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Abstract
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This thesis presents a method for combining orthogonal range queries and line simplification in
2D geographical data. Asking for data representing a specific area and have it displayed in an ap-
propriate resolution is one of the basic operations of a geographic information system. In most
applications today, the data is stored in several layers of different resolutions, and when a query is
performed the approximation of the resulting area is created by querying in the correct resolution
layer. The combined solution proposed here is based on the priority search tree (PST) developed
by Edvard T. McCreight in the mid eighties. The PST is a data structure used for performing semi-
infinite range queries. It was realized that its properties made it suitable for answering stabbing
queries as well. This ability to answer stabbing queries is what has been utilized and developed
further in the data structure presented here. To solve the line simplification part of the problem,
an algorithm presented by Zhilin Li and Stan Openshaw in 1992 was used. This algorithm creates
approximations by placing a grid over the map, and selecting the points where the original line in-
tersects the grid lines. We realized that this problem could be solved as multiple stabbing queries.
In the combined solution presented in this thesis, the PST is incorporated in another, two-level, data
structure. A query in this new data structure returns an orthogonal range which is an approximation
of the same range from the original data set. This approximation is created by performing an ad-
justed query in the PST, which answers multiple stabbing queries. The test results presented show
that this new adjusted query in the PST does not have exactly the same complexity as the traditional
query, but it still performs surprisingly well.
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Prerequisites

Because the problems that this thesis deals with cover so many different aspects of computer science,
it is not possible to go into every little detail of all the subjects that are mentioned. Consequently, it is
assumed that the reader already has knowledge at the same level as a third year student of computer
science. The reader should have basic knowledge of the construction of and search algorithms
for data structures like binary trees, heaps and arrays. He or she should also be familiar with
basic analysis concepts like big-O notation, and the difference between worst case and average case
complexity. However, in case there still are unclarities, a glossary can be found in Appendix A,
introducing most of the important terms used in this thesis.
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Chapter 1

Introduction

The main purpose of this thesis is to perform empirical tests on a new data structure used for com-
bining orthogonal range search and line simplification, and thereby determine whether the proposed
approach to this problem is applicable. This new structure is based on the priority search tree (PST),
and an adjusted variant of the search method usually associated with this structure.

Asking for data representing a specific area, and have it displayed in an appropriate resolution,
is one of the basic operations of a geographic information system (GIS). Since computational geom-
etry emerged as an independent field of research in the 1980s, several data structures and algorithms
for efficiently solving these two problems have been presented. However, these structures and al-
gorithms generally only solve one of the two problems. In most GIS applications today the data is
stored in several layers of different resolutions, and when a query is performed the approximation of
the resulting area is created by querying in the correct resolution layer. Figure 1.1 illustrates the file
system of one of the applications that are based on the layer stored approach. This approach is effi-
cient in that it gets the job done, but it is also very resource demanding. As one layer often contains
half the amount of data that the preceding layer contains, the layers will converge at approximately
double the storage space. Another, and more significant, problem with this approach has to do with
consistency when updating the map. When one feature is added or deleted, all the layers must be
updated accordingly.

Figure 1.1: Approximated geographical data stored in layers (figure from [14]).
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2 Chapter 1. Introduction

Figure 1.2: Example of a window query in a map (map from www.finn.no).

The process of zooming into a large complex object, like a digital map, and present the result
with an appropriate resolution, is called a window query. These queries are not only interesting in
digital maps. For instance they are used in the process of designing printed circuit boards where
one may want to zoom in on a small portion to see more detail, or in a flight simulator where
a landscape model is presented, but only a small area at the time. In addition to these concrete
examples, window queries can be performed on all measurements that can be presented in 2D, like
temperature or growth over time. Figure 1.2 gives an example of a window query in a map, where
a small portion of the map is shown with more detail.

The data structure which has been developed, and is to be tested empirically in this thesis,
aspires to solve both the range search and the line simplification problems in one operation. This
means that the focus of this thesis must be on both these two separate problems.
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Figure 1.3: Examples of range queries.

1.1 Range Search

A range query is a query where the search key is a range. In one dimension the range is defined by
a start and a stop value, while in two dimensions the range can for instance be a square, a circle or a
polygon. A range search can also be both finite and semi-infinite. A semi-infinite range search is a
search where the query range is unbounded in at least one direction. Figure 1.3 shows examples of
range queries in one and two dimensions.

In for instance databases, range queries in higher dimensions are useful. One query can be to
list all countries that are republics, have an area over 300.000 km2, a population under 10 million
and a GNP (gross national product) over 30.000 PPP (purchasing power parities). This query will
return a four-dimensional “box” containing entries that meet all four requirements.

Common for all range queries is that the complexity of the search is output sensitive. This
means that the number of objects visited in the search depends on how many objects are reported,
instead of only depending on the number of objects in the data set, as is the case in regular searches.

1.2 Line Simplification

Line simplification is the process of removing detail from a line feature without losing the perceptual
characteristics of the line. Traditionally this process is done manually by cartographers, but over the
years several solutions to automating the process have been developed. There are several advantages
to automating this process, like saving time and effort and limiting the individual influence of the
cartographer. However, it has proven difficult to develop an algorithm that produces a satisfactory
result in all cases. For a more thorough, general overview of the different algorithms developed for
line-simplification, see Weibel [32].

There are a lot of different considerations to take when producing an approximation of a line. A
cartographer can see and make sound judgements based on what he or she sees, but a computer can
not do that. The computer can only take the input and produce an output based on the rules it has
been given. One example is if the approximation is based on snapping points to a grid and a river
and a road run parallel; how can we make sure the computer “knows” that and keeps them parallel
in the approximation? Nevertheless, despite all the obvious problems, many different approaches
to this problem have been taken, and many different algorithms have been developed. Figure 1.4
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Figure 1.4: Input and result from running the Douglas-Peucker line simplification algorithm.

shows input and output from one of them, the Douglas-Peucker algorithm from 1973 [7].

1.3 Thesis Overview

The second chapter is a background chapter, providing background information on range search and
line simplification. In the section concerning range search, several data structures and algorithms
are presented. The second section describes some of the different techniques developed for per-
forming completely automated line simplification procedures. Finally another proposed approach
to combining the two problems is presented.

The third chapter gives a general description of the PST and what it can be used for. The interval
stabbing problem is an important aspect of the work presented in this theses, and the third chapter
explains how to solve this with a PST. Next, the interval stabbing problem is expanded to a “grid
stabbing problem” which also can be solved using a PST, and the reason for this is described. The
fourth chapter gives a detailed description of the new data structure and the search methods that
have been developed. After this, theoretical analyses are provided. This chapter also explains how
an external version of it has been implemented, along with empirical test results to support the
theory.

The fifth chapter presents suggestions for further work. Some work on the suggestions that are
made has already been conducted, and this work is also described in this chapter. Finally there is
a chapter providing discussions and conclusions to whether or not the problem can be solved using
the approach presented in this thesis.



Chapter 2

Background

This chapter provides background information for the two separate problems treated in this thesis.
The first section deals with range search. It starts with an introduction to this type of search followed
by an overview over already developed data structures and algorithms that solves this problem. The
second section describes some of the different techniques developed for performing completely
automated line simplification procedures. In the third section, another proposed approach to com-
bining the two problems is presented.

2.1 Range Search

As already stated in the introduction, a range search is a query where the query key is a range.
Searching for a range leads to more than one value being reported. In one dimension the data set
can be seen as points on a line, and the query key will be an interval within which all points shall be
reported. Such a query can be efficiently solved using a regular binary tree, or even a sorted array.
Figure 2.1 illustrates how a 1-dimensional range search is carried out in a regular balanced binary
tree. Using an array is not that interesting in this context, because it can not be extended to higher 

Figure 2. A range search in a 1D range tree. 
 

 
A range search in a regular binary tree. 
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the number of coordinates in the data set. Because the search is performed in two dimensions, 
the time used for searching this structure is O(N log2 N + k), where k is the number of 
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Figure 2.1: A range search in a regular balanced binary tree. The red nodes are the ones reported from the
search, the orange are visited but not reported, and the yellow are not affected by the search at all.

5



6 Chapter 2. Background

dimensions.

The search is performed by iterating down the tree until one node where the paths to the two
end points of the query interval split, in Figure 2.1 this node is the root. After this node is found, the
search is continued both to the left and to the right, comparing the nodes in the tree to each of the
end points. When comparing to the lower end point of the interval query and the search path goes
left, all nodes in that node’s right subtree are reported, and vice versa with the upper end point. This
can be seen in the figure; When node 21 is reached the search path goes right, and then it is clear
that the nodes in 21’s left subtree (nodes 16, 17 and 19) must be reported.

As the data structure used to answer the query is a balanced binary tree, its complexity is for
the most part already known. It uses O(N) storage and can be built in O(NlogN) time, where N
is the number of points in the data set. Because the search key is a range, and therefore the result
also is a range, the query time can not be determined only based on the number of points in the
data set. If the query interval is larger than the range of the data set, all points must be reported,
which leads to a query time of O(N). This seen isolated is not a good query time. However, when
all the points must be reported, it is naturally also necessary to visit all the points in the tree. If
we refer to the number of reported points as k, the time needed to report the points from a query is
O(k). In addition to reporting the points, some nodes must be visited to find which nodes to report.
The height of a balanced binary tree is O(logN), and therefore, so is the maximal number of nodes
visited that are not reported. If this is added to the reporting time, the total time used for performing
a range search in a binary tree is O(logN + k) [5](page 99).

Now that a one dimensional range query can be answered, it is time to expand to two dimensions.
An orthogonal range query in two dimensions should return all points that are positioned within
the boundaries of the given search area. As the search area of an orthogonal range query in two
dimensions will be shaped like a rectangle, this search can be seen as two one dimensional range
queries; one in each dimension. Several data structures and search algorithms have been developed
to solve this type of query. The following subsections present some of them.

Figure 2.2: The construction of a quad-tree (figure from [3])
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2.1.1 Quad Tree

Quadtrees recursively divide space into quadrants as long as more than one node falls into each
quadrant, see Figure 2.2. Every non-leaf node in the tree has four children, each corresponding to a
quadrant that is one of the squares into which the parent’s quadrant has been divided. The leaves are
either a node or null, depending on whether or not there is a node in the corresponding quadrant.

The depth of a quadtree is determined by the number of points in the data set and the spacing
of these points: “The depth of a quadtree for a set P of points in the plane is at most log(s/c) + 3

2
where c is the smallest distance between any two points in P and s is the side length of the initial
square that contains P .” [5] (page 295).

The worst case complexity of a range query in a quadtree is O(k ∗ N1−1/k) where N is the
number of nodes in the tree and k is the number of nodes that are returned from the query [20]. The
required storage for the tree is O((d + 1)N) where d is the depth of the tree [5] (page 296).

2.1.2 Kd-tree

The kd-tree was presented by Jon Louis Bentley in 1975 [2], and is used to organize data in k
dimensions. In two dimensions, the kd-tree is a binary tree, representing coordinates in the plane.
The plane is recursively split into two equal subsets by axis-orthogonal lines. On even levels in the
tree the line is orthogonal to the x-axis, while on odd levels it is orthogonal to the y-axis. Each left
subtree consists of the points that have a coordinate value lower than it’s parent’s splitting value,
and each right subtree consists of those that have a value that is higher. All data points are stored
in the leaves, which form a partition of the plane into disjoint rectangular regions containing one
point each, see Figure 2.3. This tree will have size O(N), depth O(logN) and construction time
O(NlogN), where N is the number of points in the data set.

As can be seen from the figure, each node v in the tree corresponds to a region Reg(v) on the
plane where the points in the set are situated. Pseudo code of the algorithm for performing a range
search in a kd-tree is provided below:

1 . R e c u r s i v e p r o c e d u r e , s t a r t i n g a t v = r o o t .
2 . Se a r c h ( v , R)

a . I f v i s a l e a f , t h e n r e p o r t t h e p o i n t s t o r e d i n v i f i t l i e s i n R
b . Othe rwise , i f Reg ( v ) i s c o n t a i n e d i n R , r e p o r t a l l p o i n t s i n t h e
s u b t r e e o f v
c . O t h e r w i s e :

i . I f Reg ( l e f t ( v ) ) i n t e r s e c t s R , t h e n Se a r c h ( l e f t ( v ) ,R)
i i . I f Reg ( r i g h t ( v ) ) i n t e r s e c t s R , t h e n S ea rc h ( r i g h t ( v ) ,R)

This search has a complexity of O(
√

N +k), where N is the number of nodes in the kd-tree, and
k is the number of nodes reported from the search. O(k) is the time needed to report the points that
fall within the range. The number of visited nodes in the tree is the same as the number of regions
(Reg(N)) that intersect R but is not contained in R. To find this, find the number of Reg(N)
which are crossed by any of the four horizontal or vertical lines in R. The maximum number Q(n)
of regions in an n-point kd-tree that intersects a vertical line is Q(n) = 1+Q(n/2) if we split on x,
and Q(n) = 1+2∗Q(n/2) if we split on y. Since we alternate, we can write Q(n) = 2+2Q(n/4),
which solves to O(n1/2). Hence the complexity of O(

√
N + k).



8 Chapter 2. Background

Figure 2.3: The construction of a Kd-tree (figure from [3])

Bkd-tree

A Bkd-tree is a dynamic scalable kd-tree organized as a B+ tree presented by Procopiuc et.al. in
2002 [19]. It is described as “the first theoretically and practically efficient dynamic adaptation
of the kd-tree to external memory” [19]. This tree is actually a set of log2(N/M) static trees
(N is the number of items in the data set, and M is the number of items that can be stored in
main memory), and updates are performed by rebuilding a carefully chosen subset of these static
structures. The Bkd-tree is efficient in terms of reducing the number of I/O-operations both in
queries and in updates, and it has high storage utilization (uses close to N/B disk blocks, where B
is the number of items in a block).

To query a Bkd-tree, all the log2(N/M) trees must be queried, but theoretically holds the worst
case optimal query bound. In addition the average case update time is substantially lower than that
for other attempts of developing a dynamic kd-tree. The periodical updates leads to the update time
varying, hence, the average update time is measured.

Extensive testing of the Bkd-tree shows that the theoretical properties makes this implementa-
tion of a external and dynamic kd-tree substantially more efficient than other versions. The updates
are performed much more efficiently, while the space utilization is maintained. In addition, the fact
that the data set is stored in log2(N/M) static trees, does not appear to affect the query time.

2.1.3 Range Tree

A 1D range tree is a binary tree structure used for answering 1 dimensional range queries. This
structure and the search method is very similar to the regular binary tree described above, but there
is one difference. In a 1D range tree, all the information is stored at the leaves of the tree.

The search in a 1D range tree is carried out by comparing the x-values of the nodes in the tree to
the x and the x′ values. When a node vs is reached, whose x-value lies between x and x′, the search
is split. The search is continued in the left subtree by comparing the x-values to x. If x is smaller
than the x-value, all values in the right subtree of the node is reported. Similarly the right subtree of
vs is searched using x′. When x′ is higher than the x-value of a node, all values in this node’s left
subtree are reported. Figure 2.4 illustrates a search in a 1D range tree.
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As the associated datastructures depend on what points belong to which subtree, the rotations 
become more complex than in a regular balanced binary tree. When performing a rotation at a 
node v, the associated datastructures of the nodes involved in the rotation must be rebuilt from 
scratch. The nodes involved are all the nodes in the subtrees of v, hence, the rotation takes 
time proportional to the number of nodes in these subtrees. 
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Figure 2.4: A search in a 1D range tree.

