

The paper [19] describe the use of ESEA’s Conflation System (ECS). ECS is an automated
conflation system, it reduces the effort of conflating vector maps. To describe the conflation
process they used data from Florida department of transportation; Florida state highway
data and larger scale county data to be more precise. The file type of these data were on
ESRI’s shapefile [26] format. The ECS perform a conflation on two coverages at a time. It
identifies one of the coverages as base coverage, which is of highest accuracy. A non-base
coverage is the other coverage which is of lesser accuracy than the base coverage. There is
not applied any changes or modifications on the base coverage. The non-base coverage is
transformed via rubber-sheeting to match the base geometry during the conflation process.
An ECS conflation process has three steps:

Node matching is used to create rubber-sheeting transformations and to match node
features. To perform a node match, distance, topology and attribute information are used.
A node match is only performed in a user specified distance of the coverages. When the node
matching is completed, the node pairs are used to bring the non-base coverage into better
alignment with the base coverage. This is done using a rubber-sheeting transformation.
When the automated node matching is finished, the user can add more node pairs or
remove node pairs, if it would be necessary.

Line matching is performed after the user verifies the node matching. The user defines
a distance from the line, and defines a region where the matches can be found. A path from
the other coverage is used to consider matches if it lies inside the user sat distance. A line
match process can also use attribute information to help the matching process.

The feature merging select the desired features and attributes from the non-base coverage
and includes them in the base coverage. The features which are merged in can be merged
together with already existing features, or inserted if there are no overlaps.

The ECS is not a hundred percent automated, and needs human assistance to perform
some of the decision making, still it reduces the amount of human interaction.

23

Chapter 4

Geometrical Integration

Geometrical integration is the process of integrating geometrical data together. The integra-
tion process can be feature based; it is a process where geometrical features from a data set
are integrated into another data set. Still the integration process do not have to be feature
based, integration of feature members can also be performed. Feature member integration
is the integration of elements which is part of a feature into another data set, and another
feature. A geometrical integration process does usually involve only two data sets at the
time. The main problem with this process is that integrated features and feature member
elements do not align without any modifications. This usually creates a non-coherent line
structure. Throughout this section the geometrical integration process is explored. During
the exploration the main problems with geometrical integration are defined, there are also
sketched some theoretical solutions to these problems.

4.1 Geometrical Integration Scenarios

The scenarios described in this section will be used to emphasize problems and solutions
later in this chapter, and the next chapter.

4.1.1 Area of Interest

The main focus in this paper will be on the New York area, but it is desirable to geographi-
cally define an area of interest. The tiles which are used in VMAP0, VMAP1 and DNC are
to large to be used directly as example data. It was therefore required that a self produced
tile was made; this tile has the coordinates, upper left X: -74.3, upper left Y: 41, lower left
X: -73.7 and lower left Y: 40.4. The tile is seen in figure 4.2, along with the harbour and
approach tiles. The original tiles are seen in figure 4.1.

4.1.2 East River, La Guardia Airport

The administration of La Guardia Airport has an ongoing project to secure the airport from
possible terror attacks. The project uses a GIS tool to illustrate and detect possible danger

24

VMAP1 Red
DNC Approach Blue
DNC Harbour Green

Figure 4.1: The different tile sizes in VMAP1, DNC Approach and DNC Harbour.

areas. Their original data sets are built up by VMAP0 [11] data and TIGER/line [28] data.
But the VMAP0 does not give enough detailed information on the coastlines of the area.
The coastline of La Guardia Airport is seen as a possible danger area to terror attacks, these
coastlines can be reached easily without anyone noticing. It is therefore crucial that the
coastline areas that are not secure are revealed. The administration is therefore updating
their map repository with VMAP1 [8] data of the area. The process of replacing geospatial
data run into two main problems, the line segments from VMAP0 and VMAP1 do not form
a coherent line structure. The second problem occurs after the geometrical integration,
when the syntactical data from VMAP1 should be integrated in the VMAP0 data set.
During the process information from VMAP1 is lost.

4.1.3 Jamaica Bay

The environmental project ”Save the World” is worrying about the coastlines of Jamaica
Bay. These coastlines have been known for its rich wildlife for decades. During the past
years the wildlife started to diminish. One of the main reasons for the wildlife diminishing
is the increase of the human population in the area. The area is a natural paradise and
therefore attracts a lot of people. The increase in human interference in the area, affect
the wildlife. This worries ”Save the World” and they have started to build up a map
repository to store geospatial information on the wildlife. Their original map repository
consist of VMAP0 [11] over the area. VMAP0 does not have enough accuracy so they will

25

Figure 4.2: The DNC harbour, DNC approach tile, and the tile over the area of interest
used in this thesis.

26

Figure 4.3: A overview of Jamaica Bay in VMAP1.

replace VMAP0 data with DNC [12]. When ”Save the World” starts the replacement of
data several problems arise. The two data sets do not form a coherent line structure after
the replacement of the data. There is also uncertainty in how these line segments should be
connected. Another problem is that they do not know if they did the syntactical integration
correct, it seems like the syntactical integration of the data sets caused loss of information.

4.2 Cleaning Data Sets

To ensure a correct geometrical integration process it is essential that the data sets which
are used in the process are represented correctly. This means that the data sets have to be
without any type of geometrical errors. If a geometrical integration process is performed
on a set of uncleaned data sets the result will most likely be faulty. There are three main
causes of geometrical errors in data sets, dangling edges, gaps and overlaps. Each of these
errors will be discussed in detail in this section.

4.2.1 Dangling Edges

Dangling edges are a common error type found in geometrical data sets; a dangling edge
is an erroneous gap in an otherwise coherent linestring. The challenge is to avoid these
dangling edges or reduce them to a minimum. A dangling edge can sometimes be mistaken
with the natural gap in the line segment of a linestring. Throughout this section on dangling
edges, obvious examples of dangling edges will be used. The dangling edge problem is not
present at the same degree in the VMAP1 and VMAP0 data as it is in DNC data.

27

Figure 4.4: A coastline with several dangling edges, the edge vertices are seen as red circles.

Solutions to Dangling Edges

There are several solutions to the dangling edge problem area, and the solutions we sketch
here are only two of them. Figure 4.4 show a coastline from the Harbour collection in DNC
data. This is the most precise coastline information DNC offer. To use this data further in
an integration process it is essential to remove these dangling edges before the integration
process.

Manual Removal of Dangling Edges This example of removing dangling edges is
theoretical, and will need human assistance if it is implemented. The first step in the
process of removing the dangling edges is to identify all edge vertices. In this setting, a
edge vertex can be both a start and a end vertex in a linestring. Figure 4.4 illustrate
this identification process. Every edge vertex is highlighted with a red circle. Step two is
to determine which vertices which are edge vertices. There are two reasons why a vertex
can be an edge vertex. Either it is supposed to be an edge vertex and is correctly an
edge vertex. The second reason is that the data set contains errors which have turned a
connected node into an edge vertex. The nodes in a linestring are highlighted with a yellow
circle in figure 4.5. These yellow nodes are marked because they might be used to connect
a dangling edge to the linestring. The red circles in figure 4.5 are edge vertices in the data
set. Step three is to connect the red vertices either with another red vertex or with one of
the yellow vertices which represent a node in a line string. Since this is a manual correction
of the edge vertices it is quite obvious that point p1 and point p2 in figure 4.5 should be
connected together. Point p3 and p4 should also be connected together. The result of this
process are displayed in figure 4.8, it show a connected network, with no dangling edges.

28

Figure 4.5: Red circle are edge vertices, green circles identify the buffer zone of the edge
vertices. The yellow vertices are nodes in line segments that is inside a buffer zone.

29

Removing Dangling Edges Using Conflation Internal conflation is a method devel-
oped to use conflation operations on a single dataset. Internal conflation was first introduced
by Vivid Solutions in the technical JCS Conflation Suite report [23]. Since internal con-
flation use usual conflation operations, the process in an internal conflation is the same as
any other conflation process. It must be emphasized that even with conflation operations
this process most likely have to be human assisted to some degree. The process might be
performed in iterations. Step one is to define a tolerance limit which define the buffer zone
around all edge vertices. In step two all edge vertices that have other vertices inside their
buffer zone are identified. An optional step three might be to check if the vertices that
should to be connected together have the same attribute values. This might prevent that
data of different categories are wrongly connected together. The next step is to connect the
edge vertex to the vertices in its buffer zone to each other, using a linestring, or by snapping
the vertices together to one vertex. Pseudo code of this would look a bit like this:

l im i t = to l e r anceL im i t ;
whi l e l im i t l e s s than maxTolerance l imit {

de te c t edge v e r t i c e s ;
add bu f f e r zone to edge v e r t i c e s ;
Check f o r i d e n t i c a l a t t r i bu t e in fo rmat ion ;
snap or add a l i n e s t r i n g between matching v e r t i c e s ;
i n c r e a s e the l im i t va lue

}

Figure 4.5 show the first iteration of this process. It shows a green buffer zone around
each edge vertex. The red circle is the edge vertex. The yellow circles mark all other vertices
inside the buffer zone of each edge vertex. In figure 4.5 the p2 point is in the buffer zone
of point p3 and vice versa, this is also the fact for p3 and p4. Using conflation methods
p1 and p2 are excluded from this iteration, p1 because it has no edge vertex in its buffer
zone. Point p2 is excluded on the basis of position; it faces away from point p3. Since p3
are in the buffer zone of p4 and p4 is in the buffer zone of p3 they are a match. Point p3
and p4 are connected through a new line segment in the linestring. Figure 4.6 show the
result of the first iteration, it create a line segment between point p3 and p4. Iteration two
is illustrated in figure 4.7. The green circles are the edge vertices, the red circles are the
edge vertices buffer zone and the yellow circles are all other vertices in the buffer zones. As
seen both point p1 and p2 are in each others buffer zone. Figure 4.8 show the result of this
process, line segments has been inserted and all dangling edges has been removed.

4.2.2 Gaps and Overlaps

Gaps and overlaps are problems that can occur in data set with coverages, polygons and
rectangles. If these problems had occurred when several data sets were merged together it
would have required a coverage alignment procedure to solve it. In this section gaps and
overlaps on single data set are discussed. Gaps are areas which are not covered by any
features. Occurrences of gaps are only seen in data set that contain coverages of polygons.
These gaps may be natural and correct, or they may be the result of a faulty data set.

30

Figure 4.6: The first gap has been removed, seen as the red line segment.

Overlaps can arise when several features cover some of the same areas. In some settings
overlaps can be a correct representation, but in most settings overlaps are undesirable and
should be removed. It is important to notice that both gaps and overlaps not always are
errors in the data set. It should be a hundred percent certainty that the data set is erroneous,
before any attempts to remove gaps and overlaps are performed.

To do a correction of gaps or overlaps it is crucial that the user has studied the data
set in detail. It can also be useful to check external sources of the data to form several
impressions of the data set.

Gaps will in most settings be natural, and should therefore not be removed. If a gap
is known as faulty and it is necessary to remove it, it should be done with focus on the
knowledge of the gap. The gap should be shared evenly by the adjacent coverages unless
the coverages are of different importance. If one of the coverages are of more importance
than the other and it has most of the adjacency of the gap, that coverage should be changed
and cover the gap.

Removing Overlaps should as mentioned also only be performed in certainty of its
incorrectness. If the overlapping coverages are of same importance they should remove the
overlap by evenly covering the overlap. The overlapping coverage should reduce its size on
the overlapping area. The coverage that is overlapped should reduce half of its size in the

31

Figure 4.7: The green circles are the edge vertices, red circles are the buffer zone and the
yellow circles are nodes in linestrings identified as nodes inside the buffer zones.

32

Figure 4.8: The red line is the line inserted in the first iteration, the blue line was inserted
in the second iteration.

33

Figure 4.9: The rectangle define the update window, the blue lines are features from
VMAP0, the green lines are features from VMAP1. The red circles are edge vertices in
the VMAP1 data set.

overlapping area. If one coverage has more importance than the other, this coverage should
cover the are that are overlapped, whether that coverage is overlapping or are overlapped.

4.3 Geometrical Integration Problems

This section deals with the problems which can arise during an integration process. After
the definition of a geometrical integration problem, one or several methods to solve these
problems are presented.

4.4 Boundary Alignment of Geometrical Features

The coastlines in the area of La Guardia airport in New York have large differences between
the VMAP0 and VMAP1 data sets. The map repository contain VMAP0 data and it is
desirable to update this area with more precise information such as VMAP1 data. Figure 4.9
show the differences between VMAP0 and VMAP1 data. The blue lines are VMAP0 data
and the green lines are VMAP1 data. The black rectangle mark the area of update, the
red circles are the edge vertices in VMAP1. All VMAP0 information will be replaced with
VMAP1 data inside the update rectangle.

In figure 4.10 the geometrical integration process on the left side of the update rectangle
are dealt with. Figure 4.11 show the geometrical integration process on the right hand side.
The blue circles are buffer zones to each of the edge vertices in VMAP1 data. Initially all
the edge vertices had a small buffer zone, but if no node or vertex from VMAP0 data are

34

Figure 4.10: The integration process on the left side. It moves the edge vertices from
VMAP0 to coincide with the edge vertices in VMAP1.

found inside the buffer zone, the buffer zone size increases. The initial size and the max
size of the buffer zone are predefined by the user. This goes also for the increase size of the
buffer zone on each iteration. When a node or vertex are found in a buffer zone it create
a new vertex in VMAP0 data set, at the exact position of the edge vertex in the VMAP1
data set. This new vertex are connected to the node/vertex that were found in buffer zone.
This is seen as yellow lines and circles in figure 4.10 and figure 4.11. This create a graphical
continuous coastline in the merging point of VMAP0 and VMAP1.