A 2D range tree is a two-level tree structure where the first level is a 1D range tree, and all the
nodes in this tree are linked to another 1D range tree. The 2D range tree is used for, for instance,
organizing geographical points both according to their x-coordinates and their y-coordinates, and
for performing range queries on these points. In this case, the x- and y-coordinates are each given
their own level. The first level of the tree is a 1D range tree organizing the points according to their
x-coordinates. Each node on this level has an associated 1D range tree which organizes the points
according to their y-coordinates. Figure 2.5 shows an example of a 2D-range tree.

In a 2D range tree, the range query is carried out in a very similar way as in 1D. The difference
is that instead of reporting all values in the subtrees of vs, a second search is carried out in vs’s
associated tree structure. The coordinates reported are those from this associated tree structure that
have a y-value that lies within the y-limits of the query rectangle. The search in the associated tree
structure is parallel to that of the x-values in the 1D structure.

A 2D range tree is built in O(NlogN) time, and uses NlogN storage, in both cases N equals
the number of coordinates in the data set. Because the search is performed in two levels, the time
used for searching this structure is O(log2N + k), where k is the number of coordinates returned
from the search [5] (page 109).

Yi-Jen Chiang and Roberto Tamassia have described a method for making the 2D range tree
dynamic [4]. According to this method, inserting a point in a 2D range tree is done as follows:

1 . C r e a t e a new l e a f , n , f o r t h e new p o i n t p .
2 . I n s e r t p i n t h e a s s o c i a t e d d a t a s t r u c t u r e o f e v e r y a n c e s t o r o f n .
3 . Reba l ance t h e t r e e by r o t a t i n g .

As the associated datastructures depend on what points belong to which subtree, the rotations
become more complex than in a regular balanced binary tree. When performing a rotation at a node
v, the associated datastructures of the nodes involved in the rotation must be rebuilt from scratch.
The nodes involved are all the nodes in the subtrees of v, hence, the rotation takes time proportional
to the number of nodes in these subtrees. This is done in O(logN) time amortized. Inserting p in
the associated datastructures takes O(log2N) time. This leads to a total update time of O(log2N)
amortized.
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A 2D range tree is a two-dimensional binary search tree which is used for organizing 
geographical coordinates both according to their x-values and their y-values, and performing 
range queries on these coordinates. The x- and y-values are each given their own dimension. 
The outer dimension of the tree is a binary search tree on the x-values. Each node in this 
dimension has an associated binary tree which organizes the coordinates according to their y-
values. Figure 1 shows an example of a 2D-range tree. 
 

 
 

Figure 1. Example of a 2D range tree. 
 
In a 1D range tree, the range query is limited by a start value x, and a stop value x'. The search 
is then carried out by comparing the x-values of the nodes in the tree to the x and the x' values. 
When a node vs is reached, whose x-value lies between x and x', the search is split. The search 
is continued in the left subtree by comparing the x-values to x. If x is smaller than the x-value, 
all values in the right subtree of the node is reported. Similarly the right subtree of vs is 
searched using x'. When x' is higher than the x-value of a node, all values in this node's left 
subtree are reported. Figure 2 illustrates a search in a 1D range tree. 
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Figure 2.5: An example of a 2D-range tree. The orange nodes belong to the first level, and the associated
structures have green nodes.
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Figure 3. A rotation in a 2D range tree. 
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Figure 2.6: A rotation in a 2D range tree.

However, in a lecture from 1991 [24], Tamassia says that the only associated structure that needs
to be rebuilt from scratch is that of the node that becomes the child after the rotation. Figure 2.6
shows how this rotation is carried out, and v′ in the figure is the node whose associated structure
must be rebuilt from scratch. As the update time is dominated by the step where the new node is
inserted in the associated structures, this procedure also has an update time of O(log2N) amortized.

2.1.4 Interval Stabbing-max Structure

The ”Interval Stabbing-Max Data Structure” is developed by Agarwal et.al. [1], and is used for effi-
ciently answering stabbing-max queries on orthogonal ranges in all dimensions. This is interesting
because the adjusted search method for the PST, which is presented in chapter 4, is developed for
answering stabbing queries with multiple stabbing values in two dimensions.

Agarwal et.al. present a new data structure for solving the problem of dynamically maintaining
a set of axis-parallel hyper-rectangles in Rd. This new structure is based on the interval tree which
is a binary tree for storing intervals. Every node in the interval tree stores a value that splits the
endpoints of the intervals in its subtrees in half. The intervals completely to the left and to the right
of this value are also stored in the node, while the intervals that intersect the split value are stored
in two separate structures (lists or binary trees or similar); one sorted on the left endpoints and
one sorted on the right. The interval tree is used for efficiently finding all intervals that intersect a
given value. It uses O(N) storage, has O(logN) depth, and answers queries in O(logN + k) time,
where N is the number of intervals in the data set and k is the number of intervals reported from the
query [5] (page 213).

The idea of the new structure is to increase the fan-out of the base tree τ to logcN , and thereby
decreasing the hight of the tree to O(logN/loglogN) which allows spending O(loglogN) time at
every node in the search path and still obtain O(logN) query time. The new structure consists of a
balanced base tree τ with N/logN leaves with a fan-out of f =

√
logN . The f children of a node

v are organized in a binary search tree, which can be searched in O(logf) = O(loglogN) time.
Each node in the tree is associated with a range σv which is the union of all ranges associated
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Figure 2.7: An internal node v in the base tree τ . (Figure from [1])

with its children. σv is divided into f subranges according to the children’s ranges, these subranges
are referred to as slabs. The boundaries of the subranges are referred to as slab boundaries, and
bi(v) is used to denote the slab boundary between σvi−1 and σvi . Multislabs are continuous ranges
of slabs; σv[i : j] is the multislab consisting of slabs σvi through σvj for 1 ≤ i ≤ j ≤ f . Figure 2.7
shows a node v with f = 5 children.

An interval s is associated with a node v if it crosses at least one of v’s slab boundaries, but
none of v’s parent’s. If an interval has both endpoints in a leaf z, it crosses no boundaries, and is
stored in z. If an interval has both endpoints in an internal node, it is stored in this node’s associated
structure.

A stabbing-max query, q, in this structure is carried out by querying the associated structures
of all the internal nodes on the path from the root of the tree to the leaf containing q, and then
return the maximum of the reported intervals. Since the height of the tree is O(logN/loglogN) and
O(loglogN) time is spent at each node in the path, the total query time will be O(logN).

2.2 Line Simplification

Line simplification is one of the key elements to cartographic generalization. In [12] generalization
is defined as the process of reducing the size and complexity of a spatial dataset with visual quality
preserved or enhanced. In a cartographic context this means that, for instance, in a GIS, if a map
of a town is displayed, and then the map is zoomed out to display the entire country, the amount
of detail presented in the map of the town must be reduced in order to maintain the clarity of the
map. To reduce the amount of detail, some of the data presented must be removed; the lines must be
simplified, some features must be eliminated, others moved, enlarged or combined. Introductions to
and analyses of many tools and data structures developed for performing automated generalization
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Figure 2.8: Some generalization techniques: (a) aggregation - join a group of different features into a higher-
order feature; (b) collapse - symbolize a feature as a lower-order feature; (c) amalgamation - join features of
the same class into a larger feature of the this class. (Figure from [6])

of geospatial data can be found in [30] and in [13].
As geographic information systems and spatial databases increase in number and size, develop-

ing techniques for automated generalization is one of the issues must be addressed. Both in areas
like the creation and maintenance of spatial databases at multiple scales, cartographic visualization
at variable scales and data reduction, these techniques are needed. Generalization is a composite
and complex process and can be split into categories [27]:

• Simplification - e.g. line simplification

• Combination - combine features theoretically or geometrically

• Symbolization - e.g. reduce a polygon to a polyline or a point

• Selection - eliminate features that are too detailed

• Exaggeration - enlarge features that are important for a specific type of map

• Displacement - move features

Figure 2.8 gives examples of techniques within the combination and symbolization categories.
As already stated, line simplification is one of the key elements to cartographic generalization.

The line simplification algorithms can be divided into the following categories [32]:

• Independent point algorithms are outdated algorithms where the points in the simplified line
are picked by random.

• Local processing algorithms are algorithms where the characteristics of immediate neigh-
boring points determine which points to include in the simplified line. The local processing
algorithms can be divided into two sub categories:
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Figure 2.9: Lang algorithm. Figures a-c show the first iteration for a complete look-ahead. Figure d depicts
the resulting line segments, with the eliminated points shown in white. (Figure reproduced from [32])

– Constrained extended local processing algorithms operate on sections of the line to
decide which points to include and which to exclude.

– Unconstrained extended local processing algorithms evaluate sections of the line in
the simplification process, but in this class the extent of the search is determined by the
shape complexity of the line.

• Global algorithms consider the entire line and iteratively select critical points, while exclud-
ing others based on criteria of tolerance.

The following sections describe some of the many different algorithms and data structures for
automated line simplification developed over the years. Many approaches have been taken, each
with the goal of automatically creating an approximation of a polyline as efficient as possible and
with the best possible result.

2.2.1 Lang

The Lang algorithm was published in 1969, and is one of the earliest line simplification algo-
rithms [9]. It belongs to the constrained extended local processing algorithms, and the extent of
the local search is controlled by the so-called ’look-ahead’ parameter. If, for instance, this para-
meter is five, then segments of five points are controlled to see if any of the points fall outside a
tolerated distance.

Figure 2.9 shows how the Lang algorithm works on a line with a look-ahead of 5 points. Start
by drawing a base line between point p1 and a floating end point starting at (1 + 5 = 6). Then
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calculate the distance between the base line and the points that are between the starting point and
the end point. If any of these points have a distance to the base line that is larger than the tolerated
distance, the point previous to the former end point becomes a new floating end point, and the new
distances are calculated and checked. This is repeated until all of the points fall within the tolerated
distance to the base line. The points that are within the tolerated distance are then eliminated, and
the current floating end point becomes the new starting point of the next base line.

The worst case running time for this simplification is .... This worst case scenario occurs when
no point is within the tolerated distance at any point, so all floating end points becomes the point
immediately following the starting point at every look-ahead sequence.

2.2.2 Douglas-Peucker

The Douglas-Peucker algorithm is a global line simplification algorithm, and was presented in
1973 [7]. Very early a Fortran implementation was developed [33], and this lead to the algorithm
being included in practically every GIS package on the market. Because of this the Douglas-Peucker
algorithm probably is the most used line simplification algorithm today, and many have suggested
and developed improved and modified versions of this algorithm.

The algorithm creates approximations by excluding all points that are within a given tolerated
distance, similar to the Lang algorithm described in the previous section. A point’s distance is
established by drawing a line between the end points of the polyline, and calculating its distance to
this line. If there are any points that have a distance larger than what is tolerated, the line is split at
the one with the largest distance, and so the process is recursively repeated. Figure 2.10 illustrates
this process. More on the Douglas-Peucker algorithm, along with some test results, can be read
in [18] (chapter 3).

The worst-case complexity of the Douglas-Peucker line simplification is O(N2), and the best-
case is O(N). The best-case is when the polyline can be simplified to a single line drawn between
its end points. The worst-case is when no simplification is performed, that is, all the original points
are included in the simplified result [8].

The Binary Line Generalization Tree

In a Binary Line Generalization tree (BLG) is a binary tree used for storing the result of applying
the Douglas-Peucker algorithm to a polyline [28]. The points of the polyline are stored as nodes in
the tree, and the root of the BLG is the point with the largest distance to the line between the starting
and the ending points of the polyline. Figure 2.11 gives an example of a polyline and its BLG, and,
as can be seen in Figure 2.11(a), the point p8 is the one with the largest distance to the line, and is
therefore the root of the BLG in Figure 2.11(b).

When the algorithm is completed, all the points, except for the starting point and the ending point
which are implicit, are stored in the tree along with their error value, ε. ε is the distance between the
point and the line between the two current end points. Figure 2.11(b) gives the complete BLG that
is the result of applying the Douglas-Peucker algorithm to the polyline in Figure 2.11(a).

The most coarse approximation of a polyline is the line between the starting point and the ending
point of the polyline. The error of this approximation is determined by the ε of the root of the BLG,
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Figure 2.10: The Douglas-Peucker algorithm. a) Initial base line with furthest vertex (p10). b) First split into
two parts, again with furthest vertices (p4, p14) shown. c) Second split. Vertices p2 and p3 are now within the
tolerated distance, while the second part must be split further at vertex p7. Also need one more split at p13 on
the other side. d) One more split is required at p6. e) The result of the algorithm. Excluded points are colored
white. (Figure reproduced from [32])



2.2. Line Simplification 17

 
 

 

p1 

p2 
p3 

p4 

p5 p6 

p7 
p8 

p9 

p10 

p8 

p2 p9 

p5 

p4 p7 

p6 p3 

(a) The input line

 
 

 

p1 

p2 
p3 

p4 

p5 p6 

p7 
p8 

p9 

p10 

p8 

p2 p9 

p5 

p4 p7 

p6 p3 

(b) The output tree

Figure 2.11: Example of a polyline and its BLG.
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Figure 2.12: Example of a polyline leading to increasing error values in a BLG.

which is the point farthest away from the line and in Figure 2.11(a) this is the point p8. The next
approximation is formed by two lines; one from the starting point to the the root of the BLG, and
one from this point to the ending point. This will generally be a more accurate representation of the
polyline.

When all the nodes and their εs are stored in the BLG, an approximation is generated by per-
forming a search in the tree. the search is continued until the ε of a node is so small that the line
segment it represents not will be included in the result, and then the search is stopped. In a “normal”
situation the εs of the nodes in the tree are descending. This means that all the nodes in tree have
εs that are smaller than their parent’s. However, this is not always the case. Figure 2.12 illustrates
an example of a polyline leading to increasing error in the BLG. As the search is stopped when one
node is reached that has an ε that is too small, this type of error can lead to points being excluded
that should have been included in the result.

The worst-case complexity of building a BLG is O(N2), where N is the number of points in
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the polyline. The worst-case occurs when the points with the largest distance to the lines always is
at one end of the segment of the polyline, so that all the points end up in one subtree at every level
of the BLG. The best-case complexity is O(N), and this occurs when the point with the largest ε
always is the mid point, and, hence, the points are evenly split in half on every level. The complexity
of creating an approximation of a BLG is O(logN + k), where N is the number of points in the
polyline and k is the number of points returned.

2.2.3 Li/Openshaw

In an article from 1992, Zhilin Li and Stan Openshaw describe a set of algorithms for locally-
adaptive line generalization based on the so-called natural principle of objective generalization [10].
Prior to this, many of the existing methods where based on the concept of critical points, like for
instance the Douglas-Peucker data reduction method described in the previous section. The article
gives examples of, and compares, traditional manual generalization, generalization by the Douglas-
Peucker algorithm, and generalization by the set of new algorithms presented in the article.

Li and Openshaw present three new algorithms for map generalization: the vector mode al-
gorithm, the raster mode algorithm and the raster-vector algorithm. A critical parameter of their
approach is the size of the smallest visible object, referred to as SV O, which can be a circle or a
raster. The following equation is used to calculate the size of the SV O to generalize a map to a
given scale:

Fc = St ×D × (1− Sf/St) (2.1)

In the equation St is the scale factor of the map to which the generalization is carried out; D is the
ideal length of the sides of the SV O at map scale St, within which all information can be neglected;
Sf is the scale of the original map before the generalization; Fc is the corresponding length of the
sides of the SV O in terms of ground distance. To be able to use this formula, a suitable value for
D must be found. Li and Openshaw have used 0.4mm because that was suggested as the minimum
needed to ensure visual separability by Muller [16].