The result of this geometrical integration process are seen in figure 4.12. The buffer
zones and edge vertices are removed an the result is a continuous coastline.

4.4.1 Indecisive Integration

Indecisive integration is a problem state that complicate a regular integration process. The
common criterion for these problem statements is that they have several possible ways
to carry out the integration process. The integration process has no possibility to know
which of the outcome give a correct result. This lead to a maximum fifty percent chance
of correctness, and this percentage might be far less than this. Because of this high error
percentage it is not sensible to develop a integration method without human interaction. If
the problem is easy it is enough that one person monitor and correct the conflation process.
If the problem is cumbersome a peer-review process might be suitable. The area of Jamaica
Bay on Long Island have several instances which might cause a troublesome integration
process. Figure 4.13 show the area of Jamaica Bay with VMAP0(blue) and VMAP1(green)
data.

35

Figure 4.11: The integration process on the right side. It moves the edge vertices from
VMAP0 to coincide with the edge vertices in VMAP1.

Figure 4.12: The result of the integration process, a continuous coastline.

36

Figure 4.13: Jamaica Bay, VMAP0 is seen as blue lines and VMAP1 is seen as green lines.

Indecisive Merging

One of the problems found in the Jamaica Bay scenario is the indecisive merging problem.
This problem arise when a edge vertex find several possible nodes and line segments in its
buffer zone. In such a instance it is not possible for a computer based system to determine
which of the nodes the edge vertex should connect to. It could in fact just pick the node
closest to the edge vertex. The chance of that node being the correct one is more or less
fifty percent, depending on how many nodes found in the buffer zone. An example of this
problem is found in the Jamaica Bay area, this is seen in figure 4.14 in the area of interest
box. Figure 4.14 show the border of the update window and the edge vertices in the new
data set. Two of the edge vertices have two different nodes from two different line segments
in its buffer zone. It might seem logical to connect to the node that is closest, however in
many instances this will prove to be wrong, that include the example in figure 4.15. In our
scenario it is quite obvious how these edge vertices should be connected to nodes in the line
segments. The upper edge vertex should be connected to the line above and the edge vertex
in the middle should also be connected to the line above. Figure 4.16 show the result of
this conflation process. Without topological information it will be impossible to automate
this process and it will require some human interaction.

The Island Problem

The island problem occurs in the integration process where data sets of different resolution
are used. In the data set with high resolution a feature can be defined as an island, in the
low resolution data set this island does not exists, but is seen as a peninsula. The problem
does not occur in the integration of complete features, but in the integration of line segments
from a feature. It can be required to transfer only some line segments from a feature into

37

Figure 4.14: The area of interest are zoomed in, the red line is the border of the update
window, and the red circles are the edge vertices.

Figure 4.15: Each edge vertex has its own buffer zone(blue circle). Nodes in the line
segments from the data repository seen as yellow circles. Notice that two of the edge
vertices has two nodes in their bufferzones.

38

Figure 4.16: The result of a correct integration process.

the target integration data set. The setting creates uncertainty of how these line segments
should be handled. It is impossible to know if the new data set contains an island or a
peninsula which should be connected to the already existing data set. There are several
ways to solve this problem but it requires human interaction, and a possible peer-review
process. This peer-review process is needed because the solution might be ambiguous. This
problem arises when it unknown if new data should be integrated as an island or connected
to the existing data. Jamaica Bay has lots of islands and there are quite large aberration
between VMAP1 data and DNC Harbour data in this area. When updating small areas in
second scenario this problem is common. One of these occurrences is seen in figure 4.17,
the blue line are VMAP1 data and the red lines are DNC Harbour data. Figure 4.17 show
the edge vertices in the DNC dataset.

The Regular Integration Method If a regular geometrical integration process is car-
ried out on this kind of problem it will most likely succeed but it will produce a possible
erroneous result. If the result is correct or erroneous depends on the new data set which
should be integrated. If we use the example in figure 4.17 to do a straight forward conflation
process the result will be incorrect. As seen in figure 4.18 the usual buffer zones are applied
to all edge vertices, and matching nodes in the existing line segment are found. The next
step in the integration process will be to connect the old and new data set together, this is
seen in figure 4.19. This result is incorrect, it create in this setting a coastline with an island
inside the coastline. As mentioned above the correctness of the use of regular conflation on
these problem instances will in many settings produce a positive result.

The Peninsula Method A more secure way to integrate this type of data is to merge
a few of the edge vertices and connect the rest of the edge vertices with each other. It is

39

Figure 4.17: The lines inside the update window the new feature member lines which should
be integrated to the existing data set (DNC Harbour). The blue lines are line segments
from the original data set (VMAP1).

Figure 4.18: This figure use the regular integration method. All edge vertices use their
buffer zones to find nodes in the original line segments, and create a line segment between
the edge vertex and the nodes.

40

Figure 4.19: The result of a regular integration processes. This create a faulty result, with
a island inside the coastline.

still no guarantee that this will create a correct result. Figure 4.20 show the first of three
examples using this method of integration. Figure 4.20 merge the two edge vertices to the
left with the nodes found in the buffer zone. The two edge vertices that are to the right
are connected to each other. This procedure create a peninsula of the new data, connected
to the VMAP1 data set, this is seen in figure 4.21. The result of this is correct and will be
seen as a sensible way to integrate the DNC data. The next example in figure 4.22 combine
the edge vertices in the middle with nodes found in the buffer zone. The second edge vertex
is also connected to the edge vertex to its left and the third edge vertex is connected to the
edge vertex to its right. This is an incorrect conflation this create a coastline but it has an
undefined line segment connected to it, the result make no sense. The result of that process
is seen in figure 4.23.

The third way of integration is to connect the two edge vertices to the right to the nodes
found in their buffer zone, seen in figure 4.24. The edge vertices to the left are connected
to each other and the result are as in the first example a peninsula, figure 4.25. This is
actually the same method used as the one in the first example but it uses the edge nodes
to the right and not to the left.

The Island Method The final solution and most likely the most secure way to solve
this problem is to do a internal integration. With this approach the edge vertices in the
integrated line segments are connected to each other, as seen in figure 4.26. This will create
a correct line structure since no modifications are done to the existing data set. The result
of this approach always creates a island, of the integrated line segments.

41

Figure 4.20: The use of the peninsula method using the two edge vertices on the left, and
connecting the edge vertices on the right to each other.

Figure 4.21: The result of a left side peninsula integration This give a correct result.

42

Figure 4.22: The use of a center peninsula method, connect the edge vertices in the center
to the VMAP1 line segment.

Figure 4.23: The result of a center peninsula method, this is a incorrect result.

43

Figure 4.24: The use of a right side peninsula integration, connect the edge vertices to the
right to the line segment.

Figure 4.25: The result of a right hand peninsula integration, this give a correct result.

44

Figure 4.26: The result of a island method, this do not interfere with the existing data set.
It use a dangling edge process on the new data set and create a island of the line segments
in the new data set.

4.4.2 Integration of Closed Geometries

A closed geometry is geometry with no edge vertices, also known as a face. An example of
this is an island or a reef. The problem occurs when the integration of a new face intersects
or touches existing line segments. The new data are more accurate than existing data in the
repository, and is the main cause of the intersection. But there can be other factors that
cause this situation. These factors can be differences of the datum [35] or projection [7]
of the data sets. This will create errors in the repository and can not be accepted. This
problem is illustrated in figure 4.27. There are no edge vertices in the new data set, it is
also presumed that the new data set has higher quality than the existing data set so to
manipulate the new data set is not an option.

To solve this problem one has to consider the existing data set and the update window
that holds the new geometry. Since the new data set should not be touched, we will find the
nodes in the existing dataset closest to the update window. When these nodes are found
one or two of the corners of the update windows are found. If one or two corners should
be used depends on the positioning of the line segments node close to the update window.
When these nodes and corners are found, it connects the nodes to the corners and changes
the direction of the line segment. Figure 4.28 show the update window with highlighted
nodes in yellow and window corners as blue circles. In figure 4.29 the new lines are marked
in blue, notice that the line follow the edge of the update window. The result of this process
is seen in figure 4.30. The old coastline that intersected with the new data set is replaced
with parts of the update window border.

This will in many settings give a positive result, but some precautions have to be made.
In some instances the feature in the update window will lie adjacent to the border of the
update window. In such an instance a extension to the method is needed. It needs a margin
on the outside of the update window. This margin does not need to be large, just big enough

45

Figure 4.27: The large island is VMAP1 data and the small island is DNC Harbour data.
The DNC island intersect the VMAP1 island.

Figure 4.28: Finding the nodes that cross the update window, seen as yellow circles. The
corner of the update window is highlighted as a blue circle.

46

Figure 4.29: When the nodes are found it connect the nodes along the border of the update
window.

Figure 4.30: The result of the face integration process, notice that the new data have not
been touched.

47

Figure 4.31: The update window use a margin to create a gap between the line segments
in the new and old data set.

to separate the new feature from the existing feature. The use of margin around the update
window is illustrated in figure 4.31. The line segments that are found near the border of
the update window will be moved to the margin of the update window. The new direction
of the line segment follow this margin, see figure 4.32. This will result in a integration of
the new data set, with a guaranteed gap between the line segments in the old data set and
new data set. Figure 4.33 show how the result of the use of margins.

4.5 The Geometrical Integration Process

A geometrical integration process are a complex procedure, where many special problems
can arise. These problems can be simple or they can be very complex. The complex
problems will in most settings require human interaction, and are not possible to solve
automatically by a computer. As seen earlier in the problems described the La Guardia
airport scenario illustrates a rather simple problem, and the Jamaica Bay scenario illustrates
a difficult problem. To highlight these scenarios the JUMP [22] platform has been used to
perform these geometrical integration processes. It is the JUMP 1.2 alpha version that has
been used in these examples. Earlier versions of JUMP [22] do not have the splitting of line
segments tool and can therefore not be used for this purpose.

The examples and processes used in this section only represent the first iteration in a
peer-review process. It will describe the actual integration of new data, and which steps
are taken to integrate it in the existing repository. Further in this the peer-review process

48

Figure 4.32: When a margin is used the intersection point of the update window and the
line segment from the existing dataset is moved to the border of the margin.

Figure 4.33: The result of use of margin guarantee gap between the line segments in old
and new data set.

49

the correctness and acceptance of the data would be in focus.

4.5.1 Geometrical Integration With JUMP

This section will deal with the manual geometrical integration process on the scenarios in
section 4.1.

La Guardia Airport Scenario

The first scenario in section 4.1 describe the coastal area of La Guardia airport. The
VMAP1 data is of highest accuracy and should not be modified, the VMAP0 data can and
will be modified to match the edges vertices in the VMAP1 data set. It is now time to
do the actual geometrical integration on the area. When both data sets are loaded into
JUMP [22] as layers, they have to be set as editable layers. Editable layers means that it is
possible to do changes on the layers. The next step is to define the area of replacement, the
area where VMAP0 data should be replaced with VMAP1 data. This is done by drawing
a fence, this fence is seen in figure 4.34 as the blue rectangle. This figure 4.34 also show
VMAP0 data as green lines and VMAP1 data as red lines. Now the geometrical integration
area is determined and it is time to retrieve the line segments in VMAP1 that lie inside
the fence. To do this, the VMAP0 layer has to be disabled; when it is disabled it is not
visible. Then by right clicking inside the fence and choose the ”select features in fence” all
vertices inside the fence are chosen. This method also selects some vertices that lie outside
the fence, but these will be removed later. When the vertices are selected, it is time to
right click again and chose ”copy selected items”. Then create a new layer and paste the
copied vertices in the new layer. At this point we have no more use of the VMAP1 layer, so
it is deselected/not visible. In the new layer that were created the line segments that are
crossing the border of the fence are removed, and the edge vertices are positioned exactly
on the border of the fence, see figure 4.35. Now the new data from VMAP1 are ready
to be integrated in the VMAP0 data set, but before that the VMAP0 data set has to be
prepared for the integration. This requires that only the VMAP0 data set and the fence
is visible/selected. The line segments inside the fence are highlighted and divided from the
continuous line segment using the line splitting tool. The line segments inside the fence
are deleted, and the edge vertices in the outside border of the fence are aligned exactly to
the border. The result of this is seen on figure 4.36. At this point it is time to merge the
VMAP0 layer with the selection of the VMAP1 layer. This is done by copying all features
in the new layer that were created earlier in the process, and pasting them into the VMAP0
layer as seen in figure 4.37. Nevertheless this does not complete the geometrical integration
process. As seen in figure 4.37 the line segments from VMAP1 does not align with the line
segments in the VMAP0 layer. The next step aligns the edge vertices in VMAP0 layer with
the VMAP1 edge vertices. To do this the ”move vertex” tool are used, and the edge vertices
in the VMAP0 layer are moved to align with the vertices in VMAP1. See figure 4.38. The
next step is to save the VMAP0 layer as a new data set, the finished result of this new data
set is seen in figure 4.39.

50

Figure 4.34: The first step in the integration process with the use of the JUMP workbench.
The Fence seen as the blue rectangle. VMAP0 data as green lines and VMAP1 data as red
lines.

51

Figure 4.35: The second step in the integration process. The selection of VMAP1 data
inside the fence.

52

Figure 4.36: The third step of the integration process. The result of removal of VMAP0
data inside the fence/integration area.

53

Figure 4.37: The fourth step of the integration process. VMAP1 data is integrated with
the VMAP0 data, edge vertices are not aligned.

Figure 4.38: The fifth step of the integration process. VMAP1 data integrated with the
VMAP0 data, edge vertices are aligned.

54

Figure 4.39: The finished result of the integration process using JUMP.

Jamaica Bay Scenario

In the second scenario described in section 4.1 the area of Jamaica Bay is described. In
difference to the La Guardia airport scenario one the data set are over this area are built
up by VMAP1 data, and should be updated with DNC data. The geometrical integration
process will performed in the same way as the first scenario was, this scenario will therefore
not be described as accurate as the first scenario. Step one in the process are to load both
data set into JUMP and make them editable. Next step is to draw a fence that defines the
update area. The DNC data in that area will be extracted and temporary stored in another
layer. The original DNC data set is no longer needed and is removed. Features and line
segments from the VMAP1 data set that are in the update area are removed, as seen in
figure 4.41. The DNC data are now copied from the temporary layer and into the VMAP1
layer. The edge vertices in the VMAP1 data set are aligned with the edge vertices from the
DNC data set. The result of this process are seen in figure 4.44 and figure 4.45.

55

Figure 4.40: The first step of the integration process in the Jamaica Bay area. Data from
both VMAP1 and DNC are visible, the blue rectangle define the fence/update window.

56

Figure 4.41: The second step of the integration process of Jamaica Bay. The DNC data in
the update area are extracted from the original data set.

57

Figure 4.42: The third step of the integration process of Jamaica Bay. Features and line
segments in the VMAP1 data set that are in the update window are removed.

Figure 4.43: The fourth step of the integration process of the Jamaica Bay. DNC data are
only inside the update window and VMAP1 data are only on the outside of the update
window.

58

Figure 4.44: The fifth step of the integration of Jamaica Bay. DNC and VMAP1 data are
aligned.

Figure 4.45: The result of the integration process of Jamaica Bay. The line segments are
aligned and the integration process are finished.

59

Chapter 5

Syntactical Integration

In section 4 the introduction to geometrical integration was described, in this section syn-
tactical integration will be discussed with regards to the geometrical integration. Semantic
integration [38] will not be discussed here. Syntactical integration is the process of merging
several geometrical data sets into one file without any loss of information. The main focus
will lie on the process of integrating several data sets into one GML [17] file.

The process of doing a geometrical integration process and a syntactical integration
process create some contradicting conflicts. The geometrical integration process will merge
and align geo-spatial data together, and that is what desirable from that process. In the
syntactical integration process the purpose of merging the two geometrical data sets together
without loss of information from either of the data sets. A pure geometrical integration
process result in aligned data sets, it take no considerations to the syntactical merging
process. The geometrical integrated data sets are still saved in separate files, however,
this is not desirable. The geometrical integration process can merge the two data sets
together, but that create a loss of information. The geometrical integration process do
not allow integration of attribute information and other important information as original
data, integration date and creator. These are all relevant and very important information
that should accompany the geometrical features. If that information is not accounted for,
the file would go corrupt after a couple of geometrical integration processes. The term
corrupt in this context means that the geometrical information stored in the file would
be uncertain. It is impossible to know which geometrical features that have the highest
resolution or relevance. This may cause the user of the file to do a geometrical integration
process that replace geometrical features of high quality with features of lower quality. This
is the main reason of the high relevance of a proper integration process. Still there is
one problem that also have to be mentioned. It can be problematic to do the syntactical
merging of the geometrical integrated files as a step outside the geometrical integration
process. This problem occur if a if the syntactical integration process is performed outside
a GIS workbench, with a supporting coordinate system. In such a case the geometrical
features coordinates are uncertain. These problems might create erroneous data sets, with
noncontinuous line segments in the merging point of the two data sets.

Throughout this chapter some of the problems and with syntactical integration are

60

highlighted. Further on a meta data model is described, this model is essential to a successful
geometrical integration process. The last a geometrical integration method is sketched, this
method is known as the lazy integration process [38].

5.1 The Multi Source Polygon Problem

The representation of polygons in GML [17] use the Polygon tag. A polygon have an outer
and inner boundary, these boundaries can not cross each other. The coordinates in these
boundaries use the tag LinearRing, this tag is a container for coordinates. A characteristic
for a linear ring is that the last coordinate have to coincide with the first coordinate in the
linear ring.

The core of the polygon problem is that a linear ring can only consist of one set of
coordinates. This complicates the conflation process in instances where polygons should be
built up by data from various data sets. This complications occur when you have two sets
of coordinates, one from the original data set and one from the data set that should be
integrated.

The Use of Multi Line Strings to Represent Polygons

The simplest and most straight forward way to solve this problem is to reject the use of
the polygon tag and use a multi linestring to represent the polygon. JUMP [22] use this
method to represent polygons that have linestrings from various data sources. However
this method do not guarantee that the polygon is closed, multi linestrings do not require
a closed geometry. If by some reason a error occur this would leave the polygon open and
still validate the result as correct. An example of the use of multi linestrings are seen in
figure 5.1. As seen the first coordinate in the first linestring is identical to the last coordinate
in the last linestring.

<gml : Mult iL ineStr ing>
<l ineStringMember>

<LineStr ing>
<coord inate s >0 .0 ,0 .0 2 . 0 , 0 . 1 2.1 ,1 .22 </ coord inate s>

</LineStr ing>
</lineStringMember>
<l ineStringMember>

<LineStr ing>
<coord inate s >2 .1 ,1 .22 3.0 ,0 .345 </ coord inate s>

</LineStr ing>
</lineStringMember>
<l ineStringMember>

<LineStr ing>
<coord inate s >3.0 ,0 .345 0.0 ,0 .0 </ coord inate s>

</LineStr ing>
</lineStringMember>

</gml : Mult iL ineStr ing>

61

Multi Source Polygons Based on a Defined XML Schema

Another way to solve the problem is to develop and use a XML [15] schema customized for
this problem. This require an own XML schema [31], and might not be the optimal way
to do this, but it ensure that a valid GML file contains closed polygons. The result of this
approach are seen below. The XML schema for figure 5.1 is seen in figure 5.1. The polygon
XML schema are based on the GML [17] standard and the Dublin Core [29] standard. The
core of the new XML schema is that it allows gml:coord elements to lie inside a defined
element called Dataset. Using this method the polygon can be built up by coordinates
from various data sets. The Dublin Core are used to tag information on the geometrical
features. Both original features and integrated features. This method guarantee that the
first and last coordinate are equals, in difference to the method mentioned in section 5.1.
The drawback with this method is clearly that it require a own XML schema to be accepted
as valid XML.

<gml : Polygon>
<outerBoundaryIs>

<LinearRing>
<Dataset>

<dc : coverage>DNC Harbour 177960</dc : coverage>
<gml : coord>

<gml :X>0.0</gml :X><gml :Y>0.0</gml :Y>
</gml : coord>
<gml : coord>

<gml :X>0.2323</gml :X><gml :Y>0.97</gml :Y>
</gml : coord>

</Dataset>
<Dataset>

<dc : coverage>Vmap0</dc : coverage>
<gml : coord>

<gml :X>0.2323</gml :X><gml :Y>0.97</gml :Y>
</gml : coord>
<gml : coord>

<gml :X>1.0</gml :X><gml :Y>1.024233</gml :Y>
</gml : coord>

</Dataset>
<Dataset>

<dc : coverage>Vmap1 NY</dc : coverage>
<gml : coord>

<gml :X>1.0</gml :X><gml :Y>1.024233</gml :Y>
</gml : coord>
<gml : coord>

<gml :X>0.0</gml :X><gml :Y>0.0</gml :Y>
</gml : coord>

</Dataset>
</LinearRing>

</outerBoundaryIs>
</gml : Polygon>

62

<?xml ve r s i on =”1.0” encoding=”UTF−8”?> <xs : schema
xmlns=”no : h i o f : onemap : appschema : polygonschema”
xmlns : xs=”http ://www.w3 . org /2001/XMLSchema”
xmlns : dc=”http :// pur l . org /dc/ e lements /1 .1/”
xmlns : gml=”http ://www. openg i s . net /gml”
xmlns : x l i nk=”http ://www.w3 . org /1999/ x l i nk ”
targetNamespace=”no : h i o f : onemap : appschema : polygonschema”
elementFormDefault=”q u a l i f i e d ” attr ibuteFormDefaul t=”unqua l i f i e d”>

<xs : import namespace=”http ://www. openg i s . net /gml”
schemaLocation=”f e a tu r e . xsd”/>

<xs : import namespace=”http ://www. openg i s . net /gml”
schemaLocation=”geometry . xsd”/>

<xs : import namespace=”http :// pur l . org /dc/ e lements /1 .1/”
schemaLocation=”simpledc20021212 . xsd”/>

<xs : element name=”Featu r eCo l l e c t i on ” type=”FeatureCol lect ionType”/>
<xs : element name=”Feature ” type=”FeatureType”

subst i tut ionGroup=”gml : Feature”/>

<xs : complexType name=”FeatureCol lect ionType”>
<xs : complexContent>

<xs : ex t ens i on base=”gml : AbstractFeatureCol l ect ionType”/>
</xs : complexContent>

</xs : complexType>

<xs : complexType name=”FeatureType”>
<xs : complexContent>

<xs : ex t ens i on base=”gml : AbstractFeatureType”>
<xs : sequence>

<xs : cho ice>
<xs : element r e f=”gml : Polygon”>

<xs : complexType>
<xs : sequence>

<xs : element name=”Dataset”>
<xs : complexType>

<xs : sequence>
<xs : element r e f=”gml : outerBoundaryIs”>

<xs : complexType>
<xs : sequence>

<xs : element r e f=”dc : coverage”/>
<xs : element r e f=”gml : coord”>

<xs : complexType>
<xs : sequence>

<xs : element r e f=”gml : coord”>

63

<xs : complexType>
<xs : sequence>

<xs : element r e f=”gml :X”/>
<xs : element r e f=”gml :Y”/>

</xs : sequence>
</xs : complexType>

</xs : element>
</xs : sequence>

</xs : complexType>
</xs : element>

</xs : sequence>
</xs : complexType>

</xs : element>
</xs : sequence>

</xs : complexType>
</xs : element>

</xs : sequence>
</xs : complexType>

</xs : element>
<xs : element r e f=”gml : L ineSt r ing”/>
<xs : element r e f=”gml : Point”/>

</xs : cho ice>
</xs : sequence>

</xs : extens ion>
</xs : complexContent>

</xs : complexType>
</xs : schema>

5.2 Metadata

In this context the metadata is information that tell something about the geometrical and
syntactical integration process. This will typically be information that says where the data
are from, what kind of format it were, when the geometrical and syntactical integration
process were performed and so on. The relevance of some metadata will depend on the
usage and requirements of the geometrical data. The metadata elements can of course be
modified to fit the needs of the data repository. This section will define metadata that
is relevant for the integration of data to the OneMap [36] repository [33]. However these
metadata elements seems to be relevant in most settings where a geometrical and syntactical
integration process has been performed.

The data set used in through the geometrical integration process has been GML [17],
so the specification language are already set. The GML [17] do not have any elements to
represent metadata in the form defined here. This require that other resources are used
in combination with GML [17] to represent the metadata. The Dublin Core [24] [29] are
a initiative for standardization of metadata. Dublin Core [24] [29] are well known and
widely accepted initiative. Dublin Core [24] [29] has all the metadata elements needed

64

in the geometrical and syntactical integration process, this means that it cover the needs
completely.

Metadata can be connected to all parts of geometrical information, if it is a geometrical
feature, a part of a geometrical feature or a complete set of geometries, for instance a
GML [17] file. Depending of the type of geometrical information that are merged the
metadata will vary. A geometrical feature will have different metadata information than
a line segment will have. Each of the metadata elements required by the OneMap [36]
repository [33] are described below:

• Identifier, all features and elements that are integrated into a GML [17] file have to
get a unique identifier.

• Date, When was the feature added to the file. This is of historical relevance, and can
be used to perform rollbacks of erroneous data. It is also useful to determine a future
conflation process, regarding the newest data.

• Format, the original data type has to be known, for instance it is of great relevance if
a feature are of Vmap0 [11] or Vmap1 [8] resolution. Required field.

• Creator, this is the name of the person that performed the geometrical and syntactical
integration process. A required field if it is of importance to know who performed the
integration process. This field can also be used to identify the institution of firm that
have done the integration process.

• Description, a description of the geometrical feature, if it has any special characteris-
tics. This is a quite open element where the the user can write what he seems relevant.
This field should be optional.

• Coverage, identify the area the it cover or the area the feature is in. This field should
be optional.

• Title, A optional field that give the feature a name. If a feature has a special name,
this can be a polygon that represent a island, for instance Staten Island. The title
field would in that instance contain ”Staten Island”.