Figure 2.13: Line generalization in vector mode. (Figure from [10])
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Vector Mode

The vector mode algorithm uses a circular SV O to generalize the lines, and the size of the SV O
is calculated using the equation 2.1 above. To find the location of the first SV O, a circle with a
diameter twice as large as the SV O’s is positioned with the start point of the line as its center point.
This point is marked A in Figure 2.13, and this large circle intersects the line at point C. The line
AC will be the radius of the large circle and the diameter of the SV O. The area covered by the
SV O can now be disregarded and will be represented by the SV O’s center point, 1. This process
is then repeated, now with C as the center point of the large circle. When the entire line has been
processed, that is, the end point of the line is covered by the SV O, the generalization is complete
and the resulting approximated line can be presented.

Raster Mode

The circular SV O used in the vector mode algorithm can be computationally expensive. This leads
to another proposed algorithm working in raster mode which uses a raster SV O. Using rasters
makes the algorithm faster and easier to implement. The equation used to determine the diameter
of the SV O in vector mode, is in raster mode used to determine the length of the sides of the raster
SV O. The first raster is positioned with its center point at the start point of the line that is to be
generalized. The area covered by the raster will be represented by this center point. The next raster
is positioned directly above, beside or below the first raster, depending on where the line string
“moves”. This process is then repeated until the end point of the line is reached. The rasters will
create a grid over the map, and the approximated line is created by selecting the center points of the
rasters affected by the original line.

Raster-vector Algorithm

The raster-vector algorithm is, as the name implies, a combination of the vector and the raster
mode algorithms. The raster mode algorithm is fast and easy to implement, while the vector mode

 
 
 

a) b) 

Figure 2.14: (a) The points where a polyline intersects the lines of a grid placed over it; (b) The midpoints
between the intersecting points from (a).
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Figure 2.15: Generalization examples a) original curve,b) c) and d) are generalized by the raster-vector
algorithm, b) with grid size 0.25, c) grid size 1.0 and d) grid size 5.0.

algorithm produces a smoother result. In the raster-vector mode the raster mode’s raster SV Os are
chosen, combined with the vector mode’s method for selecting the points that the generalized result
will consist of. Figure 2.14 illustrates how in (a) the points where the line intersects the grid lines
are chosen. In (b) the mid points of these intersecting points are calculated, and these are the points
that the generalized line will consist of.

Figure 2.15 shows the result of running an implementation of the raster-vector algorithm with
different size SV Os on a map of the coastlines of Australia. In Figure 2.16 Li and Openshaw’s
implementation of the raster-vector method is compared to corresponding generalizations carried
out by a manual cartographer and by the Douglas-Peucker data reduction algorithm. The results
show that the raster-vector algorithm produces a generalization much closer to that produced by
traditional manual generalization, than what the Douglas-Peucker algorithm does.

2.2.4 Visvalingam-Whyatt

This algorithm is a local processing algorithm that was presented in 1993 in an attempt to pre-
serve salient shapes and entire features rather than selecting specific points [31]. Visvalingam and
Whyatt argue that the selection of the furthest point outside the tolerance band as a critical point is
insufficient as these points can be erroneous or located on minor features.

The algorithm eliminates points on a line based on the effective area ε, which is the triangle
formed by each point and their immediate neighbors, see Figure 2.17. During execution the original
line is processed multiple times, and each time the point with the smallest ε is considered least sig-
nificant, and removed. Then the areas of the neighboring points are recalculated, and the procedure
is repeated until all the points are sorted in a sequence according to the size of their ε. Figure 2.18
illustrates the last step of generalizing the polyline from Figure 2.17, and the recomputing of the
two areas that are left after the generalization is complete.

Below is the pseudo code of the algorithm, cited from [31].

Compute t h e e f f e c t i v e a r e a o f each p o i n t

D e l e t e a l l p o i n t s w i th z e r o a r e a and s t o r e them i n a s e p a r a t e l i s t
w i th t h i s a r e a

REPEAT
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Figure 2.16: Generalization of a river segment by various methods. (a) A river segment digitized from
1 : 10.000 scale map; (b) The river digitized from 1 : 165.000 scale map (which is manually generalized);
(c) The river generalized from 1 : 10.000 to 1 : 165.000 scale by Douglas data reduction algorithm; (d) The
river generalized from 1 : 10.000 to 1 : 165.000 scale by the raster-vector algorithm. (Figure from [10])
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Figure 2.17: A polyline with the effective areas of the points marked. (Figure reproduced from [31])

− Find t h e p o i n t w i th t h e l e a s t e f f e c t i v e a r e a and c a l l i t
t h e c u r r e n t p o i n t . I f i t s c a l c u l a t e d a r e a i s l e s s t h a n t h a t o f t h e
l a s t p o i n t t o be e l i m i n a t e d , use t h e l a t t e r ’ s a r e a i n s t e a d . ( Th i s
e n s u r e s t h a t t h e c u r r e n t p o i n t c a n n o t be e l i m i n a t e d w i t h o u t
e l i m i n a t i n g p r e v i o u s l y e l i m i n a t e d p o i n t s . )

− D e l e t e t h e c u r r e n t p o i n t from t h e o r i g i n a l l i s t and add t h i s t o
t h e new l i s t t o g e t h e r w i th i t s a s s o c i a t e d a r e a so t h a t t h e l i n e may
be f i l t e r e d a t run t ime .

− Recompute t h e e f f e c t i v e a r e a o f t h e two a d j o i n i n g p o i n t s .

UNTIL
− The o r i g i n a l l i n e c o n s i s t s o f on ly 2 p o i n t s ; t h e s t a r t and end p o i n t s .

For a polygon with N points, N − 1 εs will be generated, and for a line with N points, N − 2
εs. The start and end point of the line are defined as immovable points. After the immovable points
have been identified, the remaining points are ranked by the size of their ε. The point with the
smallest ε will be removed first when an approximation is to be made [34].

2.3 Combining Range Search and Generalization

As stated in the introduction, most GIS packages today have the data stored in layers of different
levels of resolutions. This leads to a lot of redundant storing and difficulties when updating. The
solution presented in this thesis is not the first proposed combined solution to this problem. In the
early 1990s Peter van Oosterom, a Dutch computer scientist, described how a combination of three



2.3. Combining Range Search and Generalization 23 
 
 
 

 
 

 
 

p2 

p3 

p6 

p5 
p4 

p3 

p1 

p2 

p5 p4 

p3 

p2 

p5 

p4 

p3 

p2 

p1 p1 

p4 

p5 
a) b) 

Figure 2.18: The last step in generalizing the line from Figure 2.17 by repeatedly deleting the smallest E.
(Figure reproduced from [31])

Figure 2.19: An example of a reactive tree. (Figure from [27])

data structures called the GAP-tree, the reactive tree and the BLG tree (see section 2.2.2) can be
used to perform a complete generalization of a chosen section of a map [29]. In this approach the
BLG tree is used for line simplification, and the reactive tree for selecting or ignoring entire features
based on their importance. When performing these two tasks, two problems can occur: Simplifying
two lines can lead to overlaps or gaps between neighbouring features, and ignoring entire features
will lead to a map full of holes. The GAP-tree is presented as a possible solution to these two
problems.

2.3.1 Reactive Tree

The reactive tree is a data structure used for organizing map features according to the result of a
generalization evaluation process, where the features are given importance values based on their
size and type [27]. The importance values of a feature will vary depending on the function of the
map, and this evaluation process is performed by a specialist. The reactive tree is based on the
R-tree, so each node can have several children. Figure 2.19 shows an example of a reactive tree.
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The reactive tree has two types of entries: object-entries and tree-entries. Both entries have an
MBR which is the minimal bounding rectangle and an importance value. In addition the object-
entry has an objectID and the tree-entry has a child-pointer which contains the reference to a sub
tree. The reactive tree also has a number of properties that must be maintained:

1. For each object-entry, MBR is the smallest axes-parallel rectangle that geometrically con-
tains the represented object of importance impV al.

2. For each tree-entry, MBR is the smallest axes-parallel rectangle that geometrically contains
all rectangles in the child node, and impV al is the importance of the child node incremented
by 1.

3. All the entries contained in nodes on the same level are of equal importance, and more im-
portant entries are stored at higher levels.

4. Every node contains between m and M object-entries and/or tree-entries unless it has no
brothers (a pseudo-root).

5. The root contains at least 2 entries unless it is a leaf.

A search in a reactive tree is carried out by reporting all objects that have an importance value
greater or equal to the limit given in the search. The importance limit should be selected so that an
equal number of objects are returned in every search; give a high importance limit for large areas
and a low limit for small areas. The search algorithm is as follows, starting with the current node
being the root of the tree:

1 . I f t h e i m p o r t a n c e o f t h e c u r r e n t node , N, i s l e s s t h a n t h e
i m p o r t a n c e l i m i t , imp , t h e r e a r e no q u a l i f y i n g r e c o r d s i n t h i s node
or i n any of i t s s u b t r e e s .

2 . I f t h e i m p o r t a n c e o f N i s g r e a t e r t h a n or e q u a l t o t h e imp ,
r e p o r t a l l o b j e c t−e n t r i e s i n t h i s node t h a t o v e r l a p t h e s e a r c h
r e g i o n , S .

3 . I f t h e i m p o r t a n c e o f t h e N i s g r e a t e r t h a n imp , a l s o i nvo ke t h e
s e a r c h a l g o r i t h m f o r t h e sub t r e e s t h a t c o r r e s p o n d t o t r e e−e n t r i e s
t h a t o v e r l a p S .

2.3.2 GAP-tree

The GAP-tree (Generalized Area Partitioning) is used to store an area partitioning hierarchy deter-
mining which features will be removed and which will be used to fill the gap of the removed feature.
The area partitioning is usually stored in a topological data structure with nodes, edges and faces.
The nodes contain their point and a list of references to edges that are connected to the point. The
edges contain their polyline, length and references to the left and right face, and the faces contain
their weight factor, area and a list of references to edges forming the face’s boundary. From this
topological data structure, the hierarchy can be constructed as follows:
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Figure 2.20: The scene and the associated GAP-tree. (Figure from [27])

1 . For each f a c e i n t h e t o p o l o g i c a l d a t a s t r u c t u r e an ” u n c o n n e c t e d
empty node i n t h e GAP−t r e e ” i s c r e a t e d .

2 . Remove t h e l e a s t i m p o r t a n t a r e a f e a t u r e a from t h e t o p o l o g i c a l
d a t a s t r u c t u r e .

3 . Use a t o p o l o g i c a l d a t a s t r u c t u r e t o f i n d t h e n e i g h b o r s o f a , and
d e t e r m i n e f o r e v e r y n e i g h b o r b t h e l e n g t h o f t h e i r common boundary
L ( a , b ) .

4 . F i l l t h e gap by s e l e c t i n g t h e n e i g h b o r b wi th t h e h i g h e s t v a l u e
o f t h e c o l l a p s e f u n c t i o n :

C o l l a p s e ( a , b ) = f ( L ( a , b ) , Compa t ib leTypes ( a , b ) , w e i g h t f a c t o r ( b ) )

The f u n c t i o n Compat ib leTypes ( a , b ) d e t e r m i n e s how c l o s e t h e two
f e a t u r e t y p e s o f a and b a r e i n t h e f e a t u r e c l a s s i f i c a t i o n h i e r a r c h y
a s s o c i a t e d wi th t h e d a t a s e t . For example , t h e f e a t u r e t y p e s
” t u n d r a ” and ” t r e e s ” a r e c l o s e r t o g e t h e r t h a n f e a t u r e t y p e s ” t u n d r a ”
and ” i n d u s t r y ” .

5 . S t o r e t h e po lygon and o t h e r a t t r i b u t e s o f f a c e a i n i t s node i n
t h e GAP−t r e e and make a l i n k i n t h e t r e e from p a r e n t b t o c h i l d a .

6 . A d j u s t t h e t o p o l o g i c a l d a t a s t r u c t u r e , t h e i m p o r t a n c e v a l u e o f b ,
and t h e l e n g t h o f common b o u n d a r i e s L ( b , c ) f o r e v e r y n e i g h b o r c o f
t h e a d j u s t e d f a c e b t o t h e new c o l l a p s e d s i t u a t i o n .



26 Chapter 2. Background

Repeat the steps 2-6 until only one huge area feature is left. This last area feature will become
the root of the GAP-tree. Figure 2.20 shows an example of a scene and its associated GAP-tree.

2.3.3 Combining the Three Data Structures

Oosterom’s approach does not only concern line simplification, but also other parts of the gen-
eralization process like selection, symbolization and combination. The generalization has been
developed in the Postgres DPMS environment. Carrying out the generalization process is done by
a Postquel query with the proper values for the BLG and the reactive tree depending on the current
scale:

r e t r e i v e ( b l g p g n 2 = Blg2Pgn ( A r e a F e a t u r e . shape , ” 0 . 0 1 ” : : f l o a t 4 ) )
where A r e a F e a t u r e . r e a c t i v e && ” ( 1 3 , 4 0 , 2 3 , 4 7 , 2 ) ” : : REACTIVE2
s o r t by A r e a F e a t u r e . o i d

The function Blg2Pgn uses the BLG-tree, and the GAP-tree is reflected by the sort by state-
ment in the query.

One problem with using the BLG is that when the map consists of several polylines, one BLG
must be created for each of them. This means that when an approximation of only a small area is to
be made, still many BLGs may have to be searched, and this will affect the efficiency of using the
BLG for line simplification. Another problem with this approach is that the empty areas that may
occur only are filled by features higher in the GAP-hierarchy. With this is mind, the question is:
What will happen when one wants to extract only a small piece of a large object? Can this approach
handle that kind of query? An example of such a situation could be that one wants to display a beach
extracted from a global coastline. In the rest of this thesis, one other approach, that can handle this
type of query, is presented.



Chapter 3

Using the Priority Search Tree to Solve
Computational Geometry Problems

This chapter provides information about the priority search tree (PST) which is used as a basis in
the method for combining orthogonal range search and line simplification which is presented in
this thesis. The first section describes the PST and the search method normally used with this tree
structure; the bucket search. The second section presents one interesting application of the PST and
the bucket search. The third section gives an introduction to the adjusted search method described
in the following chapter, along with an explanation of why this adjustment is interesting.

3.1 The Priority Search Tree

The PST was discovered in the mid eighties by Edvard T. McCreight [11]. It is a hybrid of a heap
and a balanced search tree, suitable for organizing geographical points because it makes it possible
to organize the points in two dimensions. It is used for efficiently answering semi-infinite range
queries, that is; range queries where at least one of the sides of the range is unbounded.

Heaps are stored in binary trees and are normally used for finding the largest (or smallest) value
in a set. However, they can also be used for answering range queries of the type [q : ∞). The query
time for this type of query is O(1 + k) where k is the number of values reported. The query is
performed by entering the tree and checking whether the root is within the query range (the value is
greater than q). If it is, report the point and proceed in both sub trees. As soon as a node is reached
that has a value smaller than q, the search is aborted. The search can be aborted at this stage because
every node in this node’s sub tree will have an even smaller value. Hence, the O(1 + k) query time.