• Replaces, a optional field that are used if the geometrical integration process replace a
feature with a new one. This can for instance happen with islands. This field require
that historical information are stored in the repository in some way. If not this field
are obsolete because without a historical repository the replaced feature would be lost.

• Is Part Of, this element would only be used if the metadata information are on segment
level. That means that for instance all line segments in a Polygon have metadata
information from the integration process. The is part of field will give information on
which feature the line segment are a part of.

65

The first time a integration process is being performed, a metadata problem occur. Since
the file have not been integrated with anything before, it do not contain metadata as it is
defined here. This cause a indeterminable data set, because the new data that are merged
into the file will have information. This metadata contain information on the integration
date, and its original data set. The original data do not have any of these elements, though
some of them is irrelevant for the data. The question in such a context is, how should the
metadata be added to the original data set? There are two possible approaches to this
problem:

Metadata header , this approach add a header of metadata at the beginning of the file.
This metadata header will contain metadata which are valid for all features that do not
have their own metadata elements. for all features that do not have its own metadata. The
drawback with this method is that the original features can not have unique identifiers and
names. This may not be essential in some settings, but important in other settings. An
example of a metadata header can be seen in below.

<FeatureCo l l e c t i on In fo rmat ion >
<dc : i d e n t i f i e r >OneMap coastline T05</dc : i d e n t i f i e r >
<dc : date >2005−05−06</dc : date>
<dc : r ep l a c e s >NewYork coast l ines 2004 05 24 . xml</dc : r ep l a c e s >
<dc : c reator>Kr i s t i an Lunde</dc : c reator>
<dc : d e s c r i p t i on >

In format ion on what kind o f new in format ion t h i s f i l e
conta in that the prev ious f i l e did not have . A gene ra l
d e s c r i p t i o n o f the data that t h i s f i l e conta in .

</dc : d e s c r i p t i on >
<dc : coverage>New York area</dc : coverage>

</FeatureCo l l e c t i on In fo rmat ion >

Feature based metadata , is a approach where metadata information are distributed
to all original features. This open the possibility to give each feature a name and a unique
identifier. This method is required if segments of a feature should contain metadata. For
instance a line segment that contain the metadata field ”is part of” require this approach.
If each feature require a special identifier and name, this may create some manual work to
edit and give each feature the correct name and identifier. As default the identifers and
names should be automatically generated. Due to redundant storage of information this
approach will produce files with larger size than with the metadata header approach. An
example of feature based metadata storage are seen below.

<gml : featureMember>
<VMAPFeature>

<f a c cDes c r ip t i on ></fa c cDes c r ip t i on >

<FeatureInformation>
<dc : i d e n t i f i e r >OneMap coastl ine T05 L54823</dc : i d e n t i f i e r >

66

<dc : r ep l a c e s >
OneMap coastl ine segment 345 ,
OneMap coastl ine segment 346 ,
OneMap coastl ine segment347

</dc : r ep l a c e s >
<dc : date >2005−05−06</dc : date>
<dc : c reator>Kr i s t i an Lunde</dc : c reator>
<dc : t i t l e >Coast l ine </dc : t i t l e >
<dc : d e s c r i p t i on >

Coas t l i n e in the area o f La Guardia bay .
</dc : d e s c r i p t i on >
<dc : format>DNC Harbour 1707960</dc : format>
<dc : coverage>Jamaica Bay</dc : coverage>

</FeatureInformation>

<gml : l i n eS t r ingPrope r ty >
<gml : L ineStr ing>

<gml : L ineStr ing>
<gml : coord inate s>

. . . .
</gml : coord inate s>

</gml : L ineStr ing>
</gml : L ineStr ing>

</gml : l i n eS t r ingPrope r ty >
</VMAPFeature>

</gml : featureMember>

Both these approaches support metadata information on integrated feature segments.
The latter approach also enable metadata support on features from the original data set.
This is a clear advantage when dealing with problems like integration of polygons with line
segments from several data sets. A example of feature segment metadata are seen below.

<gml : L ineStr ing>
<LineStr ingIn format ion>

<dc : i d e n t i f i e r >OnMap coastl ine segment 463 </dc : i d e n t i f i e r >
<dc : isPartOf>OneMap coastl ine T05 L54823</dc : isPartOf>
<dc : date >2005−05−06</dc : date>
<dc : c reator>Kr i s t i an Lunde</dc : c reator>
<dc : t i t l e >Coast l ine </dc : t i t l e >
<dc : d e s c r i p t i on >

Coas t l i n e segment in the area o f La Guardia bay .
</dc : d e s c r i p t i on >
<dc : format>DNC Harbour 1707960</dc : format>
<dc : coverage>Jamaica Bay</dc : coverage>

</LineStr ingIn format ion>
<gml : coord inate s>

. . . .
</gml : coord inate s>

</gml : L ineStr ing>

67

To select one of these method should be based on the requirements of the data set,
its usage and a personal preference. The first method give files that are smaller than the
second method, but do it do not hold specific feature based information. In the OneMap [36]
project the second approach are most preferable and are used in the integration process.

5.3 Lazy Integration

Lazy integration is a method already used in the OneMap [36] project, on semantical inte-
gration of data [38]. This method should also be able to handle integration of geometrical
information. When lazy integration were used on semantic integration it were used to in-
tegrate semantic information together with already existing semantic data. This were done
by using special purpose XML [15] schemas. The main objective with lazy integration is
to preserve the structure of the integrated information. Using this method a GML [17]
file will be able to handle storage of geodata that have different structure and information.
The purpose of storing the integrated data unmodified is to reduce the risk of corrupting
and destroying the geospatial information. If the method should have modified the data the
risk of unintentionally changing and creating errors in the information are present. Without
changing the structure no errors can occur in the syntactical integration, and the integrated
information is kept in its original structure.

5.3.1 The XML Schemas

In the process of developing a lazy integration approach for geometrical information, is
it natural to use the original lazy integration approach as foundation. To do this the
geometrical integration will use the same schema structure as the original lazy integration
approach. The structure will consist of three super schemas that hold the superior GML
structure. Then there will be several schemas that extend the structure of the super schemas,
and add specialized structure. These classes deal with the actual merging process, and
refer to other external XML schemas that should be used to validate a integrated file. The
external XML schemas are used to define some part of a GML file which consist of integrated
information. To support the original lazy integration of semantic information, the schemas
used here are only expanded as a larger structure. This enable the structure to store both
semantic and geometric integrated information. In figure 5.1 the schemas structure of the
lazy integration approach is illustrated.

The core schemas of the lazy integration is divided into three. These schemas are
described below:

Request.xsd is the schema that is used as the default namespace in a GML file which is
built on a lazy integration approach. The main purpose with this schema is that it
link all the other schemas together, both the super schemas and the sub schemas.

68

Figure 5.1: The lazy integration structure consist of the core schemas, Request, FeatureC-
ollection and utils.The rivers and Coastlines schema is XML schemas that are subclasses
of the utils schema. The rivers and Coastlines schemas import external schemas that is
needed to represent different GML structures.

69

FeatureCollection.xsd define the main XML elements. The FeatureCollection element,
which is the root element in the lazy GML file. Other sub root elements are also
defined in this schema, as the featureMember element. The featureMember element
is the root element of a geometrical feature. The FeatureCollection schema is based
on the utils schema.

utils.xsd is top schema, and define the overall structure of the lazy integration structure.
This schema define abstract elements that both the featurecollection schema and the
sub schemas extends.

Definition XML schemas, is XML schemas that is sub classed from the utils schema.
In this thesis the focus will lie on a coastline schema. This schema integrate XML schemas
that represent VMAP0 [11], VMAP1 [8] and DNC [12] data. These external schemas are
imported as they are and are not changed at all.

Changes Applied to The XML Schemas

The XML schemas that were developed by Harald V̊alerhaugen and Gunnar Misund [38],
is almost fully adaptable for a geometrical approach. Nevertheless some minor changes had
to be done to fit the needs that a geometrical integration requires. In this section there
will only be small examples of the changes that were applied to the original lazy integration
schemas; the complete schemas is found in Appendix B.2.

Request.xsd The changes done on this schema were merely noticeable. Since the schema
is used directly by the GML instance documents it has to include all other needed schemas.
The result were that some of the include statements had to be rewrote to load the right
schemas.

<i n c lude schemaLocation=”Fea tur eCo l l e c t i on . xsd”/>
<i n c lude schemaLocation=”Coas t l i n e . xsd”/>
<i n c lude schemaLocation=”River . xsd”/>

All of these schemas was originally included in the Request schema. But since some
of the schemas that were included originally were superfluous they were removed. The
schemas that are included now is listed above. Notice that the River schema only is used
as an example schema and are not actually of any importance in this setting.

FeatureCollection.xsd, the only change that was applied in this schema was the adding
of metadata information. In the type definition of the FeatureMember class a metadata
element was added. This metadata element was called FeatureInformation and contained
Dublin Core [29] elements.

<complexType name=”FeatureMemberType”>
<complexContent>

<extens i on base=”one : FeatureAssociat ionBaseType”>

70

<sequence>
<!−− Metadata in fo rmat ion on a Feature −−>
<element name=”FeatureIn format ion”>

<complexType>
<sequence>

<element r e f=”dc : i d e n t i f i e r ”/>
<element r e f=”dc : t i t l e ” minOccurs=”0”/>
<element r e f=”dc : date”/>
<element r e f=”dc : c r e a t o r ”/>
<element r e f=”dc : format”/>
<element r e f=”dc : coverage ” minOccurs=”0”/>
<element r e f=”dc : d e s c r i p t i o n ” minOccurs=”0”/>

</sequence>
</complexType>

</element>
<element r e f=”one : Abs t rac t In teg ra tedFeature”/>

</sequence>
</extens ion>

</complexContent>
</complexType>

utils.xsd, in order to keep the lazy integration schemas as close to the original schemas
as possible; the changes tried to be minimal. The main change the utils schema was the
adding of metadata information on feature fragments. A feature fragment is for instance a
line segment that together with other line segments form a feature.

<complexType name=”AbstractIntegratedFeatureType”>
<complexContent>

<extens i on base=”one : AbstractFeatureCol lect ionBaseType”>
<sequence>

<!−− Metadata in fo rmat ion on f e a tu r e fragment l e v e l−−>
<element name=”FeatureFragmentInformation ” minOccurs=”0”>

<complexType>
<sequence>

<element r e f=”dc : i d e n t i f i e r ”/>
<element r e f=”dc : t i t l e ” minOccurs=”0”/>
<element r e f=”dc : date”/>
<element r e f=”dc : c r e a t o r ”/>
<element r e f=”dc : format”/>
<element r e f=”dc : coverage ” minOccurs=”0”/>
<element r e f=”dc : d e s c r i p t i o n ” minOccurs=”0”/>

</sequence>
</complexType>

</element>
<element r e f=”one : abstractFeatureFragment ”

maxOccurs=”unbounded”/>
</sequence>

</extens ion>

71

</complexContent>
</complexType>

The metadata element is called FeatureFragmentInformation and contain information
that were described in the Metadata section 5.2. Since not all feature fragments will have
metadata information, this element is optional.

Coastline.xsd was the schema that had to undergo the largest changes. Since the other
core schemas already supported most of the geometrical integration, this schema had to
define what kind of features that were allowed to be integrated. Since most of this thesis
has dealt with coastlines it was natural that coastlines were used in this section as well. The
coastline schema did exist in the original lazy integration system, but it did not support
integration of geometrical features from sources as VMAP0, VMAP1 and DNC. Even though
this was the schema that underwent the largest changes, these changes consisted of adding
support for the data formats mentioned above.

<complexType name=”IntegratedCoastLineType”>
<complexContent>

<extens i on base=”one : AbstractFeatureCol lect ionBaseType”>
<sequence>

<element r e f=”one : coastFragment” maxOccurs=”unbounded”/>
<element r e f=”vmap : VMAPFeature” maxOccurs=”unbounded”/>
<element r e f=”dnc : Feature ” maxOccurs=”unbounded”/>

</sequence>
</extens ion>

</complexContent>
</complexType>

VMAP0 and VMAP1 is described by the same schema B.2.6, this result in a element
that is used to refer to features of both data sets.

River.xsd rivers has not been the focus in this thesis. The river schema is therefore only
included to illustrate that the lazy integration approach can include several schema classes.
No changes were done to the river schema since it only were mentioned for illustration
reasons.

5.3.2 Using Lazy Integration

In the previous sections the structure and technical build up of geometrical lazy integration
were discussed. In this section the focus lie on the use of geometrical lazy integration. This
means that we will see how the actual XML instance documents are built up. To do this
the two examples used throughout this thesis will be used. As in chapter 4 the point of the
process is to integrate a data set of different build up/resoultion into an existing data set of
the same area. That process used the JUMP workbench to merge the two data sets together.
There is no available workbenches to perform a lazy integration process. So the integration

72

process done in this section are based on manual labor. The integration processes shown
here are not meant be a real life lazy integration implementations, but rather examples.

A lazy integration approach can be connected to a geometrical integration process in
two different ways:

• As a integrated part of the geometrical integration process.

• As a separate process that is performed after a geometrical integration process.

There are no obvious method that is better that the other, but a lazy integration process
that runs separate from a geometrical integration process have some requirements. These
requirements are related to the geometrical integration process. It such a case the geomet-
rical integration process should not merge the files together. All other processes can be
performed but not the merging process. Since the lazy integration process require separate
files it is essential that the geometrical integration process do not merge the files. The
step by step guide to lazy integration seen in section 5.3.2 applies for both of the methods
mentioned above. The only difference are how and when these steps are integrated with
the geometrical integration process.

Using Lazy Integration Step by Step

The lazy integration approach can be summarized into a few steps. These steps define a
standard procedure that starts with two different sets of features and end up with a merged
data set.

• When a lazy integration process are initiated the first thing that has to be done is
to define which data set that should be the base data set, and which that should be
integrated into the base data set. If the lazy integration process is an internal process
in the geometrical integration process, will this step already be covered. However if
the lazy integration process is carried out as an external process, the user have to
define the relevance of the data sets.

• The root element of the base data set is replaced with a new root element. This
element define a feature collection and contain all other features and elements in the
XML instance document. This start element contain all namespaces needed, this is
regular XML practice. In the example schemas defined in this thesis this element is
named featurecollection.

• The next step in the process to integrate all features from the integration data set to
the base data set. This process is an iterative process that writes all features into the
base data set one by one. There are several XML elements which are attached to a
integrated feature. All integrated elements are inserted into a element which surrounds
the feature. This element contain two child elements, a feature information element
which contain metadata about the lazy integration process and the integrated data.
The second element is a element that contain the integrated feature. Throughout this
this thesis this element will be called IntegratedCoast.

73

When these steps are carried out, the lazy integration process is completed.

La Guardia Airport Scenario

In chapter 4 the La Guardia airport scenario were subject to a geometrical integration
process. This section illustrate the lazy integration process on the La Guardia airport
scenario. Still the VMAP0 data set is the base data set and the VMAP1 data set contain
features which should be integrated into this.

The first operation performed on the two data sets are the replacement root element in
the VMAP0 data set. The existing root element is replaced with an element that contain
a common interface to all lazy integration schemas and namespaces. The original root
element in VMAP0 is seen below:

<VMAPCollection
xmlns=”no : h i o f : onemap : gml : appschema : vmapschema”
xmlns : gml=”http ://www. openg i s . net /gml”
xmlns : x l i nk=”http ://www.w3 . org /1999/ x l i nk ”
xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s t anc e ”
x s i : schemaLocation=”no : h i o f : onemap : gml : appschema : vmapschema
http ://www. ia−stud . h i o f . no/˜ bjornhho/digmap/gmlEx/vmapschema . xsd”>
:
:
:
</VMAPCollection>

The original root element in the VMAP0 data set is replaced with the element seen
below.

<one : Fea tu r eCo l l e c t i on
xmlns : one=”http :// onemap . org ”
xmlns : onen=”http ://www. onemap . net ”
xmlns : gml=”http ://www. openg i s . net /gml”
xmlns : vmap=”http ://www. onemap . net /vmap”
xmlns : dc=”http :// pur l . org /dc/ e lements /1 .1/”
xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s t anc e ”
xmlns=”http ://www. g i s l i n e . no”
x s i : schemaLocation=”http ://www. onemap . org Request . xsd”
f i d=”ID000004”>

:
:
:

</one : FeatureCo l l e c t i on>

The bounding box from the VMAP0 data set is kept intact, since the integration process
do affect that. The original VMAP0 features are not modified at all. There are two reasons
to why the features are not touched. Firstly the goal of the lazy integration process is to

74

store the data as close to its original origin it is not modified. Secondly there are no reason
to modify these features, they have not been modified.

The next step in the process is to integrate the features from the VMAP1 data set.
Before a feature is integrated a featureMember element is written. This element surround
the integrated feature. Then a metadata structure is written, and at last the feature is
integrated into a IntegratedCoast element.

<one : featureMember>
<FeatureInformation>

metadata
</FeatureInformation>
<one : IntegratedCoast>

In t eg ra t ed f e a tu r e
</one : IntegratedCoast>

</one : featureMember>

In the example above the structure of a integrated feature element is described. The
featureMember element is the first element that define that this feature has been integrated
into the existing data set.The metadata is defined secondly and at last the feature is defined.

The featureMember element contain metadata about the integration process and the
feature integrated. The metadata information is added in a FeatureInformation element.
The metadata information is collected with a combination of automated and human in-
teraction. Some of the metadata elements are clearly collected automatically as date of
integration process and identifier. Manually collected metadata elements are obviously el-
ements as name of the person performing the integration process. A complete valid lazy
integration structure for a integrated VMAP1 feature is seen below.

<one : featureMember>
<FeatureInformation>

<dc : i d e n t i f i e r >onemap 10102</dc : i d e n t i f i e r >
<dc : t i t l e >Coast l ine </dc : t i t l e >
<dc : date >2005−06−20</dc : date>
<dc : c reator>Kr i s t i an Lunde</dc : c reator>
<dc : format>VMAP 0</dc : format>

</FeatureInformation>

<one : IntegratedCoast>
<one : l aye rDe s c r i p t i on >Coast l ine </one : l aye rDe s c r i p t i on >
<vmap : VMAPFeature>

In t eg ra t ed f e a tu r e data .
</vmap : VMAPFeature>

</one : IntegratedCoast>
</one : featureMember>

When the iterative process of integrating features from the Vmap1 data set into the
Vmap0 data set, the process is completed. In the example seen in B.3.1 a section of the
VMAP0 file after the integration process is seen.

75

Jamaica Bay Scenario

The second scenario that has been used in this thesis is the Jamaica Bay scenario. As in
the La Guardia Airport scenario 5.3.2 the lazy integration approach will be the same.

The first thing that is done is the replacement of the root element in the VMAP1 data
set. The new root element is seen below, notice that an extra namespace is added, the DNC
namespace, in the La Guardia Scenario 5.3.2 this namespace was obsolete since no DNC
data were present.

<one : Fea tu r eCo l l e c t i on
xmlns : one=”http :// onemap . org ”
xmlns : gml=”http ://www. openg i s . net /gml”
xmlns : vmap=”http ://www. onemap . net /vmap”
xmlns : dnc=”http ://www. onemap . net /dnc”
xmlns : dc=”http :// pur l . org /dc/ e lements /1 .1/”
xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s t anc e ”
xmlns=”http ://www. g i s l i n e . no”
x s i : schemaLocation=”http ://www. onemap . org Request . xsd”
f i d=”ID000004”>

:
:
:

</one : FeatureCo l l e c t i on>

The original VMAP1 features are not touched, they are not modified at all. The last
process is to add all new features from the DNC data set to the VMAP1 data set. All
the DNC features are added into a corresponding featureMember element and metadata
are attached to each featureMember element. When the featureMember element and the
metadata are written the DNC feature is inserted into a one:IntegratedCoast element. This
element is the actual rapper element for the integrated feature. Below is the structure of the
integrated DNC feature described. As seen the familiar featureMember element is defining
the start of a integrated feature. The one:IntegratedCoast element is defining the start of
the actual feature data. The feature is identifed as a DNC feature and therefore inserted
into a dnc:Feature element.

<one : featureMember>
<FeatureInformation>

<dc : i d e n t i f i e r >unique f e a tu r e id</dc : i d e n t i f i e r >
<dc : t i t l e >name o f f ea ture </dc : t i t l e >
<dc : date>I n t e g r a t i on date</dc : date>
<dc : c reator>

Name o f the person per forming the i n t e g r a t i o n proce s s
</dc : c reator>
<dc : format>Feature o r i g i n a l format .</dc : format>

</FeatureInformation>
<one : IntegratedCoast>

76

<one : l aye rDe s c r i p t i on >Coast l ine </one : l aye rDe s c r i p t i on >
<dnc : Feature>

In t eg ra t ed f e a tu r e data
</dnc : Feature>

</one : IntegratedCoast>
</one : featureMember>

This is done in an iterative process. Figure B.3.2 show a piece of the Jamaica Bay file
where a lazy integration process has been applied.

77

Chapter 6

Discussion and Conclusion

This chapter is a summarize this thesis, it give a discussion of the work done, the future
work on the topic is described. At last a conclusion of the thesis is given.

6.1 Discussion

The result of this thesis is a theoretical description of geometrical and syntactical integra-
tion, together with the real life examples. This form a foundation for further study and
development on the area.

There are several areas which could have been improved in this thesis. One of the major
improvements would have been the connection between the geometrical and syntactical.
They might seem to detached from each other. A improvement would have been that these
processes were coupled, and described with a better relation to each other. In the geo-
metrical integration process the cleaning preparation of a data set is thoroughly described,
this should have been an implicit assumption that the data set were clean and correctly
displayed. This would have given more time to study the problems around geometrical
integration.

One of the problems which occurred in the research of the geometrical integration process
was to find a proper tool. The JUMP [22] workbench was a superb tool, however the JCS [14]
plugin which enabled modifications of line segments did not support splitting and cutting
of line segments. This was solved with the help of the original JUMP crew, who were kind
enough to send me the alpha version of JCS 1.1.0 which contained this feature. Through
the writing of this thesis a lot of problems has occurred, but most of them did were solved
one way or the other.

Future work on the area should include several of the tasks described below. An advan-
tage which would confirm the processes defined in this thesis are real life test of the sketched
problem solutions. Future work should test the described problem solutions on several real
life data sets to guarantee the correctness.

The amount of time available when writing this thesis did not allow time to develop
a geometrical and syntactical integration tool. This should be one of the main focuses of

78

future work on this area. A tool to ease the merging of data sets and add meta data would
be a valuable resource to a map repository administrator. Such a tool would have the ability
to do both the geometrical and syntactical integration process during and end up with one
result, the integrated data correctly integrated both geometrically and syntactically. It
would also be preferable to do develop a lazy integration tool, which gave the ability to
easy develop lazy integration schemas which supported different sets of XML schemas [31].

An interesting extension to this thesis would be the study of other conflation methods
with regards on integration of geometrical data into a map repository.

6.2 Conclusion

Throughout this thesis both the geometrical and syntactical integration of geospatial data
have proven to be cumbersome problems. It has also been seen that such processes require
human interaction to obtain a correct result. However in spite of these limitations the
goal of this thesis has been achieved, to uncover the geometrical and syntactical integration
problems and sketch a solution to them. The geometrical integration process has proven
that its largest limitation is its requirement for human interaction. But if we account for
that limitation, a geometrical integration is fully feasible. From a syntactical integration
point of view the lazy integration is a powerful tool, which enable the creation of multi
source GML [17] files. In both a geometrical and syntactical integration the peer-review
process is seen as a valuable tool to ensure the correctness of the integration process, and
the integrated data.

79

Bibliography

[1] British Columbia Ministry of Substainable Resource Management. URL:
http://www.gov.bc.ca/bvprd/bc/channel.do?action=ministry&channelID=
-8393&navId=NAV ID province.

[2] JUMP Pilot Project. URL: http://jump-pilot.sourceforge.net/index.php.

[3] Open Geospatial Consortium, Inc. (OGC). URL: http://www.opengis.org.

[4] Open JUMP. URL: http://www.openJUMP.org.

[5] Project SIGLE. URL: http://www.projet-sigle.org/.

[6] Refraction Research Inc. URL: http://www.refractions.net/.

[7] Understanding Map Projections. Technical report.

[8] Vector Smart Map Level 1. Technical Report MIL-PRF-89033.

[9] Vivid Solutions. URL: http://vividsolutions.com.

[10] Digital Chart of the World (DCW). Technical Report MIL-D-89009, April 1992.

[11] Vector Smart Map Level 0. Technical Report MIL-PRF-89039, 1995.

[12] Digital Nautical Chart. Technical Report MIL-PRF-89023, 1997.

[13] Open Memorandum Concerning NGA’s Federal Register Announcement To Withdraw
Aeronautical Products (Maps, Charts and Associated Data) from Public Access, Jan-
uary 2005.

[14] Dave Blasby, Martin Davis, Djun Kim, and Paul Ramsey. Gis conflation using open
source tools.

[15] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Fran̈ıcis Yergeau.
Extensible Markup Language (XML). World Wide Web Consortium (W3C), February
2004.

[16] Ching-Chien Chen, Snehal Thakkar, Craig Knoblock, and Cyrus Shahabi. Automati-
cally annotating and integrating spatial datasets. June 2003.

80

[17] Simon Cox, Adrian Cuthbert, Richard Martell, Paul Daisey, and Ron Lake. OpenGIS
Geography Markup Language Implementation Specification. Open GIS Consortium,
Inc., September 2002.

[18] Simon Cox, Paul Daisey, Ron Lake, Clemens Portele, and Arliss Whiteside. OpenGIS
Geography Markup Language Implementation Specification. Open GIS Consortium,
Inc., January 2003.

[19] Stanley L. Dallal. Automated conflation of florida state highway data with larger scale
county data.

[20] David M. Danko. The Vector Product Format, An Overview. Technical report.

[21] Martin Davids and Jon Aquino. JTS Topology Suite Technical Specifications. The
Jump Project, October 2003.

[22] Martin Davids and Jon Aquino. JUMP the Unified Mapping Platform Workbench
User’s Guide. The Jump Project, November 2003.

[23] Martin Davis. JCS Conflation Suite Technical Report. The Jump Project.