The heap is constructed by selecting the highest value, and storing this in the root of the heap.
The rest of the values are divided into two subsets of approximately equal size, and the process is
repeated. See an example of a heap in Figure 3.1. When constructing a heap, there are no restrictions
as to how the rest of the values are split in half, and this is where McCreight came up with a good
idea: Instead of splitting the remaining values into two arbitrary subsets, use the other dimension as
a splitting criterion. This way, if the search is unbounded in the upper y-direction, the points in the
subset that will make out the left sub tree of the heap all have smaller x-coordinates than the ones in

27
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The PST was discovered in the mid eighties by Edvard T. McCreight [12]. It is a hybrid of a heap 
and a balanced search tree, suitable for organizing geographical points because it makes it 
possible to organize the points in two dimensions. It is used for efficiently answering semi-
infinite range queries, that is; range queries where at least one of the sides of the range is 
unbounded.  
 Heaps are constructed as binary trees and are normally used for finding the largest (or 
smallest) value in a set. However, they can also be used for answering range queries of the type 
[q:uendelig). The query time for this type of query is O(1+k) where k is the number of values 
reported. The query is performed by entering the tree and checking whether the root is within the 
query range (the value is greater than q). If it is, report the point and proceed in both sub trees. As 
soon as a node is reached that has a value smaller than q, the search is aborted because every 
node in its sub tree will have an even smaller value. Hence, the O(1+k) query time.  
 

 
Example of a heap where the root of every sub tree has a higher value than all the nodes in the subtree. 

 
Now, the heap is constructed by selecting the highest value, and storing this in the root of 

the heap. The rest of the values are divided into two subsets of approximately equal size, and the 
process is repeated. When constructing a heap, there are no restrictions as to how the rest of the 
values are split in half, and this is where McCreight came up with a brilliant idea: Instead of 
splitting the remaining values into two arbitrary subsets, use the other dimension as a splitting 
criterion. This way, if the search is unbounded in the upper y-direction, the points in the subset 
that will make out the left sub tree of the heap all have smaller x-coordinates than the ones in the 
right sub tree, which is the how the values are distributed in a balanced search tree. For a given 
set of points S, a PST is created as follows [15]: 

 
1. If S is empty, return a null pointer. 
2. The point P in S with the greatest y-coordinate becomes the root R of the PST. 
3. If (S-P) is empty, return R.  
4. Let Split(P) be a value such that half of the points in (S-P) have x-coordinates lower than 
Split(P), and half higher. 
5. Recursively create a PST on the lower half of (S-P), let its root be the left child of R. 
6. Recursively create a PST on the upper half of (S-P), let its root be the right child of R. 

 
Figure 3.1 illustrates the construction of a PST, from a set consisting of 11 points. The points that 
are included in the tree are coloured green, the points being chosen next are red, and the points 
yet to be processed are blue. The black squares indicate null pointers. 

The semi-infinite search that is unbounded in the upper y-direction is called a bucket 
search. In Figure 3.2 one such search is illustrated, and the algorithm for answering a bucket 
search in a PST is as follows [15]: 
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Figure 3.1: Example of a heap where the root of every sub tree has a higher value than all the nodes in the
subtree.

the right sub tree, which is the how the values are distributed in a balanced search tree. For a given
set of points S, a PST is created as follows [25]:

1 . I f S i s empty , r e t u r n a n u l l p o i n t e r .
2 . The p o i n t P i n S wi th t h e g r e a t e s t y−c o o r d i n a t e becomes t h e r o o t

R of t h e PST .
3 . I f ( S−P ) i s empty , r e t u r n R .
4 . Le t S p l i t ( P ) be a v a l u e such t h a t h a l f o f t h e p o i n t s i n ( S−P )

have x−c o o r d i n a t e s lower t h a n S p l i t ( P ) , and h a l f h i g h e r .
5 . R e c u r s i v e l y c r e a t e a PST on t h e lower h a l f o f ( S−P ) , l e t i t s r o o t

be t h e l e f t c h i l d o f R .
6 . R e c u r s i v e l y c r e a t e a PST on t h e uppe r h a l f o f ( S−P ) , l e t i t s r o o t

be t h e r i g h t c h i l d o f R .

Figure 3.2 illustrates the construction of a PST, from a set consisting of 11 points. The points
that are included in the tree are colored green, the points being chosen next are red, and the points
yet to be processed are blue. The black squares indicate null pointers.

The semi-infinite search that is unbounded in the upper y-direction is called a bucket search. In
Figure 3.3 one such search is illustrated. The algorithm for answering a bucket search in a PST is
as follows [25]:

1 . I f t h e t r e e i s n u l l , r e t u r n w i t h o u t f i n d i n g any p o i n t s .
2 . Le t R be t h e r o o t o f t h e t r e e , X i t s x−c o o r d i n a t e , Y i t s

y−c o o r d i n a t e and S p l i t (R) t h e v a l u e s p l i t t i n g t h e x−r a n g e s o f t h e
nodes i n t h e s u b t r e e s o f R . Also l e t t h e s e a r c h a r e a be d e f i n e d by
X’ , X’ ’ and Y’ .

3 . Compare Y t o Y’ . I f (Y < Y’ ) , r e t u r n w i t h o u t f i n d i n g any p o i n t s
( t h e r o o t o f t h e t r e e has t h e h i g h e s t y−c o o r d i n a t e ) .

4 . I f (X’ <= X <= X’ ’ ) , r e p o r t R .
5 . I f (X’ < S p l i t (R ) ) , t h e x−r a n g e o f t h e l e f t s u b t r e e o v e r l a p t h e

x−r a n g e o f t h e query , r e c u r s i v e l y s e a r c h t h e l e f t s u b t r e e o f R .
6 . I f ( S p l i t (R) < X’ ’ ) , t h e x−r a n g e o f t h e r i g h t s u b t r e e o v e r l a p t h e

x−r a n g e o f t h e query , r e c u r s i v e l y s e a r c h t h e r i g h t s u b t r e e o f R .

In the example of such a bucket search in Figure 3.3, the range of the query is indicated by the
red lines forming a “bucket”. The nodes reported are colored red, the nodes visited are blue, and the
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Figure 3.2: Building a PST.

 
 
 

 
 
 

 
 

Figure 3.3: Illustrating the concept of a bucket search in a PST.
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1. If the tree is null, return with out finding any points. 
2. Let R be the root of the tree, X its x-coordinate, Y its y-coordinate and Split(R) the value 
splitting the x-ranges of the nodes in the sub trees of R. Also let the search area be defined by 
X’, X’ ’ and Y’. 
3. Compare Y t o Y’. If (Y < Y’), return without finding any points (the root of the tree has the 
highest y-coordinate). 
4. If (X’ <= X <= X’ ’), report R. 
5. If (X’ < Split(R)), the x-range of the left sub tree overlap the x-range of the query, recursively 
search the left sub tree of R. 
6. If (Split(R) < X’ ’), the x-range of the right sub tree overlap the x-range of the query, 
recursively search the right sub tree of R. 

 
An example of such a bucket search is shown in Figure 3.2. The range of the query is 

indicated by the red lines forming a “bucket”. The nodes reported are coloured red, the nodes 
visited are blue, and the nodes not touched by the query are green. 
 

3.2 Interval Stabbing 
The interval stabbing query is the term for maintaining a set of intervals so that for any given 
value h, all intervals that contain h efficiently can be reported. Figure xx illustrates an interval 
stabbing query. These queries have a number of applications, and the following paragraph gives a 
couple of examples. 
 

 
An interval stabbing query. The intervals 2, 4 and 5 will be returned from this query, as they are the intervals that 

contain the query value h. 
 

In 3D computing the interval stabbing query can be used for determining which isosurface 
is active. Every cell in the scene is given an interval I = [min:max] where min and max are the 
minimum and maximum among the scalar values of the vertices of the cell. When this is done, a 
cell is active if and only if its interval contains the isovalue h [1]. In the design of printed circuit 
boards window queries are performed to inspect small parts in more detail. These window queries 
can be reduced to interval stabbing queries because the objects on such a board usually consist of 
line segments parallel to one of the edges of the board or make 45 degree angles with the sides. 
The line segments that is to be included in the window query will then intersect one or two of the 
sides of the query range, or they can partially overlap one of the sides [compgeom]. Interval 
stabbing problems also occur in grid-based line simplification algorithms where the 
approximation of the line is created on the basis of placing a grid over the map and select the 
points where the original polyline intersect the grid lines. 
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Figure 3.4: An interval stabbing query. The intervals 2, 4 and 5 will be returned from this query, as they are
the intervals that contain the stabbing value h.  
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Figure 3.5: How to map an interval with two end points to a point with two coordinates.

nodes not touched by the query are green.

3.2 Interval Stabbing

“Interval stabbing” is the term for maintaining a set of intervals so that for any given value h,
all intervals that contain h can be reported efficiently. Figure 3.4 illustrates an interval stabbing
query. These queries have a number of applications, and the following paragraph gives a couple of
examples.

In 3D computing the interval stabbing query can be used for determining which isosurface is
active. Every cell in the scene is given an interval I = [min : max] where min and max are the
minimum and maximum among the scalar values of the vertices of the cell. When this is done, a
cell is active if and only if its interval contains the isovalue h [22]. In the design of printed circuit
boards window queries are performed to inspect small parts in more detail. These window queries
can be reduced to interval stabbing queries because the objects on such a board usually consist of
line segments parallel to one of the edges of the board or make 45◦ angles with the sides. The line
segments that are to be included in the window query will then intersect one or two of the sides of
the query range, or they can partially overlap one of the sides [5] (page 212).
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Figure 3.6: Mapping intervals to points, and answering an interval stabbing query using a PST.

McCreight (the designer of the PST) observed that the PST can be used for answering stabbing
queries as well as the semi-infinite bucket queries described above. The transformation is simple:
map each interval [a : b] to the point (a, b) in the plane. Once this is done, an interval stabbing query
with a value h can be performed by formulating a query with the range (−∞ : hx] × [hx : +∞),
which is a special case of the bucket query already supported by the PST [5] (page 229). Figure 3.5
illustrates how the intervals can be mapped to a point in the 2D plane, and figure 3.6 shows how the
transformed bucket query is performed on these points.

3.3 Multiple Interval Stabbing

We discovered that interval stabbing problems also can be useful when performing grid-based line
simplification. In these simplification methods the approximation of the line is created on the basis
of placing a grid over the map and selecting the points where the original polyline intersect the grid
lines. In this case, the grid can be regarded as multiple intervals stabbing segments of the polyline
both horizontally and vertically. In Figure 3.7, (a) and (b) illustrate the vertical and the horizontal
stabbing values, respectively.

The raster-vector line simplification algorithm developed by Li and Openshaw, described in
section 2.2.3, is based on selecting the points where the polyline intersects the boundaries of rasters
laid out across the plane to form a grid over the polyline. We realized that if this raster-intersecting
problem is split into two separate intersecting problems, one horizontally and one vertically, the
problem can actually be solved using a PST.

In the previous section, the single interval stabbing problem was described, and a solution using
a transformed bucket query in the PST was presented. In this multiple interval stabbing problem,
several such bucket queries must be performed in order to retrieve all the segments of the polyline
that are intersected by any of the grid values. If one bucket query is formulated for each of the
grid values, some of the segments of the polyline may be reported more than once, as they may
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McCreight (the designer of the PST) observed that the PST can be used for stabbing 
queries as well as the semi-infinite bucket queries. The transformation is simple: map each 
interval [a:b] to the point (a,b) in the plane. Once this is done, an interval stabbing query with a 
value h can be performed by formulating a query with the range (-uendelig:hx] × [hx:+uendelig), 
which is a special case of the bucket query already supported by the PST [compgeom]. Figure xx 
illustrates how the intervals can be mapped to a point in the 2D plane, and figure xx shows how 
the transformed bucket query can be performed on these points. 
 

3.3 Multiple Interval Stabbing 
In the grid-based line simplification mentioned as an example above, the grid can be regarded as 
multiple intervals stabbing segments of the polyline both horizontally and vertically. Figure xx 
(a) and (b) illustrates the vertical and the horizontal stabbing values, respectively. 
 

 
Multiple interval stabbing problem. A polyline being stabbed by multiple values both horizontally and vertically. 

 
The raster-vector line simplification algorithm developed by Li and Openshaw, described in 
section [ref], is based on selecting the points where the polyline intersects the boundaries of 
rasters laid out across the plane to form a grid over the polyline. If this raster-intersecting 
problem is split into two separate intersecting problems, one horizontally and one vertically, the 
problem can actually be solved using a PST.  

In the previous section the single interval stabbing problem was described, and a solution 
using a transformed bucket query in the PST was presented. In this multiple interval stabbing 
problem, several such bucket queries must be performed in order to retrieve all the segments of 
the polyline that are intersected by any of the grid values. If one bucket query is formulated for 
each of the grid values, some of the segments of the polyline may be reported more than once, as 
they may be intersected by more than one grid value. To solve this problem, another 
transformation on the bucket query must be made. 

As the size of the rasters in the line simplification algorithm is fixed, so is the distance 
between the values in the grid. Figure xx (a) illustrates how the transformed bucket query will be 
displayed graphically for multiple intervals. As can be seen in the figure, all intervals that, when 
mapped to points, are placed above the bucket query for the greatest stabbing interval and to the 
left of the smallest, will be reported in all the bucket queries. The solution for this problem is to 
formulate a query that only reports the points that are within the outer boundary of all the bucket 
queries combined. This is shown in Figure xx (b), and as can be seen, the search is shaped like a 
stair-case. Figure xx gives a complete example of mapped intervals and multiple stabbing values 

(a) (b) 

Figure 3.7: Multiple interval stabbing problem. A polyline being stabbed by multiple values both horizontally
and vertically.

put into a coordinate system, and the result is that the intervals that are stabbed by any of the 
stabbing values are reported only once. 

 

 
Graphical display of the transformed bucket query for multiple intervals in the same plane. (a) multiple 

instances of the single interval stabbing query from the previous section; (b) the multiple bucket queries are 
combined into one stair-case shaped query. 
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Figure 3.8: Graphical display of the transformed bucket query for multiple intervals in the same plane. (a)
multiple instances of the single interval stabbing query from the previous section; (b) the multiple bucket
queries are combined into one staircase shaped query.

be intersected by more than one grid value. To solve this problem, another transformation on the
bucket query must be made.

Figure 3.8 (a) illustrates how the transformed bucket query will be displayed graphically for
multiple intervals. As can be seen in the figure, all intervals that, when mapped to points, are placed
above the bucket query for the greatest stabbing interval and to the left of the smallest, will be
reported in all the bucket queries. The solution for this problem is to formulate a query that only
reports the points that are within the outer boundary of all the bucket queries combined. This new
query is carried out very similar to a regular bucket query, but instead of checking against a fixed
y-value, the limit in the y-direction depends on where along the x-axis the point currently being
checked is positioned.

The size of the rasters in the line simplification algorithm is fixed, and therefore so is the distance
between the values in the grid. However, when creating the transformed bucket query, this is not
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Figure 3.9: Mapping intervals to points, and answering a multiple interval stabbing query using a PST.

necessary. A search with a regular grid is shown in Figure 3.8 (b). Figure 3.9 gives a complete
example of mapped intervals and multiple stabbing values put into a coordinate system, and the
result when performing a staircase query is that the intervals that are stabbed by any of the stabbing
values are reported, and they are reported only once. The fact that the grid does not have to be
regular can, for instance, be utilized when creating an approximation of a map where the density of
the features is varying.