[24] Dublin Core Metadata Initiative. Dublin Core XML Schemas.

[25] David Duce, Ivan Herman, and Bob Hopgood. Svg tutorial. 2002.

[26] Environmental Systems Research Institute, Inc. (ESRI). ESRI Shapefile Technical
Description, 1998.

[27] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, editors. The Java Language
Specification. Addison-Wesley Professional, second edition, 2000.

[28] Robert Heiztman. Building a manifold base map using tiger/line data.

[29] Diane Hillmann. Using Dublin core. Dublin Core Metadata Initiative.

[30] Bjørn H̊akon Horpestad. Semantic Integration of Geospatial Data Using Feature Type
Hierarchies. Master’s thesis, Østfold University College, November 2005.

[31] Anthony M. Futrell Jr. The W3C XML Schema. 2001.

[32] Sindre Langaas. Completeness of the Digital Chart of the World (DCW) database.
Technical Report 2/1995, 1995.

[33] Mats Lindh, Bjørn H̊akon Horpestad, and Kristian Lunde. The Onemap Repository.
2005.

[34] Kalyani Mandapaka. A Simple API for XML. 2002.

[35] Dennis Milbert. A Tutorial On Datums, March 2005.

81

[36] Gunnar Misund. One Map. HOIT, January 2002.

[37] Gunnar Misund, Henning Kristiansen, and Mats Lindh. Distributed GML Management
with SVG Tools. HOIT, 2002.

[38] Gunnar Misund and Harald V̊alerhaugen. Integration of heterogeneous gml sources.
2004.

[39] Open GIS Consortium. OpenGis Simple Features Specification for SQL, May 1999.

[40] Alan Saalfeld. Conflation: Automated map compilation. International Journal of
Geographical Information Systems, 1988.

[41] S. K. Upadhyaya, G. S. Pettygrove, J.W. Oliveira, and B. R. Jahn. An Introduction -
Global Positioning System. Technical report.

[42] Shuxin Yuan and Chuang Tao. Development of conflation components. June 1999.

82

Appendix A

List of Terms

API - Application Programming Interface.

DNC - Digital Nautical Charts.

ECS - ESEA Conflation System.

GIS - Geographical Information System.

GML - Geography Markup Language.

GPS - Global Positioning System.

JAVA - Programming language from Sun Microsystems.

JCS - JCS Conflation Suite.

JTS - JTS Topology Suite.

JUMP - JUMP Unified Mapping Platform.

OGC - OpenGIS Consortium.

SFS - Simple Feature Specification.

SVG - Scalable Vector Graphics.

URL - Uniform Resource Locator.

83

VMAP - Vector Smart Map.

VPF - Vector Product Format.

WKT - Well-Known Text.

XML - eXtensible Markup Language.

XSD - XML Schema Definition.

84

Appendix B

Source code

B.1 JUMP Templates

B.1.1 GML Input Templates

Vmap Input Template

<?xml ve r s i on =”1.0” encoding=”utf−8” ?> <JCSGMLInputTemplate>
<Col lect ionElement>VMAPCollection</Col lect ionElement>
<FeatureElement>VMAPFeature</FeatureElement>
<GeometryElement>gml : l i n eS t r ingPrope r ty </GeometryElement>
<ColumnDefinit ions>

<column>
<name>f a c cDes c r ip t i on </name>
<type>STRING</type>

<valuee lement elementname=”f a c cDe s c r i p t i on”/>
<va l u e l o c a t i on po s i t i o n=”body”/>
</column>

</ColumnDefinit ions>
</JCSGMLInputTemplate>

DNC Input Template

<?xml ve r s i on =”1.0” encoding=”utf−8” ?> <JCSGMLInputTemplate>
<Col lect ionElement>FeatureCo l l e c t i on </Col lect ionElement>
<FeatureElement>Feature</FeatureElement>
<GeometryElement>gml : l i n eS t r ingPrope r ty </GeometryElement>
<ColumnDefinit ions>

<column>
<name>f a c c d e s c r i p t i o n </name>
<type>STRING</type>

<valuee lement elementname=” f a c c d e s c r i p t i o n ”/>
<va l u e l o c a t i on po s i t i o n=”body”/>

85

</column>
</ColumnDefinit ions>

</JCSGMLInputTemplate>

B.1.2 GML Output Templates

Vmap Output Template

<?xml ve r s i on =”1.0” encoding=”UTF−8”?> <VMAPCollection
xmlns=”no : h i o f : onemap : gml : appschema : vmapschema”
xmlns : gml=”http ://www. openg i s . net /gml”
xmlns : x l i nk=”http ://www.w3 . org /1999/ x l i nk ”
xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s t anc e ”
x s i : schemaLocation=”no : h i o f : onemap : gml : appschema : vmapschema
http ://www. ia−stud . h i o f . no/˜ bjornhho/digmap/gmlEx/vmapschema . xsd”>
<%FEATURE%>
<gml : featureMember>

<VMAPFeature>
<f a c cDes c r ip t i on >

<%=COLUMN fac cDe s c r i p t i on%></f a c cDes c r i p t i on >
<gml : l i n eS t r ingPrope r ty >

<gml : L ineStr ing>
<%=GEOMETRY%>

</gml : L ineStr ing>
</gml : l i n eS t r ingPrope r ty >

</VMAPFeature>
</gml : featureMember>
<%ENDFEATURE%>
</VMAPCollection>

DNC Output Template

<?xml ve r s i on =”1.0” encoding=”UTF−8”?> <Featur eCo l l e c t i on
xmlns=”no : h i o f : onemap : gml : appschema : dncschema”
xmlns : gml=”http ://www. openg i s . net /gml”
xmlns : x l i nk=”http ://www.w3 . org /1999/ x l i nk ”
xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s t anc e ”
x s i : schemaLocation=”no : h i o f : onemap : gml : appschema : newDNCschema
dncschema . xsd”>
<%FEATURE%>
<gml : featureMember>

<Feature>
< f a c c d e s c r i p t i o n >

<%=COLUMN f a c c d e s c r i p t i o n%></f a c c d e s c r i p t i o n >
<gml : l i n eS t r ingPrope r ty >

<gml : L ineStr ing>

86

<%=GEOMETRY%>
</gml : L ineStr ing>

</gml : l i n eS t r ingPrope r ty >
</Feature>

</gml : featureMember>
<%ENDFEATURE%>
</FeatureCo l l e c t i on>

B.2 Lazy Integration Schemas

B.2.1 Request.xsd

<?xml ve r s i on =”1.0” encoding=”UTF−8”?> <schema
xmlns=”http ://www.w3 . org /2001/XMLSchema”
xmlns : x l i nk=”http ://www.w3 . org /1999/ x l i nk ”
xmlns : one=”http :// onemap . org ” targetNamespace=”http :// onemap . org ”
elementFormDefault=”q u a l i f i e d ” ve r s i on =”0.9”>

<annotation>
<appinfo>Map. xsd v0 . 9 2004−03</appinfo>
<documentation xml : lang=”en”>

Top l e v e l schema f o r OneMap in t eg r a t ed f e a t u r e c o l l e c t i o n s
</documentation>

</annotation>
<i n c lude schemaLocation=”Featur eCo l l e c t i on . xsd”/>
<i n c lude schemaLocation=”River . xsd”/>
<i n c lude schemaLocation=”Coas t l i n e . xsd”/>

</schema>

B.2.2 FeatureCollection.xsd

<?xml ve r s i on =”1.0” encoding=”UTF−8”?> <schema
xmlns : one=”http :// onemap . org ”
xmlns : x l i nk=”http ://www.w3 . org /1999/ x l i nk ”
xmlns : gml=”http ://www. openg i s . net /gml”
xmlns : dc=”http :// pur l . org /dc/ e lements /1 .1/”
xmlns=”http ://www.w3 . org /2001/XMLSchema”
targetNamespace=”http :// onemap . org ”
elementFormDefault=”q u a l i f i e d ”
ve r s i on =”0.9”>

<annotation>
<appinfo>Map. xsd v0 . 9 2004−03</appinfo>
<documentation xml : lang=”en”>

Top l e v e l schema f o r OneMap in t eg r a t ed f e a t u r e c o l l e c t i o n s
</documentation>

</annotation>

87

<!−− import con s t ru c t s from the GML Feature and Geometry schemas −−>
<import namespace=”http ://www. openg i s . net /gml”

schemaLocation=”./gml/ f e a tu r e . xsd”/>
<import namespace=”http :// pur l . org /dc/ e lements /1 .1/”

schemaLocation=”simpledc20021212 . xsd”/>
<i n c lude schemaLocation=”u t i l s . xsd”/>
<!−− ==

g loba l element d e c l a r a t i o n s REMEMBER SUBSTITUTION GROUP ON MAP!
=== −−>

<element name=”Featu r eCo l l e c t i on ” type=”one : FeatureCol lect ionType ”
subst i tut ionGroup=”gml : Fea tu r eCo l l e c t i on”/>

<element name=”featureMember” type=”one : FeatureMemberType”
subst i tut ionGroup=”gml : featureMember”/>

<!−− ==
type d e f i n i t i o n s f o r Map model
=== −−>

<complexType name=”FeatureCol lect ionType”>
<complexContent>

<extens i on base=”one : AbstractFeatureCol lect ionBaseType”>
<sequence>

<element r e f=”gml : boundedBy”/>
<element r e f=”one : featureMember” maxOccurs=”unbounded”/>

</sequence>
</extens ion>

</complexContent>
</complexType>
<complexType name=”FeatureMemberType”>

<complexContent>
<extens i on base=”one : FeatureAssociat ionBaseType”>

<sequence>
<!−− Metadata in fo rmat ion on a Feature −−>
<element name=”FeatureIn format ion”>

<complexType>
<sequence>

<element r e f=”dc : i d e n t i f i e r ”/>
<element r e f=”dc : t i t l e ” minOccurs=”0”/>
<element r e f=”dc : date”/>
<element r e f=”dc : c r e a t o r ”/>
<element r e f=”dc : format”/>
<element r e f=”dc : coverage ” minOccurs=”0”/>
<element r e f=”dc : d e s c r i p t i o n ” minOccurs=”0”/>

</sequence>
</complexType>

</element>
<element r e f=”one : Abs t rac t In teg ra tedFeature”/>

</sequence>
</extens ion>

</complexContent>

88

</complexType>
</schema>

B.2.3 utils.xsd

<?xml ve r s i on =”1.0” encoding=”UTF−8”?> <schema
xmlns : one=”http :// onemap . org ”
xmlns : x l i nk=”http ://www.w3 . org /1999/ x l i nk ”
xmlns : gml=”http ://www. openg i s . net /gml”
xmlns : dc=”http :// pur l . org /dc/ e lements /1 .1/”
xmlns=”http ://www.w3 . org /2001/XMLSchema”
xmlns : xs=”http ://www.w3 . org /2001/XMLSchema”
targetNamespace=”http :// onemap . org ” elementFormDefault=”q u a l i f i e d ”
ve r s i on =”0.9”>

<annotation>
<documentation xml : lang=”en”>

Top l e v e l schema f o r OneMap in t eg r a t ed f e a t u r e c o l l e c t i o n s
</documentation>

</annotation>
<!−− import con s t ru c t s from the GML Feature and Geometry schemas −−>
<import namespace=”http ://www. openg i s . net /gml”

schemaLocation=”./gml/ f e a tu r e . xsd”/>
<import namespace=”http :// pur l . org /dc/ e lements /1 .1/”

schemaLocation=”simpledc20021212 . xsd”/>
<!−− ==

g loba l element d e c l a r a t i o n s
=== −−>

<element name=”Abst ractFeatureCo l l e c t ionBase ”
type=”one : AbstractFeatureCol lect ionBaseType”/>

<element name=”FeatureAssoc iat ionBase ”
type=”one : FeatureAssociat ionBaseType”/>

<element name=” Abst rac t In teg ra tedFeature ”
type=”one : AbstractIntegratedFeatureType ”
abs t r a c t=”true ” subst i tut ionGroup=”gml : Feature”/>

<element name=” abstractFeatureFragment ”
type=”gml : FeatureAssoc iat ionType ”
abs t r a c t=”true ” subst i tut ionGroup=”gml : featureMember”/>

<!−− ==
type d e f i n i t i o n s f o r Map model
=== −−>
<complexType name=”AbstractFeatureCol lect ionBaseType”>

<complexContent>
< r e s t r i c t i o n base=”gml : AbstractFeatureCol l ect ionType”>

<sequence>
<element r e f=”gml : d e s c r i p t i o n ” minOccurs=”0”/>
<element r e f=”gml : name” minOccurs=”0”/>
<!−− the f i r s t two elements are used by the

89

gml2svg−t rans format ion , to turn on/ o f f v i s i b i l i t y o f l a y e r s −−>
<element name=”l ay e rDe s c r i p t i on ” minOccurs=”0”>

<simpleType>
< r e s t r i c t i o n base=”xs : s t r i n g”>

<pattern value =”[a−bA−B]{5−20}”/>
</ r e s t r i c t i o n >

</simpleType>
</element>

</sequence>
<a t t r i b u t e name=” f i d ” type=”ID” use=”opt i ona l ”/>

</ r e s t r i c t i o n >
</complexContent>

</complexType>

<complexType name=”FeatureAssociat ionBaseType”>
<complexContent>

< r e s t r i c t i o n base=”gml : FeatureAssoc iat ionType”>
<attr ibuteGroup r e f=”x l i nk : s impleLink”/>
<a t t r i b u t e r e f=”gml : remoteSchema” use=”opt i ona l ”/>

</ r e s t r i c t i o n >
</complexContent>

</complexType>

<complexType name=”AbstractIntegratedFeatureType”>
<complexContent>

<extens i on base=”one : AbstractFeatureCol lect ionBaseType”>
<sequence>

<!−− Metadata in fo rmat ion on f e a tu r e fragment l e v e l−−>
<element name=”FeatureFragmentInformation ” minOccurs=”0”>

<complexType>
<sequence>

<element r e f=”dc : i d e n t i f i e r ”/>
<element r e f=”dc : t i t l e ” minOccurs=”0”/>
<element r e f=”dc : date”/>
<element r e f=”dc : c r e a t o r ”/>
<element r e f=”dc : format”/>
<element r e f=”dc : coverage ” minOccurs=”0”/>
<element r e f=”dc : d e s c r i p t i o n ” minOccurs=”0”/>

</sequence>
</complexType>

</element>
<element r e f=”one : abstractFeatureFragment ”

maxOccurs=”unbounded”/>
</sequence>

</extens ion>
</complexContent>

</complexType>
</schema>

90

B.2.4 Coastline.xsd

<?xml ve r s i on =”1.0” encoding=”UTF−8”?>
<schema
xmlns : onen=”http ://www. onemap . net ”
xmlns : one=”http :// onemap . org ”
xmlns : x l i nk=”http ://www.w3 . org /1999/ x l i nk ”
xmlns : gml=”http ://www. openg i s . net /gml”
xmlns : vmap=”http ://www. onemap . net /vmap”
xmlns : dnc=”http ://www. onemap . net /dnc”
xmlns=”http ://www.w3 . org /2001/XMLSchema”
targetNamespace=”http :// onemap . org ”
elementFormDefault=”q u a l i f i e d ” ve r s i on =”0.9”>

<annotation>
<appinfo>Map. xsd v0 . 9 2004−03</appinfo>
<documentation xml : lang=”en”>

</documentation>
</annotation>
<!−− import con s t ru c t s from the GML Feature and Geometry schemas −−>
<i n c lude schemaLocation=”u t i l s . xsd”/>
<!−−<import namespace=”http ://www. openg i s . net / examples ”

schemaLocation=”./GML2specex/ c i t y . xsd”/>−−>
<!−− <import namespace=”http ://www. onemap . net ”

schemaLocation =”. ./ onemap/ g e t f e a t u r e . xsd”/> −−>
<import namespace=”http ://www. onemap . net ”

schemaLocation=”onemap/vmap . xsd”/>
<import namespace=”http ://www. onemap . net ”

schemaLocation=”onemap/dnc . xsd”/>
<!−− ==

g loba l element d e c l a r a t i o n s
=== −−>

<element name=”IntegratedCoast ” type=”one : IntegratedCoastLineType ”
subst i tut ionGroup=”one : Abs t rac t In teg ra tedFeature”/>

<element name=”coastFragment” type=”one : CoastFragmentType”
subst i tut ionGroup=”one : abstractFeatureFragment”/>

<!−− ==
type d e f i n i t i o n s f o r Map model
=== −−>

<complexType name=”IntegratedCoastLineType”>
<complexContent>

<extens i on base=”one : AbstractFeatureCol lect ionBaseType”>
<sequence>

<element r e f=”one : coastFragment”
maxOccurs=”unbounded”/>

<element r e f=”vmap : VMAPFeature”
maxOccurs=”unbounded”/>

<element r e f=”dnc : Feature ”

91

maxOccurs=”unbounded”/>
</sequence>

</extens ion>
</complexContent>

</complexType>
<complexType name=”CoastFragmentType”>

<complexContent>
<extens i on base=”one : FeatureAssociat ionBaseType”>

<cho ice>
<element r e f=”onen : ResponseFeature”/>

</choice>
</extens ion>

</complexContent>
</complexType>

</schema>

B.2.5 river.xsd

<?xml ve r s i on =”1.0” encoding=”UTF−8”?> <schema
targetNamespace=”http :// onemap . org ”
xmlns : one=”http :// onemap . org ”
xmlns : x l i nk=”http ://www.w3 . org /1999/ x l i nk ”
xmlns : gml=”http ://www. openg i s . net /gml”
xmlns : ex=”http ://www. openg i s . net / examples ”
xmlns=”http ://www.w3 . org /2001/XMLSchema”

elementFormDefault=”q u a l i f i e d ” ve r s i on =”0.9”>
<annotation>

<appinfo>River . xsd</appinfo>
<documentation xml : lang=”en”>
Schema f o r i n t e g r a t i n g r i v e r s from heterogeneous GML documents .
</documentation>

</annotation>
<!−− import con s t ru c t s from the GML Feature and Geometry schemas −−>
<i n c lude schemaLocation=”u t i l s . xsd”/>
<!−− ==

g loba l element d e c l a r a t i o n s
=== −−>

<element name=”Integ ra tedRive r ” type=”one : IntegratedRiverType ”
subst i tut ionGroup=”one : Abs t rac t In teg ra tedFeature”/>

<element name=”riverFragment ” type=”one : RiverFragmenType”
subst i tut ionGroup=”one : abstractFeatureFragment”/>

<!−− ==
type d e f i n i t i o n s f o r Map model
=== −−>

<complexType name=”IntegratedRiverType”>
<complexContent>

<extens i on base=”one : AbstractFeatureCol lect ionBaseType”>

92

<sequence>
<element r e f=”one : r iverFragment ”

maxOccurs=”unbounded”/>
</sequence>

</extens ion>
</complexContent>

</complexType>
<complexType name=”RiverFragmenType”>

<complexContent>
<extens i on base=”one : FeatureAssociat ionBaseType”>

<cho ice>
<element r e f=”ex : River”/>
<element r e f=”osgb : BoundaryLine”/>

</choice>
</extens ion>

</complexContent>
</complexType>

</schema>

B.2.6 vmap.xsd

Even though the vmap schema is an external schema, it is included there. Hopefully it will
give the reader a more complete overview of how the lazy integration use external schemas.

<?xml ve r s i on =”1.0” encoding=”UTF−8”?> <xs : schema
xmlns : x l i nk=”http ://www.w3 . org /1999/ x l i nk ”
xmlns : gml=”http ://www. openg i s . net /gml”
xmlns : xs=”http ://www.w3 . org /2001/XMLSchema”
xmlns=”http ://www. onemap . net ”
targetNamespace=”http ://www. onemap . net ”
elementFormDefault=”q u a l i f i e d ” attr ibuteFormDefaul t=”unqua l i f i e d”>

<xs : import namespace=”http ://www. openg i s . net /gml”
schemaLocation =”. ./ gml/ f e a tu r e . xsd”/>

<!−−Global d e c l a r a t i o n s −−>
<xs : element name=”VMAPCollection” type=”VMAPCollectionType”/>
<xs : element name=”vmapMember” type=”VMAPFeatureType”

subst i tut ionGroup=”gml : featureMember”/>
<xs : element name=”VMAPFeature” type=”VMAPFeatureType”

subst i tut ionGroup=” VMAPFeature”/>
<xs : element name=” VMAPFeature” type=”gml : AbstractFeatureType”

abs t r a c t=”true ” subst i tut ionGroup=”gml : Feature”/>
<!−−De f i n i t i o n −−>
<xs : complexType name=”VMAPCollectionType”>

<xs : complexContent>
<xs : ex t ens i on base=”gml : AbstractFeatureCol l ect ionType”>

<xs : a t t r i bu t e name=”las tupdated ”
type=”xs : dateTime” use=”opt i ona l ”/>

</xs : extens ion>

93

</xs : complexContent>
</xs : complexType>

<xs : complexType name=”VMAPFeatureMemberType”>
<xs : complexContent>

<xs : r e s t r i c t i o n base=”gml : FeatureAssoc iat ionType”>
<xs : sequence minOccurs=”0”>

<xs : element r e f=” VMAPFeature”/>
</xs : sequence>
<xs : attr ibuteGroup r e f=”x l i nk : s impleLink”/>
<xs : a t t r i bu t e r e f=”gml : remoteSchema” use=”opt i ona l ”/>

</xs : r e s t r i c t i o n >
</xs : complexContent>

</xs : complexType>

<xs : complexType name=”VMAPFeatureType”>
<xs : complexContent>

<xs : ex t ens i on base=”gml : AbstractFeatureType”>
<xs : sequence>

<xs : element name=” f a c c d e s c r i p t i o n ”
type=”xs : s t r i n g ” minOccurs=”0”/>

<xs : element name=”name” type=”xs : s t r i n g ”
minOccurs=”0” maxOccurs=”unbounded”/>

<xs : element name=”h ighe s t z−value ”
type=”xs : i n t ” minOccurs=”0”/>

<xs : element name=”hyd r o l o g i c a l c a t e g o r y ”
type=”xs : i n t ” minOccurs=”0”/>

<xs : element name=”usage ” type=”xs : s t r i n g ”
minOccurs=”0”/>

<xs : element name=”ex i s t e n c e c a t e g o r y ”
type=”xs : i n t ” minOccurs=”0”/>

<xs : element name=”rout e in t ended us e ”
type=”xs : i n t ” minOccurs=”0”/>

<xs : cho ice>
<xs : element r e f=”gml : Polygon” minOccurs=”0”/>
<xs : element r e f=”gml : Point ” minOccurs=”0”/>
<xs : element r e f=”gml : L ineSt r ing ” minOccurs=”0”/>

</xs : cho ice>
<!−−Facc d e s c r i p t i o n i s the d e s c r i p t i o n

be long ing to a f a c c code . −−>
<!−−Elevat ion −−>
<!−−Hydrography −−>
<!−−Transportat ion −−>
<!−−Airport usage , example m i l i t a r y . −−>
<!−−Road and Rai l road ex i s t e n c e c a t e go r i e s ,

wether they are in use or not . −−>
</xs : sequence>

</xs : extens ion>

94

</xs : complexContent>
</xs : complexType>

</xs : schema>

B.2.7 dnc.xsd

The DNC [12] schema is also a external schema as the vmap schema is.

<?xml ve r s i on =”1.0” encoding=”UTF−8”?> <xs : schema
xmlns=”http ://www. onemap . net ”
xmlns : xs=”http ://www.w3 . org /2001/XMLSchema”
xmlns : gml=”http ://www. openg i s . net /gml”
xmlns : x l i nk=”http ://www.w3 . org /1999/ x l i nk ”
targetNamespace=”http ://www. onemap . net ”
elementFormDefault=”q u a l i f i e d ” attr ibuteFormDefaul t=”unqua l i f i e d”>

<xs : import namespace=”http ://www. openg i s . net /gml”
schemaLocation =”. ./ gml/ f e a tu r e . xsd”/>

<xs : element name=”Featu r eCo l l e c t i on ”
type=”FeatureCol lect ionType”/>

<xs : element name=”Feature ” type=”FeatureType”
subst i tut ionGroup=”gml : Feature”/>

<xs : complexType name=”FeatureCol lect ionType”>
<xs : complexContent>

<xs : ex t ens i on base=”gml : AbstractFeatureCol l ect ionType”/>
</xs : complexContent>

</xs : complexType>
<xs : complexType name=”FeatureType”>

<xs : complexContent>
<xs : ex t ens i on base=”gml : AbstractFeatureType”>

<xs : sequence>
<xs : cho ice>

<xs : element r e f=”gml : Point”/>
<xs : element r e f=”gml : Polygon”/>
<xs : element r e f=”gml : L ineSt r ing”/>

</xs : cho ice>
<!−− General.−−>
<xs : element name=” f a c c d e s c r i p t i o n ”

type=”xs : s t r i n g ” minOccurs=”0”/>
<xs : element name=”hyd r o l o g i c a l c a t e g o r y ”

type=”xs : i n t e g e r ” minOccurs=”0”/>
<!−− Rivers −−>
<xs : element name=”accuracy category ” minOccurs=”0”>

<xs : simpleType>
<xs : r e s t r i c t i o n base=”xs : i n t e g e r”>

<xs : minExclus ive va lue=”0”/>
<xs : maxExclusive va lue=”3”/>

</xs : r e s t r i c t i o n >

95

</xs : simpleType>
</xs : element>
<xs : element name=”depth cu rve o r va lu e h i gh ”

type=”xs : i n t e g e r ” minOccurs=”0”/>
<xs : element name=”depth curve o r con tour va lue l ow ”

type=”xs : i n t e g e r ” minOccurs=”0”/>
<!−− Lakes −−>
<xs : element name=”a s s o c i a t ed hyd rog raph i c c a t e go ry ”

type=”xs : i n t e g e r ” minOccurs=”0”/>
<xs : element name=”sho r e l i n e t yp e c a t e g o r y ”

type=”xs : i n t e g e r ” minOccurs=”0”/>
<xs : element name=”r e qu i r e d po r t a c c e s s ”

type=”xs : i n t e g e r ” minOccurs=”0”/>
</xs : sequence>

</xs : extens ion>
</xs : complexContent>

</xs : complexType>
</xs : schema>

B.3 Lazy Integration Result Data

In the sections below result data from lazy integration processes are illustrated. The result
data are generated from the scenarios which have been used in this thesis.