3.3.1 “Automatic” Orthogonal Range Search

When the grid intersecting problem has been split into two separate problems, horizontal and ver-
tical intersecting, and a staircase query has been performed in both dimensions, automatically, an
orthogonal range query has been performed. But unfortunately, too many intervals have been re-
ported. This is because the queries in both direction report every interval that contains one of the
stabbing values, but the only once that are interesting are those that are within the range of the grid
in both directions. Figure 3.10 illustrates which intervals are reported from these two queries and
which must be discarded.

The immediate “brute-force” solution to this problem is to check all the reported intervals when
the queries are completed, and keep only those intervals that are reported in both queries. However,
this approach is not very efficient, and a smarter solution must be developed.

What is needed at this point is a way to limit the search in the other dimension, to avoid too
many intervals being reported in the first place. Inspired by the general two-dimensional design
principles, we realized that this limitation actually can be performed before the staircase queries
are performed. We came up with a solution where the PST is incorporated in a new two-level data
structure. In this structure the first level splits the polyline into ranges along one dimension. Each
node in this dimension is then linked to a PST which organizes the intervals from the range of the
node according to the other dimension. This data structure is described in the following chapter.
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put into a coordinate system, and the result is that the intervals that are stabbed by any of the 
stabbing values are reported only once. 

 

 
Graphical display of the transformed bucket query for multiple intervals in the same plane. (a) multiple 

instances of the single interval stabbing query from the previous section; (b) the multiple bucket queries are 
combined into one stair-case shaped query. 
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Figure 3.10: Illustrates which intervals are returned from a double staircase query. The red rectangle mark
those that are of interest, the green rectangles are reported and must be discarded.
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3.4 Summary

To sum up, we found that the PST can be used for more complex types of range search, and that
it also can be an important part in solving the combined problem of creating an approximation of
the result of the range query. The staircase shaped search algorithm for the PST, which we have
developed, is of interest in this context. Thus, the theoretical complexity and practical performance
of this type of query must be established.





Chapter 4

Staircase Searching

This chapter describes the data structure developed to solve the problem of reporting too many
points from the staircase search. The first section provides a detailed description of the structure.
After this there is a section where some theoretical analyses of the complexity of the structure are
presented. In order to test the staircase query on sufficiently large data sets, an external implementa-
tion of the PST has been implemented. This implementation is described in the third section of this
chapter. It is important to keep in mind that it was only developed to be able to run tests with large
data sets. Therefore, no measures have been taken to improve the implementation’s efficiency in
terms of reducing I/O-operations or other. The last section presents empirical tests of the staircase
search algorithm.

4.1 The Data Structure

This section describes the new two-level data structure that was developed as a solution to the prob-
lem of reporting too many points from the two staircase shaped PST queries presented in section 3.3
in the previous chapter. First a short description of the problem is provided, along with an outline
of the proposed solution. This is followed by a section describing the first level of the new tree
structure. The next section describes the role of the PST, which is the second level in this new data
structure. Finally, the new two-level data structure is presented, where the first level and the second
level are combined.

In the previous chapter, an approach to combining range search and line simplification using two
staircase shaped searches in a PST was described. The problem with this approach is that the points
reported are within a “cross-shaped” area (see Figure 3.10). This is because there are no limitations
in the other direction when a staircase search is performed, hence, all points that are within the
range in each direction are reported. As briefly mentioned in the previous chapter, the solution to
the problem was to incorporate the PST in another, two-level, data structure. This way, the PSTs
can be restricted to only contain intervals that are within the correct range in the other dimension.
Consequently, the limitation in the other direction is performed before the staircase search is actually
carried out.

37
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In the first level of the two-level tree structure, the points are organized in ranges along the y-
axis. Each node in this tree contains two values that are the minimum and maximum of all the 
y-values in that node's range. The root's minimum and maximum values are the minimum and 
maximum of the entire range of y-values in the data set. The range is thereafter recursively 
split in half, and stored in the left and right subtrees. The lower half of the values is stored in 
the left, and the upper in the right. Often many points have the same y-coordinate, and 
therefore the two halves are not always of exactly the same size. It is important that no value 
can occur in both the left and the right subtree. The recursive split is continued until there is 
only one point in each range or until all points in that range have the same y-value. It is also 
important to store the value at which the subtrees are split in each node, because this value is 
vital when a search is performed. Figure 4.4 gives an example of such a tree. 

 

 
Figure 4.4: An input data set on the left and its corresponding y-range tree on the right. The horizontal lines in 

the coordinate system are the splitting values for the nodes in the y-range tree. 
 

The ... - combining the two levels 
 

The ... is a two-level tree combining the two levels described above. The ranges on the 
y-values each is connected to another tree which is a PST. In this PST there are some 
restrictions as to which intervals are included. Only the intervals that originally were retrieved 
from points that had a y-coordinate within the y-range of the node the PST is connected to are 
included. Figure 4.5 illustrates how this tree structure is constructed. The original 
geographical dataset is shown in the upper left corner. The horizontal lines represent the 
values where the ranges on the y-values are split in half, and can also be seen in the model of 
the tree structure in the upper right corner. The PSTs are represented by triangles attached to 
the nodes in the first level y-range tree, and they are also shown below the data set and the y-
range tree, in the second ``row'' of the figure. 
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Figure 4.1: An input data set on the left and its corresponding y-range tree on the right. The horizontal lines
in the coordinate system are the splitting values for the nodes in the y-range tree.

In a two-level data structure, each node on the first level is connected to another data structure.
These other data structures are the second level of the two-level tree structure. We realized that
in our range query problem we can recursively divide one dimension into ranges, and store these
ranges in nodes in the first level of the tree. These range nodes will then each be connected to a
PST, which organizes the data according to the other dimension. This way, the search is performed
in two levels; first in the first level searching for nodes that have their entire range within the range
of the search, and then in the second level, searching the PSTs that are connected to the first-level
nodes that were found.

4.1.1 First Level - The Y-range Tree

In the first level of the two-level tree structure, the points are organized in ranges along the y-axis.
Each node in this tree contains two values that are the minimum, min, and maximum, max, of all
the y-values in that node’s range. The root’s min and max are the minimum and maximum of the
entire range of y-values in the data set. The root’s range is recursively split in half, and stored in the
left and right subtrees. The lower half of the values is stored in the left, and the upper half in the
right. This gives the root of the left subtree the same min as the root, and max equal to the value
where the root’s range was split in half. The root of the right subtree gets min equal to the root’s
split value, and a max equal to the root’s max. Figure 4.1 gives an example of such a tree.

The recursive split is continued until there is only one point in each range or until all points in
a range have the same y-value. The value at which the subtrees are split in each node must also
be stored. This value is vital when a search is performed. The search procedure is described in
section 4.1.3 where the entire two-level tree structure is presented.
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Figure 4.2: Retrieving an interval from two points.
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Figure 4.3: Directed intervals mapped to 2D points, using the mapping principle from Figure 3.5

4.1.2 Second Level - The PST

The polylines in the data set are originally stored as points with an x- and a y-coordinate. To be
able to utilize the PSTs ability to answer stabbing queries, the polylines must be broken down to
intervals. This is done as follows: Instead of keeping points p1 and p2, an interval is created by
letting the x-coordinate of p1 be the start value, s1, of the interval, and the x-coordinate of p2 be
the end value, s2. Figure 4.2 illustrates this procedure. The intervals that are created must have a
reference to the y-coordinates from the original points. They must also have a sequence ID telling
where in the original point sequence they where positioned. This information is important because
the original points must be recreated when a search has been performed and the resulting polyline
is to be presented.

As described in the previous chapter, the retrieved intervals must be mapped to points before
they are included in a PST. In the former examples, all intervals had a start value, s1, that was smaller
than the end value, s2. In real geographical data, this is not always the case. Figure 4.3 illustrates
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Figure 4.4: Folding the intervals where the start value is greater than the stop value across the diagonal
where sx

1 = sx
2.

where the intervals end up in the coordinate system after they have been mapped to points, when
their direction is taken into consideration. As can be seen in the figure, the points that intersect
the stabbing value, h, end up in quadrants I and III , depending on which direction they have.
When dealing with undirected intervals, only quadrant I has to be considered in the search in the
PST, but as the intervals are directed, also those that end up in quadrant III must be reported from
the search. To accomplish this, the intervals that have s1 greater than s2 must be folded along the
diagonal where sx

1 = sx
2. Figure 4.4 illustrates how, when this is done, both the intervals that

intersect the stabbing value end up in quadrant I .
Once the intervals have been retrieved and mapped to points, the PST can be built. The con-

struction of a PST is described in the previous chapter, and constructing a PST for the new two-level
structure is done in the same way. The only difference is that instead of the y-coordinate determining
which point becomes the root of each subtree, the end values of the intervals (the sx

2-coordinates
of the points) are used. This, however, does not affect the construction procedure once the intervals
are retrieved and mapped to points.

Pseudo code for the staircase search in the PST is provided below. x′, x′′ and yLow limits the
original search area. currentY is the y-limit that is calculated. n is the point (interval) currently
being checked, and in the first call to this method n = root.

1 . i f ( n = n u l l ) r e t u r n ;
2 . i f ( n . y < yLow ) r e t u r n ;
3 . c a l c u l a t e c u r r e n t Y ;
4 . i f ( ( x ’ <= n . x <= x ’ ’ ) and ( n . y > c u r r e n t Y ) ) r e p o r t n ;
5 . i f ( n . y < c u r r e n t Y ) dec remen t x ’ ’ ;
6 . i f ( x ’ < n . s p l i t ) r e c u r s i v e l y s e a r c h l e f t ( w i th new x ’ ’ ) ;
7 . i f ( n . s p l i t < x ’ ’ ) r e c u r s i v e l y s e a r c h r i g h t ( w i th new x ’ ’ ) ;

Instead of checking against a fixed lower y-value, the y-limit must be calculated according to
where along the x-axis the point is located. Because the search area has the shape of a staircase, a
point near the upper x-limit (x”) of the search area must have a higher y-value to be included than
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Figure 4.3: Folding the intervals where the start value is greater than the stop value across the diagonal 

where s1
x = s2
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Pseudo code for the stair-case search in the PST is provided below. Instead of 
checking against a fixed lower y-value, the y-limit must be calculated according to where 
along the x-axis the point is located. Because the search area has the shape of a stair-case, a 
point near the upper x-limit, x'', of the search area must have a higher lower y-value to be 
included than one near the lower limit, x'. The other difference is that when one node is found 
that is below the search area's lower y-limit, x'' can be decremented. In every subtree, the root 
is the node with the highest s2-value. This means that when the root is below the current y-
limit, all the other nodes in this subtree will be below as well. Because of this the x'' can be 
reduced to whatever was the last x'' value in the stair-case. See Figure 4.4 for a graphic 
display of this decrement. In the pseudo code x', x'' and yLow limits the original search area. 
currentY is the y-limit that is calculated. 
 
 
1. if (n = null) return;  
2. if (n.y < yLow) return; 
3. calculate currentY; 
4. if ((x' <= n.x <= x'') and (n.y > currentY)) 
       report n; 
5. if(n.y < currentY) decrement x''; 
6. if(x' < n.split) recursively search left (with new x''); 
7. if(n.split < x'') recursively search right (with new x''); 
 
 

 
Figure 4.4: The nodes 1 and 2 are within the range of the search, but below the current y-value. When they are 

reached, x'' can be decremented. 
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Figure 4.5: The nodes 1 and 2 are within the range of the search, but below the current y-value. When they
are reached, x′′ can be decremented.

one near the lower limit of the search area (x’).
The other difference in the staircase query compared to the bucket query is that when one node

is found that is below the search area’s lower y-limit, x” can be decremented. In every subtree the
root is the node with the highest y-value. This means that when the root is below the current y-limit,
all the other nodes in this subtree will be below as well. Because of this, the x” can be reduced
to whatever was the last vertical value in the staircase. See Figure 4.5 for a graphic display of this
decrement.

Figures 4.6 and 4.7 illustrate the difference in the number of nodes visited in a search algorithm
where x” is decremented, and one where it is not. The red nodes are the ones that are reported from
the search, the yellow nodes are visited but not reported, and the green nodes are not affected by the
search at all.

4.1.3 Combining the Two Levels - The 2D Range Simplification Tree

The 2D Range Simplification Tree is a two-level tree combining the two levels described in the two
previous sections. The ranges on the y-values each are connected to another binary tree which is a
PST. In these PSTs there are some restrictions as to which intervals are included. Only the intervals
that originally were retrieved from points that had a y-coordinate within the y-range of the node
the PST is connected to, are included. Figure 4.8 illustrates how this tree structure is constructed.
The original geographical dataset is shown in the upper left corner. The horizontal lines represent
the values where the ranges on the y-values are split in half, and these lines can also be seen in the
model of the tree structure in the upper right corner. The PSTs are represented by triangles attached
to the nodes in the first level y-range tree, and they are also shown below the data set and the y-range
tree, in the second “row” of the figure.

A search in this structure is performed by recursively checking the nodes in the y-range tree.
When one node that has its entire range within the y-range of the search is found, a staircase search
is performed in the PST that is connected to this node. From the search in this PST, all the points
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Figure 4.6: If the x” is not decremented, the search visits the same number of nodes as if it had been a bucket
search. The red nodes are reported, the yellow are visited, the green are not affected by the search.
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Figure 4.7: When the x” is decremented, the number of visited nodes is reduced. The red nodes are reported,
the yellow are visited, the green are not affected by the search.
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Figure 4.5: Building the ... In the upper left corner is the input data set, and to the right is the y-range tree. Below 

is each of the PSTs that are connected to the nodes in the y-range tree. 
 

The most difficult aspect in setting up this data structure is selecting the y-range tree node's 
splitting values. It is important that points with the same y-coordinate are stored in the same 
subtree, but it is also important to maintain the tree balanced to ensure a logarithmic 
complexity in the search. As several points have the same y-coordinate, the middle of the list 
is not a good choice for the split value. What is done at the present time is that the two values 
in the middle of the list are compared. If these are different, the median of these two values 
are chosen. If they are the same a loop is run up and down the list to find the pair of values 
that are different and that are closest to the middle of the list. Then the median of these two 
values are chosen to be the node's split value. This may lead to the tree being unbalanced, as 
there can be many points with the same y-value in the middle of the list. However, it is vital 
that all nodes with the same y-values end up in the same subtree, so maybe this possible 
imbalance must be accepted. 

A search in this structure is performed by recursively checking the nodes in the y-
range tree. When one that has its entire range within the y-range of the search is found, a stair-
case search is performed in the PST that is connected to this node. From the search in this 
PST, all the points that intersect one of the stabbing values in the grid are reported. The 
recursion in the y-range tree is carried out as long as the current node does not have its entire 
range within the range of the search. The left subtree is searched as long as the minimum y-
value of the range of the search is lower than the node's split value, and the right subtree is 
searched as long as the maximum y-value of the range of the search is higher than the node's 
split value. 
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Figure 4.8: Building the 2D Range Simplification Tree. In the upper left corner is the input data set, and to
the right is the y-range tree. Below is each of the PSTs that are connected to the nodes in the y-range tree.
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Figure 4.9: The result from a query in a 2D Range Simplification Tree.

that intersect one of the stabbing values in the grid are reported. The recursion in the y-range tree is
carried out as long as the current node does not have its entire range within the range of the search.
The left subtree is searched as long as the minimum y-value of the range of the search is lower
than the node’s split value, and the right subtree is searched as long as the maximum y-value of the
range of the search is higher than the node’s split value. The pseudo code for this search algorithm
is provided below. n is the node currently being checked, and n = root in the initial call to this
method. ymin and ymax are the upper and lower y-limits of the orthogonal search area. n.min
and n.max are the upper and lower y-limits of the range stored in the node n, and n.split is the
value at which n’s subtrees are split in half.