B.3.1 La Guardia Airport

Below is a section of the La Guardia Airport data seen after a lazy integration has been
applied to it.

<?xml ve r s i on =”1.0” encoding=”UTF−8”?> <one : Fea tu r eCo l l e c t i on
xmlns : one=”http :// onemap . org ” xmlns : onen=”http ://www. onemap . net ”
xmlns : gml=”http ://www. openg i s . net /gml”
xmlns : vmap=”http ://www. onemap . net /vmap”
xmlns : dc=”http :// pur l . org /dc/ e lements /1 .1/”
xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s t anc e ”
xmlns=”http ://www. g i s l i n e . no”
x s i : schemaLocation=”http ://www. onemap . org Request . xsd”
f i d=”ID000004”>

<!−− o r i g i n a l VMAP0 f e a tu r e −−> <gml : featureMember>
<vmap : VMAPFeature>

<f a c cDes c r ip t i on >Coas t l i n e / Shore l ine </fa c cDes c r ip t i on >
<gml : l i n eS t r ingPrope r ty >

<gml : L ineStr ing>
<gml : Mult iL ineStr ing>

<gml : l ineStringMember>
<gml : L ineStr ing>

96

<gml : coord inate s>
−64.7100067139 ,32.3751564026

−64.7094039917 ,32.3797187805
−64.7069244385 ,32.3833503723
−64.6998443604 ,32.3873977661
−64.6890029907 ,32.3893470764
−64.6802902222 ,32.3938331604
−64.6738510132 ,32.3901138306
−64.6760864258 ,32.3851127625
−64.6872024536 ,32.3824768066
−64.6939544678 ,32.383228302
−64.6947937012 ,32.3807220459
−64.6926727295 ,32.3766021729
−64.7030563354 ,32.3750915527
−64.7116241455 ,32.365146637
−64.7132797241 ,32.3657875061
−64.7100067139 ,32.3751564026

</gml : coord inate s>
</gml : L ineStr ing>
</gml : l ineStringMember>
<gml : l ineStringMember>
<gml : L ineStr ing>

<gml : coord inate s>
−64.7100067139 ,32.3751564026

−64.7094039917 ,32.3797187805
−64.7069244385 ,32.3833503723
−64.6998443604 ,32.3873977661
−64.6890029907 ,32.3893470764
−64.6802902222 ,32.3938331604
−64.6738510132 ,32.3901138306
−64.6760864258 ,32.3851127625
−64.6872024536 ,32.3824768066
−64.6939544678 ,32.383228302
−64.6947937012 ,32.3807220459
−64.6926727295 ,32.3766021729
−64.7030563354 ,32.3750915527
−64.7116241455 ,32.365146637
−64.7132797241 ,32.3657875061
−64.7100067139 ,32.3751564026

</gml : coord inate s>
</gml : L ineStr ing>
</gml : l ineStringMember>

</gml : Mult iL ineStr ing>

</gml : L ineStr ing>
</gml : l i n eS t r ingPrope r ty >

</vmap : VMAPFeature>
</gml : featureMember>

97

<!−− In t eg ra t ed VMAP1 f e a tu r e −−> <one : featureMember>
<FeatureInformation>

<dc : i d e n t i f i e r >onemap 30213</dc : i d e n t i f i e r >
<dc : t i t l e >Coast l ine </dc : t i t l e >
<dc : date >2005−10−16</dc : date>
<dc : c reator>Kr i s t i an Lunde</dc : c reator>
<dc : format>VMAP1</dc : format>

</FeatureInformation>

<one : IntegratedCoast>
<one : l aye rDe s c r i p t i on >Coast l ine </one : l aye rDe s c r i p t i on >
<vmap : VMAPFeature>

<f a c cDes c r ip t i on >Coas t l i n e / Shore l ine </fa c cDes c r ip t i on >
<gml : l i n eS t r ingPrope r ty >

<gml : L ineStr ing>
<gml : Mult iL ineStr ing>

<gml : l ineStringMember>
<gml : L ineStr ing>

<gml : coord inate s>
−73.8968658447 ,40.7962417603
−73.8972244263 ,40.7967185974
−73.8981781006 ,40.7966651917
−73.898147583 ,40.7962608337
−73.8977355957 ,40.7957649231
−73.8971252441 ,40.7957305908
−73.8968658447 ,40.7962417603

</gml : coord inate s>
</gml : L ineStr ing>
</gml : l ineStringMember>
<gml : l ineStringMember>
<gml : L ineStr ing>

<gml : coord inate s>
−73.8968658447 ,40.7962417603
−73.8972244263 ,40.7967185974
−73.8981781006 ,40.7966651917
−73.898147583 ,40.7962608337
−73.8977355957 ,40.7957649231
−73.8971252441 ,40.7957305908
−73.8968658447 ,40.7962417603

</gml : coord inate s>
</gml : L ineStr ing>
</gml : l ineStringMember>
<gml : l ineStringMember>
<gml : L ineStr ing>

<gml : coord inate s>
−73.8968658447 ,40.7962417603
−73.8972244263 ,40.7967185974

98

−73.8981781006 ,40.7966651917
−73.898147583 ,40.7962608337
−73.8977355957 ,40.7957649231
−73.8971252441 ,40.7957305908
−73.8968658447 ,40.7962417603

</gml : coord inate s>
</gml : L ineStr ing>
</gml : l ineStringMember>

</gml : Mult iL ineStr ing>
</gml : L ineStr ing>

</gml : l i n eS t r ingPrope r ty >
</vmap : VMAPFeature>

</one : IntegratedFeature>
</one : featureMember>

: : : </one : FeatureCo l l e c t i on>

B.3.2 The Jamaica Bay Scenario

The result of a lazy integration process applied on the Jamaica Bay scenario is seen below.

<?xml ve r s i on =”1.0” encoding=”UTF−8”?> <one : Fea tu r eCo l l e c t i on
xmlns : one=”http :// onemap . org ” xmlns : onen=”http ://www. onemap . net ”
xmlns : gml=”http ://www. openg i s . net /gml”
xmlns : vmap=”http ://www. onemap . net /vmap”
xmlns : dnc=”http ://www. onemap . net /dnc”
xmlns : dc=”http :// pur l . org /dc/ e lements /1 .1/”
xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s t anc e ”
xmlns=”http ://www. g i s l i n e . no”
x s i : schemaLocation=”http ://www. onemap . org Request . xsd”
f i d=”ID000004”> : : <gml : featureMember>

<vmap : VMAPFeature>
<f a c cDes c r ip t i on >Coas t l i n e / Shore l ine </fa c cDes c r ip t i on >
<gml : l i n eS t r ingPrope r ty >

<gml : L ineStr ing>
<gml : Mult iL ineStr ing>

<gml : l ineStringMember>
<gml : L ineStr ing>

<gml : coord inate s>
−73.7175979614 ,40.585521698

−73.7107696533 ,40.5842208862
−73.7011947632 ,40.5831871033
−73.6952896118 ,40.5835456848
−73.6881027222 ,40.5829353333
−73.6842956543 ,40.5833702087
−73.677444458 ,40.5832633972
−73.6642074585 ,40.5831489563
−73.6579666138 ,40.5827484131

99

−73.6532516479 ,40.5829124451
−73.6480789185 ,40.5828132629
−73.6415252686 ,40.583278656
−73.6334075928 ,40.5844688416

</gml : coord inate s>
</gml : L ineStr ing>
</gml : l ineStringMember>
<gml : l ineStringMember>
<gml : L ineStr ing>

<gml : coord inate s>
−73.7175979614 ,40.585521698

−73.7107696533 ,40.5842208862
−73.7011947632 ,40.5831871033
−73.6952896118 ,40.5835456848
−73.6881027222 ,40.5829353333
−73.6842956543 ,40.5833702087
−73.677444458 ,40.5832633972
−73.6642074585 ,40.5831489563
−73.6579666138 ,40.5827484131
−73.6532516479 ,40.5829124451
−73.6480789185 ,40.5828132629
−73.6415252686 ,40.583278656
−73.6334075928 ,40.5844688416

</gml : coord inate s>
</gml : L ineStr ing>
</gml : l ineStringMember>

</gml : Mult iL ineStr ing>

</gml : L ineStr ing>
</gml : l i n eS t r ingPrope r ty >

</vmap : VMAPFeature>
</gml : featureMember> <one : featureMember>

<FeatureInformation>
<dc : i d e n t i f i e r >onemap 10102</dc : i d e n t i f i e r >
<dc : t i t l e >Coast l ine </dc : t i t l e >
<dc : date >2005−10−16</dc : date>
<dc : c reator>Kr i s t i an Lunde</dc : c reator>
<dc : format>DNC harbor 960</dc : format>

</FeatureInformation>
<one : IntegratedCoast>

<one : l aye rDe s c r i p t i on >Coast l ine </one : l aye rDe s c r i p t i on >
<dnc : Feature>

<f a c cDes c r ip t i on ></fa c cDes c r i p t i on >
<gml : l i n eS t r ingPrope r ty >

<gml : L ineStr ing>
<gml : Mult iL ineStr ing>

<gml : l ineStringMember>
<gml : L ineStr ing>

100

<gml : coord inate s>
−73.8879013062 ,40.578163147

−73.8877334595 ,40.5781784058
−73.887512207 ,40.5782012939
−73.8870773315 ,40.5782852173
−73.8864898682 ,40.5783233643

</gml : coord inate s>
</gml : L ineStr ing>
</gml : l ineStringMember>
<gml : l ineStringMember>
<gml : L ineStr ing>

<gml : coord inate s>
−73.8879013062 ,40.578163147

−73.8877334595 ,40.5781784058
−73.887512207 ,40.5782012939
−73.8870773315 ,40.5782852173
−73.8864898682 ,40.5783233643

</gml : coord inate s>
</gml : L ineStr ing>
</gml : l ineStringMember>

</gml : Mult iL ineStr ing>

</gml : L ineStr ing>
</gml : l i n eS t r ingPrope r ty >

</dnc : Feature>
</one : IntegatedCoast>

</one : featureMember> <one : featureMember>
<FeatureInformation>

<dc : i d e n t i f i e r >onemap 10103</dc : i d e n t i f i e r >
<dc : t i t l e >Coast l ine </dc : t i t l e >
<dc : date >2005−10−16</dc : date>
<dc : c reator>Kr i s t i an Lunde</dc : c reator>
<dc : format>DNC harbor 960</dc : format>

</FeatureInformation>
<one : IntegratedCoast>

<one : l aye rDe s c r i p t i on >Coast l ine </one : l aye rDe s c r i p t i on >
<dnc : Feature>

<f a c cDes c r ip t i on ></fa c cDes c r i p t i on >
<gml : l i n eS t r ingPrope r ty >

<gml : L ineStr ing>
<gml : Mult iL ineStr ing>

<gml : l ineStringMember>
<gml : L ineStr ing>

<gml : coord inate s>
−73.8032531738 ,40.6142539978

−73.8031082153 ,40.6142845154
−73.8029632568 ,40.6144447327
−73.8028411865 ,40.614692688

101

−73.8027496338 ,40.6149635315
−73.8025360107 ,40.6153182983
−73.8023223877 ,40.6155319214
−73.802154541 ,40.6158180237
−73.8018035889 ,40.6165351868
−73.8016357422 ,40.6168899536
−73.801651001 ,40.6171417236
−73.8015594482 ,40.6172904968
−73.8015670776 ,40.6174926758
−73.8014907837 ,40.6176490784
−73.8013916016 ,40.6178588867
−73.8013381958 ,40.6180343628
−73.8013458252 ,40.6184043884
−73.8014297485 ,40.6186790466
−73.8015289307 ,40.6190299988
−73.8015899658 ,40.6193847656
−73.8016052246 ,40.6194381714

</gml : coord inate s>
</gml : L ineStr ing>
</gml : l ineStringMember>
<gml : l ineStringMember>
<gml : L ineStr ing>

<gml : coord inate s>
−73.8032531738 ,40.6142539978

−73.8031082153 ,40.6142845154
−73.8029632568 ,40.6144447327
−73.8028411865 ,40.614692688
−73.8027496338 ,40.6149635315
−73.8025360107 ,40.6153182983
−73.8023223877 ,40.6155319214
−73.802154541 ,40.6158180237
−73.8018035889 ,40.6165351868
−73.8016357422 ,40.6168899536
−73.801651001 ,40.6171417236
−73.8015594482 ,40.6172904968
−73.8015670776 ,40.6174926758
−73.8014907837 ,40.6176490784
−73.8013916016 ,40.6178588867
−73.8013381958 ,40.6180343628
−73.8013458252 ,40.6184043884
−73.8014297485 ,40.6186790466
−73.8015289307 ,40.6190299988
−73.8015899658 ,40.6193847656
−73.8016052246 ,40.6194381714

</gml : coord inate s>
</gml : L ineStr ing>
</gml : l ineStringMember>

</gml : Mult iL ineStr ing>

102

</gml : L ineStr ing>
</gml : l i n eS t r ingPrope r ty >

</dnc : Feature>
</one : IntegratedCoast>

</one : featureMember>

103