1 . i f ( n = n u l l ) r e t u r n ;
2 . i f ( ( n . min >= ymin ) and ( n . max <= ymax ) )
3 . s e a r c h n . PST
4 . e l s e / / n ’ s r a n g e i s t o o wide
5 . i f ( ymin < n . s p l i t ) s e a r c h l e f t s u b t r e e
6 . i f ( ymax > n . s p l i t ) s e a r c h r i g h t s u b t r e e

Figure 4.9 shows an example of output from performing a query in a 2D Range Simplification
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Tree.

4.1.4 General Problem

Describe the fact that this can be reduced to a general problem, where points with two coordinates
can be reported and they can be limited using another value. For instance, weather reports, pollution
analyses and so on.

4.2 Theoretical Analyses

This section provides analyses of the theoretical complexity of building, storing and searching the
2D Range Simplification Tree.

4.2.1 Building

The 2D Range Simplification Tree is a two-level tree structure, and therefore, there are two separate
tree structures that must be built. The complexity of building the 2D Range Simplification Tree
is the combined complexity of constructing each of the two levels. In this section the analysis of
these complexities is presented. First the complexity of building the first level, the y-range tree, is
described. Second the process of constructing the PST is analyzed, and finally the two are combined
in the complexity of constructing the entire two-level tree.

Lemma 4.2.1. A 2D Range Simplification Tree can be constructed in O(N2log2N) operations.

When building the first level, which is the y-range tree, the first process that has to be carried
out is sorting the points in the data set according to their y-coordinates. The lower bound for sorting
is O(NlogN), where N is the number of points in the data set. Once the points are sorted, the
data set is recursively split in half until only one point remains in each node. This is done in O(N)
operations. When the two operations are combined, the complexity becomes O(NlogN + N). The
sorting is the dominant factor, and, hence, the complexity of building the y-range tree is O(NlogN).

The second level of the 2D Range Simplification Tree is the PST. The PST is built by sorting the
points in the data set according to their x-coordinates, which, as stated above, has a lower bound of
O(NlogN). After the points are sorted, the data set is recursively split in half. For every split, the
point with the largest y-coordinate must be found, because this is the point that will be stored in the
root of the current subtree. Since the PST has height O(logN), and there are N points that must be
searched through at every level to find the roots, this operation takes O(NlogN) operations. With
the sorting and the splitting combined, constructing the PST is done in O(2NlogN) operations.
The constant is ignored, and O(NlogN) remains.

When the y-range tree takes O(NlogN) operations to construct, and the PSTs also take O(NlogN)
operations to construct, the combined construction complexity becomes O(N2log2N). To reach the
desired bound of O(NlogN) construction complexity for the 2D Range Simplification Tree, some
issues concerning the construction of the PSTs must be solved. These issues are discussed in chap-
ter 6.
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4.2.2 Storage

Lemma 4.2.2. A 2D Range Simplification Tree requires O(NlogN) storage.

All the nodes in the data set are stored as intervals in exactly one of the PSTs at every level
of the 2D Range Simplification Tree. This means that for each level of the tree, the PSTs use
O(N) storage. The depth of tree is O(logN), and, hence, the required storage for the 2D Range
Simplification Tree is O(NlogN).

4.2.3 Searching

Determining the exact complexity of querying the 2D Range Simplification Tree, is not trivial. One
issue is that the search has an output sensitive complexity. This means that the number of nodes
visited depends on the number of nodes reported. Another issue is that the theoretical complexity
of the staircase search in the PST is difficult to determine.

In the y-range tree, O(logN +k) nodes are visited, where k is the number of range nodes where
the PSTs must be searched. A bucket search in a PST also has a complexity of O(logN +k), where
k is the number of nodes reported [25]. In the staircase query, the case is a bit different. As a starting
point we could say that the complexity of a staircase search is the same as for a bucket search that
has the same width as the widest part of the staircase area. However, because of the decrement of
the x′′ in the query (described in section 4.1.2), the complexity is a bit better than this. It does not
reach O(logN + k), but it is difficult to determine the exact complexity of this query.

When we combine the O(logN + k) of the y-range tree, and the close to O(logN + k) of the
PST, we end up with approximately O(log2N + k). Unfortunately, because of the inaccuracy in
determining the complexity of the staircase search, this is not the final complexity of a search in a
2D Range Simplification Tree. Nevertheless, it is probably the closest we can get in this theoretical
analysis.

4.3 Implementation

This section describes the process of externally building and searching the two level tree structure
presented in the first section of this chapter. The section starts with an introduction to external
memory algorithms followed by an explanation of how the different parts of the construction and
search algorithms have been externalized. After this there is a subsection that describes the actual
implementation of the data structure.

4.3.1 External Memory Algorithms

In an increasing number of problem areas in the field of computer science, the amount of data
to be processed is too massive to fit in the computer’s internal memory. Examples of such areas
are computer graphics, geological and meteorological databases and GIS. When a system involves
massive data sets that are too large to fit in the computer’s internal memory, the algorithms must be
adjusted to use external memory.
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In computers today the different types of memory often are organized in hierarchies like the
one in Figure 4.10. The further away from the CPU, the larger and slower are the storage ’units’.
Accessing the internal memory is fast, but the amount of this type of memory is limited because it is
also expensive. Disk memory, however, is cheap and the amount of this type of memory can reach
several terabytes. Unfortunately, accessing disk memory is extremely slow compared to accessing
the internal memory (it is actually approximately one million times slower [21]). Therefore, the
main objective of external algorithms is to minimize the number of disk accesses [17].

In ordinary in-memory algorithms, the efficiency is determined by comparing the number of
calculations performed to the size of the problem. In an external memory algorithm, however,
this measurement will probably make no sense. This is because accessing elements in external
memory takes so much more time that the number of disk accesses becomes the dominant part of
the algorithm in terms of efficiency.

A lot of research has been conducted in the field of external algorithms, but not all of it is
backed up by implementations or test results. In many cases this is because the proposed theories
are so complex that developing a functional prototype would be extremely difficult and probably
too resource-demanding. With this in mind, the present project does not intend to revolutionize the
area of external algorithms. Instead, the main goal for this project is to implement a functioning
prototype of the previously implemented data structure, in order to facilitate the extensive testing of
large amounts of data.

4.3.2 External Tree Structures

Building a two-dimensional binary tree involves a number of processes like sorting, selecting and
storing. In an internal tree, the selection and storage processes are rather straightforward, but in an
external tree, the type of storage used must also be taken into consideration. The data can be stored
on tapes or on disks, and as sequential or random access files. In the present prototype the data are
stored on disk and in random access files.

Random access files were chosen for this project because they can be treated similar to in-
memory arrays. In-memory arrays provide direct access to the elements, and so does random access
files in a way. These files have a method that allows reading from any byte on the file, which means
that as long as the size of the objects is known, direct access to any object is provided. The operation
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Figure 4.10: Memory hierarchy of a single processor system, including registers, instruction cache, data
cache (level 1 cache), level 2 cache, internal memory and disk.
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Figure 4.11: Illustrating two-way merge sort.

that allows reading from any byte on the file is called a seek operation. This seek operation always
starts the seeking from the beginning of the file. The random access files also have a skip method
where any given number of bytes can be skipped. Where this is practical, the time spent seeking in
the file can be reduced by using this skip method.

External Sorting

One of the main problems that need to be solved efficiently when building a binary tree externally is
sorting. In multi-level tree structures this is even more important as the points are sorted in several
different ways. In the two level tree structure described here, the points are first sorted according to
the y-coordinates in the first dimension, then according to the x-coordinate in the second dimension,
and finally according to curves and indexes.

In this process an inefficient sorting algorithm will be a substantial bottleneck, and will impair
the performance of the entire structure. External sorting is the term for sorting elements that are
stored as mentioned above, while internal sorting describes sorting elements in an array in RAM.
The main concern when developing an external sorting algorithm is to limit the number of disk
accesses since this takes more time than accessing an item in RAM.

Most external sorting algorithms are based on merge sort. The principle of the merge sort
algorithms is “divide and conquer”. In an internal merge sort algorithm, the data are recursively
split in half and stored in separate arrays. When only one element remains in each array, the arrays
are merged in pairs until all the data once again are gathered in one array, see Figure 4.11.

The external merge sort algorithms generally split the original large data file into shorter run lists
that are sorted internally using an efficient internal sorting algorithm. The run lists are stored on disk
and merged until only one large file remains. This process can be a two-way merge or a multiway
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Figure 4.12: A binary tree with its corresponding array representation.

merge. In a two-way merge, two and two files are merged into one larger file. In a multiway merge
multiple files can be merged at each “level”. The two-way merge is the simpler method, while the
multiway merge can be a more efficient approach as the number of merges can be reduced.

Selecting

Selecting an element in a random access file involves a seek operation in order to set the file pointer
to the desired index, followed by a read operation. When the file pointer is placed at the correct
index, the object can be read. The only way to read an object of a given type is to know the size
of the object, create a byte array of the same size, and fill this array with bytes read from the file.
When the bytes that constitute the object have been read, the array must be converted to an object
of the correct type. Only when the byte array has been converted to an object is it possible to verify
whether this was the wanted object or not. If not, the process of reading and converting must be
repeated until the object is found.

When building a PST, the original objects are stored on a file and sorted using their x-value. To
find the root, which is the object with the largest y-value, all the nodes must be checked. To find
the roots of the sub trees the process is repeated recursively on the lower and the upper half of the
original file.

To limit the number of I/O-operations, most external memory algorithms are based on reading
blocks of data from the disk. Each block contains B objects, and accessing one disk block requires
only one seek operation. The size of the blocks should be as large as possible, without exceeding
the amount of internal memory that can be dedicated to this process.

Storage

The tree must also be stored externally, which requires an array representation. Figure 4.12 displays
a simple example of a balanced binary tree and its corresponding array representation. The root is
stored at index 0, and the root of the left and right sub trees are stored at index (2 ∗ 0 + 1) = 1 and
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Figure 4.13: Splitting one large tree into sub trees stored on separate files.

(2 ∗ 0 + 2) = 2 respectively. The left child of the node at index i is stored at index (2i + 1) and the
right child at (2i + 2).

Storing a one-dimensional binary tree like this is manageable as these trees consist of only one
type of object, and objects of the same type have the same size. When the case is expanded to
the storing of a two-dimensional binary tree, there will be problems because the second dimension
includes trees of variable sizes. One solution is to store every second dimension tree in a separate
file, and have implicit pointers to these files, using, for instance, the index of the “parent node” in
the first dimension. This, however, will not be practical when the data set contains a large number of
coordinates. If building the tree structure means creating tens of millions of new files, the computer
probably will get into trouble. A solution to this might be to store all the internal PSTs in one large
file, the pointers in the external nodes pointing to the index in this large file where the PST for that
node is stored.

When the original data set is large, the file where the tree is stored will be extremely large as
well, and the question is whether it might be more efficient to split the large file into several smaller
files, see Figure 4.13. This can be done either during the process of building the tree, or by using
a routine that runs through the tree after it has been built. This writes the nodes to different files
when given “split level” are reached. For the present prototype the latter approach was chosen. The
nodes on the last level of each file must then have an indicator saying that the next level is stored
on another file. The filename must be something that can be recreated in the search algorithms, like
the index the root node in the new file would have had if it had been stored in the original tree-file.

Searching

Performing an external search is very similar to performing an internal search. The biggest differ-
ence is that when the tree is stored in an internal array, direct access to the nodes is provided. When
the tree is stored on a file, however, it is necessary to seek or skip bytes to get to the point where the
nodes you want are stored.

The technique mentioned earlier where blocks of data are read to improve efficiency is difficult
to use when searching an externally sorted tree. This is because the tree is laid out in level-order on
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Figure 4.14: Different methods for deleting an element in an array.

the file, while search algorithms are based on pre-order traversal of each sub tree.
When reading blocks of data is out of the question, one operation of seeking, reading and con-

verting must be performed for every node in the tree that needs to be checked. This means that the
only way of improving efficiency when performing a search in an externally stored tree is to limit
the number of nodes visited for each reported.

4.3.3 Externalizing the 2D Range Simplification Tree

This section describes the techniques, the problems and the solutions from the implementation of the
external two level tree structure presented in the first section of this chapter. First the implementation
of PST is presented, followed by the complete two-dimensional tree structure.

The PSTs

When building a PST, the first process that needs to be carried out is sorting the coordinates ac-
cording to their s1-value. The s1-value is what would have been the x-value if the coordinates had
been ordinary coordinates with an x-value and a y-value instead of intervals along the x-axis with a
start- and a stop-value. This sorting must be performed externally, and any external sorting algo-
rithm can be used. Merge sort has been used in the prototype, but without any particular focus on
reducing the number of I/O operations. The goal is to build the tree once and dynamically update it
as the geographical data is updated. Because of this, and because the prototype is mainly developed
only to facilitate extensive testing, the efficiency of the sorting algorithm has had low priority in the
implementation.

After the coordinates have been sorted, the node with the largest s2-value (“y-value”) must be
found. This node will be the root of the PST. At this point it is wise to read blocks of data, since
every node in the file must be checked to find the one with the largest s2-value. When the node with
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Figure 4.15: Display of the different values defining the search area in a staircase shaped search in a PST.

the largest s2-value has been made the root of the PST, this node must be deleted from the file to
avoid it being added to the PST more than once. The process of permanently deleting all nodes from
a file or an array one after another has a worst case order of O(N2), as the remaining nodes must
be “moved down” to fill the gap. To avoid this, one can implement an alternative “deletion”-method
using index files or arrays to hold a ‘next’- and a ‘previous’-pointer for every index in the original
file or array. Thus, when “deleting” a node, the only thing that is done is marking the node ‘deleted’,
and skip the node in the list by updating the next and previous pointers. Figure 4.14 illustrates these
two different deletion methods.

The rest of the PST is constructed by recursively repeating the selecting and deleting on the left
and right halves of the file. The completed PST is stored in level order in a random access file. The
root is stored at index 0, while the left and right children of each node at index i are stored at index
(2i + 1) and (2i + 2).

The search area in a PST is defined by the values x1, x2 and y1 and two values, hy and hx, to
update the y1 and x2 values so the search area gets a staircase shape. hy and hx indicate how much
y1 will increase and on what intervals of x, see Figure 4.15.

The search is started by reading the root node from the file. As the tree is stored in level order,
the root is the first node on the file. Next, the current y1-value is calculated based on the original
y1-value and the hy- and hx-values which define the staircase-shape. If the root’s s2-value is lower
than the current y1-value, every node in the PST will fall outside the search area because the root is
the node with the highest s2-value. This stops the search. If the search continues, the root’s s1-value
is checked. If it is between x1 and x2, or equal to one of them, the coordinate is reported. Then the
recursive search continues. If the root’s s1 value is larger than x1, the left sub tree is searched, and
if the root’s s1 value is smaller than x2, the right sub tree is searched. The search continues until all
nodes are searched, or the search has been stopped because the s2-value is below y1.
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The Complete 2D Range Simplification Tree

The complete two-dimensional tree structure organizes the geographical coordinates according to
their y-value in the first dimension, and according to their x-value in the second dimension. The
two dimensions consist of two different types of nodes:

The nodes in the first dimension have two float values limiting the node’s range along the y-axis,
and a split value deciding which y-values belong in its left sub tree and which belong in its right. In
addition it has a reference to the PST connected to the node. In the external version of the structure,
the PST reference must be replaced by a reference to the file where the PST is stored.

The nodes in the second dimension (the PSTs) are originally coordinates with an x- and a y-
value, but are combined, two and two, to intervals along the x-axis with a reference to a node
storing their original y-values. In addition to the interval and a split value, these nodes also have
information of where in the original coordinate sequence they belong, and a pointer to the node
which stores the y-values.

Building the two-dimensional tree structure is relatively easy once the PST is implemented. As
can be seen in section 4.1, the outer dimension contains ranges along the y-axis, and the root of the
tree holds a range containing all y-values in the data set. The root is connected to a PST containing
all the intervals along the x-axis.

The process starts with the coordinates being sorted according to their y-value. After this the
range is recursively split in half on every level of the outer dimension. The left child of each node
gets a range of the lower half of its parent’s y-values, and the right child the upper y-values. The
PSTs for these children are constructed from all x-values that originally had y-values within the
range of the node the PST is connected to. The range on the y-values is split in half until only one
node is left within each range.

The PSTs must be stored in one big file because when testing the algorithm on data sets of 10
million coordinates, having one file for each PST becomes impractical. This leads to a few issues
that need to be solved:

First of all, it is necessary to keep track over where in the file each PST is stored and how
many “indexes” that are occupied by every PST. This information is stored in the nodes in the outer
dimension. Therefore, instead of only having a reference to the file where the PST, these nodes
must have two long values; one to know the “startindex” of this node’s PST, and one to know which
index is the last one occupied by this PST.

The formula used for storing a binary tree as a list ((2i+1) and (2i+2)) uses every index when
the tree is complete and the root is stored at index 0. When the root is stored at another index, this
will lead to many empty indexes. To avoid this, the new formula for storing the left child will be
(2∗(i−startindex)+1)+startindex, and the right child (2∗(i−startindex)+2)+startindex.

The PSTs must be stored sequentially in the file because there is no way of knowing how much
space each PST will need. This means that in the process of building the tree structure, one must
always keep track of the greatest “index” that is occupied in the file where the PSTs are stored.
Figure 4.16 illustrates this problem. In the construction method, the index where the PST is to be
stored is provided when the method is called, in the variable pstIndex:

p r i v a t e long makeTree ( f l o a t min , f l o a t max , long p s t I n d e x )
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Figure 4.16: The PSTs are created recursively, but stored sequentially in the file.
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When the left sub tree is created, the pstIndex is easy to find because the left subtree is created first.
The PST for the root of the left subtree can therefore be stored at the last index occupied by the PST
just created + 1. Consequently, this last index occupied must also be passed on in the construction
method. The value is stored in the variable maxPstIndex which is also returned to be used when
the call-stack is popped:

p r i v a t e long makeTree ( f l o a t min , f l o a t max , long p s t I n d e x ) {
l ong maxPs t Index = 0 ;
<c r e a t e c u r r e n t node>
maxPs t Index = makeTree ( min , newMax , < l a s t i n d e x f o r t h i s PST + 1 >);
maxPs t Index = makeTree ( newMin , max , maxPs t Index + 1 ) ;
r e t u r n maxPs t Index ;

}

The process that builds the PSTs that are connected to the nodes in the outer level returns the
greatest index used by that particular PST. When the left subtree is created, this index +1 is used
as the pstIndex. When the right subtree is created, the maxPstIndex + 1 returned from the left
subtree process is used as the pstIndex. The pstIndex and the maxPstIndex for each PST is
stored in the outer level node the PST is connected to, and are used in the search procedure.

The search is performed pre-order by iterating the sub trees until one node is reached that has
its entire range within the y-range of the search area. When one such node is found, then this
node’s PST is searched to find the coordinates that have an x-value within the x-range of the search
area. Because the PST that is connected to a node in the outer dimension only contains points that
originally had a y-value within the range of the outer node, the nodes in this PST that are within the
x-range of the search area, will also be within the y-range.
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Because the PSTs are stored in one big file, one will in most cases find a node that belongs to
another PST instead of a null node when the current node is a leaf that should have no children.
However, the nodes in the outer dimension “know” which index the root of their PST is stored at, and
how many nodes this PST occupies. This means that the recursive search algorithm is terminated
when the index reached is beyond the maxPstIndex stored in the outer node, and not when null
is returned.

Summary

The external implementation described in this section is by no means a satisfactory external imple-
mentation of the data structure described in section 4.1. Nevertheless, it serves the purpose of giving
the possibility to test the structure on substantially larger data sets than what is possible using only
internal memory. It was also important to see that a functioning external implementation could be
made, that actually is useful. In the next section the tests that have been carried out are described.

4.4 Testing

The reasons for developing the naive data structure prototype described in the previous section was
to facilitate tests on large data sets to determine its efficiency. This section describes the data sets
used for testing, and the hardware on the machine that carried out the tests. Then the tests and the
results are presented and discussed.

4.4.1 The Data Sets

In order to establish the efficiency of this data structure, tests on large data sets must be performed.
Because real life data sets seldom have an evenly distributed point density, random sets were created
for the initial testing. These data sets all cover the same area, but contain different numbers of points.
Table 4.4.1 tells how many points each data set contains, and how large the file is on disk. The table
also gives information about how much data the structures that were built contain, and how much
“excessive” data is created. The “excessive” data is the difference between the size of the file where
the structure is stored and the accumulated size of the same number of points converted to Java
objects. Each of these objects contains 137 bytes of data.

In real geographical data, the points seldom are as evenly distributed as in the data sets created
above. It is also difficult to use real data sets when a specific problem is to be tested. Because of
this, another set of data sets were created. The idea behind creating these data sets was to attempt
to create some “worst case” scenarios, where the number of points within the query range was
extremely low compared to the surrounding area. The total number of points in these new data sets
were equal to the ones described above. Within the query range, which was known when the sets
were created, only very few points were placed. This leads to a situation where the staircase search
area has a very low density of points, while the rest of the area that would have been searched
in a bucket query has a much higher density. Figure 4.17 shows an example of a data set where
the query area contains only one point, while the surrounding area has a substantially higher point
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Table 4.1: Size of the data sets used for testing. The second column gives the size of the input file, the third
row gives the size of the PST that was constructed, and the fourth column gives the difference in the amount
of data created in the PST and if the points were to be stored sequentially in a file.

Number of points Size of data set Size of structure Size of structure -
in data set accumulated size of points
1 million 19,7 MB 280,5 MB 143,5 MB
2 million 39,5 MB 561,2 MB 287,2 MB
5 million 98,6 MB 2.244,6 MB 1.559,6 MB
10 million 197,3 MB 4.489,2 MB 3.119,2 MB

Figure 4.17: An area with extremely low point density, surrounded by areas with significantly higher point
density.

density. What was to be tested with these data sets was how much the decrement in the upper x
direction influence the efficiency of the staircase query.

Finally we also wanted to test the algorithms on a real data set. To accomplish this, we extracted
8.5 million points from the east coast area of the United States. The data covers roads, rivers,
railways, coastlines, state boundaries and so on, and was extracted from the vmap1 data set [15].
This input data set contain 482,9 MB of data, and the PST that was built contains 2.244,6 MB.
This data set is stored in another format. The previously mentioned sets were SVG (scalable vector
graphics), while this new one is GML (geography markup language). The reason for the last data
set containing more data, even though the number of points does not indicate that it should, is that
GML files contain more overhead than SVG files.

4.4.2 Hardware and Software

The machine on which the tests were carried out is a Dell Optiplex GX270 with one Pentium
4/2.80GHz processor, 512MB of RAM and a WDC WD800BB-75DKA0 disk with a speed of 7200
RPM. The software is written in Java 1.4.2 [23].
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Figure 4.18: Examples of different staircase query ranges covering the same size area.

4.4.3 Test Results

What is most interesting to test is the performance of the new staircase search algorithm for the PST.
There are two different aspects of efficiency that need to be tested with the prototype developed.
First the complexity of the search, and second the processing time.

The complexity of the search is determined by the number of nodes visited compared to the
number of nodes reported. The complexity of a bucket query in a PST is O(logN + k), and the
question is how much worse the complexity of the staircase search is.

The processing time is important because the typical computer user becomes impatient if he
or she has to wait too long for information before it is displayed. Therefore, if the time used for
searching the structure and displaying the result becomes longer than what an average computer
user will accept, this approach can not be used. Although the prototype is implemented in a very
naive and straightforward way, the search time will still give an indication of how much more time
is needed to access disk compared to accessing internal memory.

In the PSTs built from the data sets described in section 4.4.1, staircase queries of different sizes
and shapes have been performed. Query ranges covering from 0.25% to 8% of the total area covered
by the data sets were used. For each of these query sizes (0.25% to 8%), different shaped staircases
were used. Figure 4.18 shows three different staircase shaped search ranges covering the same size
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Trappa: Bøtta:
# punkter besøkt rapportert besøkt pr. rapportert besøkt rapportert besøkt pr. rapportert
1.000.000 558 1 558 29358 29324 1,0011595

546 10 54,6 29527 29494 1,0011189
1527 100 15,27 29798 29766 1,0010751

2.000.000 561 1 561 59144 59107 1,000626
651 10 65,1 58837 58804 1,0005612
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Figure 4.19: The efficiency of the staircase shaped search. The lines show the number of visited nodes for
each node that was reported from the search. The searches have been carried out in the data sets described in
table 4.4.1, and the size of the search areas have been from 0.25% to 8% of the total area covered by the data
set.

area.

Staircase Search Complexity

To determine the complexity of the staircase query, several tests have been performed. For each of
the four data sets presented in Table 4.4.1, queries covering six different sized areas were carried
out. For each of these area sizes, ten different ranges were used. This adds up to a total of 240 tests
for all four data sets.

Figure 4.19 shows the results from running the staircase search on the data sets. The result
presented here is the average of the ten different queries on each range size. The tests show that for
each point reported, approximately 1.25 nodes are visited. This number is surprisingly constant in
all the tests in all the different data sets. In the ratios of the visited points and the reported points for
each single query, the highest was 1.56 and the lowest 1.11.

As the data sets used in the tests described above had evenly distributed points, some tests in
other data sets were carried out as well. Table 4.4.3 shows the results from these tests. The first
column says how many points the total data sets contain, and the other column how many points
were in the query range. The query ranges were of 8% of the total area covered by the data set.
The third column presents the number of visited nodes when performing the staircase query, and the
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Table 4.2: Results from querying an area containing very few points surrounded by an area with very high
point density. The ratio states what percentage the nodes visited in the staircase query is of the number of
nodes visited in the bucket query.

Total # points in Staircase query Bucket query Ratio of visited nodes
# points query area Visited Reported Visited Reported in bucket and staircase

1 million
1 558 1 29358 29324 1.9%
10 546 10 29527 29494 1.85%
100 1527 100 29798 29766 5.12%

2 million
1 561 1 59144 59107 0.95%
10 651 10 58837 58804 1.11%
100 1869 100 59538 59506 3.13%

5 million
1 708 1 147432 147397 0.48%
10 758 10 147432 147394 0.51%
100 2117 100 147222 147184 1.44%

10 million
1 771 1 294233 294194 0.26%
10 850 10 294505 294463 0.29%
100 2358 100 295236 295195 0.8%

fourth the number of points reported. Naturally, this number is equal to the number of points in the
query range, given in the second column. The fifth column presents the number of visited nodes in a
regular bucket search with the same limits in the x- and y-direction as the staircase search. Column
six presents the number of nodes reported from this bucket search.

As can be seen from the table, the ratio of visited and reported points is less stable when the
points are not evenly distributed. However, what is interesting to see here, is the effect the decrement
in the upper x-limit of the search has on the performance of the staircase search. Without this
decrement, the number of nodes visited in the staircase query, would be equal to the number of
nodes visited in the corresponding bucket query. The last column in Table 4.4.3 tells how many
percent of the points visited in the bucket query, were also visited in the staircase query. As can
be seen, this percentage is generally very low. Another interesting fact that can be read from these
numbers, is that the bucket query is very close to maintaining its logarithmic complexity, even
though large parts of the query range contains next to no points at all.

The tests performed in the real geographical data set, could not be carried out “scientifically” as
the ones in the random data sets. This is because the density of the points were very high in some
areas of the set, and very low in others. Because of this, the results tended to give no meaning.
However, some tests have been performed, and the results are presented in Table 4.4.3.

From these results we can see that in some cases, very few redundant points are visited, while
in other cases, the number is higher. Overall, we can say that the staircase search algorithm has a
surprisingly good performance. This statement is backed by both these results, the results from the
“worst case” scenarios presented in Table 4.4.3, and the results from the evenly distributed data sets
given in Figure 4.19.
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Table 4.3: Results from performing staircase queries on data representing real geographical areas.
Size of query range # points # points Ratio of visited nodes
in % of total area visited reported pr reported node
5.9 7321825 7321821 1.0000005
4.12 592 575 1.02957
3.8 6784123 6784112 1.0000016
3.48 2045399 2045382 1.0000083
0.17 315016 237815 11.3254
0.13 600867 400510 1.50025

Staircase Search Processing Time

The other aspect of the structure’s efficiency that needed to be tested, was that of the amount of
time used for answering a query. The data sets contain more points than what fits in the computer’s
internal memory, and therefore, the absolute quickest way to retrieve the points is to read them
sequentially from a file. Because of this, we found it interesting to see how much more time is
needed to search for a number of points in a PST compared to reading them sequentially from a
file. For these tests, the data sets described in Table 4.4.1 were used, and Table 4.4.3 shows what
the results were. The tests show that, on average, searching the data structure takes approximately
5 times longer than reading the points sequentially from a file.

Figure 4.20 illustrates the increased time needed to search compared to read the points sequen-
tially. The time is given in milliseconds pr point reported from the queries.

If we compare these results to the ones presented in Figure 4.19, we can recognize some of the
same tendencies. The amount of nodes visited pr reported is higher in the 2% areas and lower in
the 1% areas, and so is the increase in the amount of processing time in the 2, 5 and 10 million data
sets. The results in processing time for the 1 million data set does not have the same features as the
other three, and this is probably because the data set is too small to get stable results.
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Table 4.4: Results from tests run to find the increase in processing time used for searching the data structure
compared to reading the same number of points sequentially from a file.

# points Size of query Average increase
area in % for ten queries

1 million

0.25 987%
0.5 471%
1 472%
2 478%
4 384%
8 345%

2 million

0.25 496%
0.5 405%
1 380%
2 386%
4 366%
8 362%

5 million

0.25 488%
0.5 466%
1 393%
2 507%
4 455%
8 414%

10 million

0.25 602%
0.5 567%
1 509%
2 621%
4 523%
8 479%
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Figure 4.20: Statistics for the increase in time used for searching compared to reading the same number of
points from a file. The time is presented in milliseconds pr reported point for each of the four data sets, in
ranges covering from 0.25% to 8% of the total area.





Chapter 5

Further Work

This chapter gives some suggestions to further development of the 2D Range Simplification Tree
and using the PST for performing range queries. First of all, it would be interesting to develop
a dynamic version of the new structure, and some preliminary work on this topic is presented.
Second it is clear that the PST is a very interesting data structure, with many possible applications.
The second section in this chapter provides some thoughts on how to utilize the PST in order to
develop a method for answering non-orthogonal range queries as well.

5.1 Developing a Dynamic 2D Range Simplification Tree

This section presents the work that already has been done in order to develop a dynamic 2D Range
Simplification Tree, and some thoughts and ideas on how to complete the process. Because very
little information on dynamically updating two-level tree structures exist, this section is mostly
concerned with the second level, the PSTs.

As already described in chapter 2 presenting related work, dynamically updating multi-dimensional
data structures efficiently is a complicated process and has proven difficult. In a two-dimensional
structure there is only one level of associated structures, but still, rebuilding the associated structures
from scratch is not an option. Another solution must be found. Chiang and Tamassia’s approach [4]
involves rebuilding only a very small amount of the associated structures from scratch, and hope-
fully it is possible to use that principle on this structure as well.

5.1.1 Dynamic Priority Search Tree

The following section is based on a lecture given by Professor Robert Tamassia on dynamic PSTs [26].
The lecture provides an overview over the techniques used for building and maintaining a dynamic
PST. This section is an attempt to explain the processes more thoroughly, by using more complete
examples and figures.

A PST can be efficiently constructed using a bottom-up construction method like the method
used for constructing heaps as binary trees. When building a PST by the bottom-up method, the
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Building a dynamic priority search tree 
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Figure 5.1: Bottom-up tournament construction of a PST.
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first step is to make all the points leaves, and sort them according to their x-value. After this the tree
is constructed using a “tournament-principle” similar to the one used to build tournament trees.

In the tournament the points “compete” two and two, and the one with the highest y-value wins
the competition and becomes the root of the subtree. On the next level of the tournament, the
winners of the last level compete for the position as the root on this level. The points that win leave
empty nodes behind, and these nodes are filled by points that previously have lost in the competition.
This may lead to other nodes being emptied, and so the process is repeated until there are no more
points that can fill the nodes. When a point is represented by an internal node in the tree, the leaf for
this point is made a “placeholder”. When the tree is completed, (N − 1), where N is the number of
points in the data set, of the leaves are made placeholders. The leaves are always sorted according
to the point’s x-values. Figure 5.1 illustrates the construction process using a small example of eight
points.

Constructing the tree this way is done in O(N) time. However, as the first step in the process is
to sort the points, and sorting takes O(NlogN) time, the entire construction process takes O(NlogN)
time.

After the tree has been constructed, the nodes are colored according to the rules of a red-black
tree. The red-black tree is a binary search tree that has efficient methods for inserting and deleting
elements. The reason for using the red-black tree’s coloring scheme is that it provides efficient
methods for inserting and deleting elements. These processes are described in the following sec-
tions.

Insert

Inserting a new point in a dynamic PST is a three step process:

1 . Add a new l e a f which w i l l be a p l a c e h o l d e r f o r t h e new p o i n t .
2 . Push t h e new p o i n t down t h e t r e e , s t a r t i n g a t t h e r o o t .
3 . Reba l ance t h e t r e e i f n e c e s s a r y .

As the leaves of the tree always are sorted according to the points’ x-values, the placeholder for the
new point will have to be added at the correct place in this sequence. To find this place, start at
the root and iterate down the correct subtrees by comparing the new point’s x-value to the x-values
of the root of each subtree. If the new point has an x-value that is larger than the x-value of the
root, proceed down the right subtree. If it is smaller, proceed down the left subtree. The first tree in
figure 5.2 illustrates this process.

When the correct place for the new placeholder-leaf is found, the leaf already stored in this place
must be replaced by a new (empty) internal node. The new leaf and the replaced leaf becomes the
children of this new node, as can be seen in the second tree in figure 5.2. The new node is colored
red according to the rules for insertion in a red-black tree.

After the placeholder and a new internal node have been added to the tree, it is time to find the
correct position for the new point in the tree. To find this position, a push-down operation is carried
out. This operation starts at the root of the tree, and the y-values of the root and the new node is
compared. If the new point has a y-value that is smaller than the root’s y-value, the push-down
operation is continued in the correct subtree decided by comparing the new point’s x-value to the
splitvalue of the root. If the new point has a y’value that is larger than the root, the push-down
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operation is continued with the old root as the ”new point”. This process is recursively repeated
until all points are placed in a node. The third tree in figure 5.2 illustrates this process.

Once the new node is inserted, all affected splitvalues must be updated. The splitvalue of a node
is placed in the middle of the x-values rightmost child in its left subtree and the leftmost child in its
right subtree. When a new node is inserted, these conditions may have been changed, and hence an
update may be required.

After the insertion, the tree must be balanced according to the properties of a red-black tree. If
any of these properties are violated after having inserted a new point, the tree must be restructured.
In the example in figure 5.2 this is not the case, but in figure 5.3, the tree is incorrect and must be
repaired.

A new node inserted in a red-black tree is always painted red, and the rule of having the same
number of black nodes in every path from the root to a leaf is therefore not threatened. The rule
that says no red node can have a red child, however, can easily be violated when inserting a new red
node. When such a “red-red violation” occurs, the colors of the adjacent nodes decide what to do
next. If both the parent and the “uncle” (the grandparent’s other child) are red, repaint the parent
and the uncle black and the grandparent red. This might lead to the grandparent having a red-red
violation with it’s parent. If that is the case, the process is repeated on this level. If only the parent
is red, and the uncle is black, the answer is to perform a rotation.

In figure 5.3 the points c′ and c′′ has been inserted into the tree that was constructed in figure 5.1.
The next step is to insert c′′′ into this tree. The leaf placeholder is placed between that of c′′ and d,
and the point itself is placed as the right child of c′′. This leads to a red-red violation between c′′′

and c′′. Both the parent (c′′) and the uncle (d) are red in this case, so c′′, d and c are repainted. This
leads to another red-red violation, this time between the original grandparent c and its parent c′. In
this case only the parent is red, the uncle (a) is black, and then a rotation must be performed.

A rotation in a dynamic PST can not be performed in exactly the same way as in a red-black tree.
This is because in a red-black tree the points are organized only by their x-values. In a dynamic PST,
however, the y-values must also be considered. A rotation in a red-black tree leads to the subtree
getting a new root, while in a PST the root must remain the same. This means that instead of
rotating, the subtrees must be reorganized. A single left rotation is illustrated in figure 5.4. A single
right rotation is symmetrical to a left rotation, and double rotations consist of two single rotations.

The rotation principle in figure 5.4, is explained as follows: root is the root of this portion of the
tree both before and after the rotation has been carried out. Before the rotation u is the root of the
left subtree, child is the root of the right subtree, and v is the root of child’s left subtree. After the
rotation, subtrees 1 and 2 will both be in the left subtree of root, while subtree 3 remains as root’s
right subtree. The point that originally was root’s right child, is now root’s left child, child, but
this might not be correct. To make sure the correct point is placed in this node, the point with the
greatest y-value of u and v is chosen, and a push-down operation starting at node child is performed
with this point.

In the example in figure 5.4, the root is the point c′ and it has a red-red violation with its right
child c. The left child, a, is black, and hence a rotation is required. The rotation is performed by
making the right child, c, the new left child, and c’s right child, d, becomes the new right child of c′.
The left child, a, becomes the left child of c, and the former left child of c becomes the new right
child. When comparing a, c and c′′ (u, v and ri from the principle), we find that the new left child
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between c''' and c''. Both the parent (c'') and the uncle (d) is red in this case, so c'', d and c are 
repainted. This leads to another "red-red violation", this time between the original grandparent 
c and its parent c'. In this case only the parent is red, the uncle (a) is black, and then a rotation 
must be performed. 
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Figure 5.4: A rotation in a dynamic PST.

c, also is the point with the greatest y-value, and hence the rotation is complete.
In figure 5.4, after the rotation is performed, there still is a red-red violation between c and its

parent c′. In this case the uncle, g, is also red, and c′, g and the grandparent b is repainted. This
again leads to a violation of the rule which states that the root is always black. To repair this, the
root is painted black, one black node is added to all the paths, and the balance is restored.

Delete

To delete a point from a dynamic PST, these steps must be followed:

1 . Lo ca t e t h e node t h a t r e p r e s e n t s t h e p o i n t t o be d e l e t e d .
2 . Remove t h e p o i n t from t h i s node , and f i l l i t by r e p l a y i n g a p o r t i o n

o f t h e t o u r n a m e n t among t h e p o i n t s i n i t s s u b t r e e .
3 . D e l e t e t h e p l a c e h o l d e r−l e a f .
4 . Reba l ance t h e t r e e a c c o r d i n g t o t h e p r o p e r t i e s o f a red−b l a c k t r e e .

Figure 5.5 shows an example of deleting a point from a dynamic PST. The point to be deleted
is stored in the left child of the root, and after the tournament is replayed, the node to be deleted is
black. When deleting a black node, the fifth property of the red-black tree is violated, as no longer
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5. Example of deleting a point from a dynamic PST. 
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Figure 5.5: Example of deleting a point from a dynamic PST.
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Figure 5.7: Inserting a new point in an interval PST.

all the paths from the root to a leaf contains the same number of black nodes. Then the rules for
rebalancing when deleting a black node with a red parent and a black sibling with a red right child
are followed. The rules say to rotate left at the parent. Rotation in a dynamic PST does not involve
rotating the root of the subtree, but the colors are exchanged as if the root had taken part in the
rotation.

5.1.2 Dynamic 2D Range Simplification Tree

When updating a 2D range tree [4], the new point is inserted as a leaf in the outer dimension, and
then inserted in all the associated structures in the path from that leaf to the root of the tree. In
our 2D Range Simplification Tree, there is one more consideration to make: The new point that is
inserted must be converted to an interval along with the other x-values in every PST, see figure 5.6.
This means that before one can start worrying about where in the associated structures the new point
is to be inserted, the point must be created by finding its place in the interval sequence. Not only
will this lead to one more interval in the sequence, it will also lead to not one but two intervals being
changed. As can be seen in 5.7, this may lead to the entire PST being changed, and a “simple” insert
will not do the trick. In addition to this, as different coordinates are included in every PST, these
sequences are always different. Hence, this procedure must be repeated for every PST where the
point is to be inserted.
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Figure 2. Li and Openshaw's line simplification method. Intersecting points are red, while the green points are 
those that will make out the new curve. 

 
 
 

General range search 
The bucket search of a PST can be transformed into a search with shape like a staircase. 
When we are able to adjust the search area on one side of the bucket, we can also adjust the 
other side. Figure 2 shows examples of different adjustments of the traditional bucket search.  
 

 
Figure 2. Different adjustments of the bucket search. 

 
In theory, we can split any line into small segments shaped like the last example from Figure 
1. If we draw this theory even further, any search area can be split in half, and make two such 
lines that can be split into segments. This means that if we can answer a semi-infinite query 
shaped like the one in Figure 2 efficiently, and find a way to efficiently limit the search in the 
infinite direction, we can answer any range query. Figure 3 shows a very simplified example 
of such a situation. 
 

 
Figure 3. A simplified example of splitting a general search area into segments. 
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Figure 5.8: Examples of different adjustments that can be made on the bucket search.

Inserting the new range in the outer dimension can be done in the same way as in a regular
binary search tree; recursively iterate until the place for the new node is found, create a new node,
and balance the tree by rotating. If the outer tree is implemented as a red-black tree, this can be
done in O(logN) time, where N is the number of nodes in the tree, which again is the number of
ranges along the y-axis that the data set contains.

The structure is meant to be used for storing large amounts of geographical data. Updating geo-
graphical data usually involves large changes in the data set. Because of this, an update procedure
must be efficient also when dealing with larger updates, otherwise it will be better to rebuild the
entire structure from scratch when updating. Whether or not such an efficient update procedure can
be developed is an issue for further work.

5.2 Non-orthogonal Range Search

In this thesis it has been shown that the bucket search of a PST can be transformed into querying a
range shaped like a staircase. When it is proven possible to adjust the search area on one side of the
bucket, it is likely that the other side can be adjusted too. Figure 5.8 shows examples of different
adjustments made to the traditional bucket search.

In theory, we can split any line into small segments shaped like the last example from Figure 5.8.
If we draw this theory even further, any search area can be split in half, and make two such lines that
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Figure 3. A simplified example of splitting a general search area into segments. 
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Figure 5.9: A simplified example of splitting a search area into segments.

can be split into segments. This means that if we can answer a semi-infinite query shaped like the
one in Figure 5.8 efficiently, and find a way to efficiently limit the search in the infinite direction,
we can, in theory, answer any range query. Figure 5.9 shows a very simplified example of such a
situation.

The PST is a very interesting data structure when it comes to performing range queries, and it
would therefore be interesting to see whether it can be used in developing an efficient method for
performing non-orthogonal range search. However, there is no time for that in this project, and
hopefully someone will see the potential and develop these theories further in the future.





Chapter 6

Discussion and Conclusions

This chapter sums up the work presented in this thesis. Whether or not the proposed solution
actually solves the problem is discussed, and so are the results presented concerning the efficiency
of this solution. In the second section of this chapter a conclusion is drawn, stating if the purpose
for the project is fulfilled.

6.1 Discussion

This section provides discussions concerning the results that are presented in this thesis, and some
of the problems that are yet to be overcome.

The tests that are carried out has shown two things; First of all they have shown that this approach
to combining orthogonal range search and line simplification works. Second they have shown that
the adjusted query developed for the PST, the staircase query, has an acceptable performance.

The bucket query, which is the type of query generally connected with the PST, has a complexity
of O(logN + k) where N is the number of points in the data set, and k is the number of points
reported from the query. The staircase query is an adjusted bucket query where the lower y-limit
and the upper x-limit varies. The worst case complexity of a staircase search is when one visits
all the nodes that would have been visited in the corresponding bucket query. However, the tests
that were carried out, which are described in section 4.4, show that the average complexity is much
better than this. Even when the staircase query was tested in some “worst case scenario” data sets,
that were created specifically to perform badly, never more than 5.5% of the nodes visited in the
corresponding bucket query were visited in the staircase query.

When it comes to the complete 2D Range Simplification Tree, an external implementation was
made. Unfortunately, it was completed too late, and the construction was too time consuming.
Because of this, the time ran out, and no large tests could be conducted. However, based on the
results from the tests of the staircase query algorithm in the PST, some conclusions can still be
drawn.

Because the first level of the 2D Range Simplification Tree has the same structure as a regular
balance binary tree, the complexity of a query in this level is worst case O(logN), where N is the
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number of ranges along the y-axis that the data set is split in. Because the search can return several
of these ranges, the search has an output sensitive complexity, hence, O(logN + k), where k is the
number of ranges that are completely covered by the query range. From the tests performed on the
staircase query in the PST, we have determined that the staircase query is quite efficient. We also
know that even though the intervals in the PST are included in many first-level nodes, they are only
included in one of the first-level nodes that are searched in each query that is performed. Because of
this, we can safely say that the complexity of searching the complete 2D Range Simplification Tree
is never worse than O(logN + k) in the first level + the accumulated number of nodes visited in
each of the PSTs that are connected to the reported first-level nodes. The average case is probably
much better than this.

The following subsections presents two problems that should be overcome before if anyone
wants to continue working with this problem and the solution presented in this thesis.

6.1.1 External Implementation

Because of the enormous amounts of data involved when dealing with GIS, it is crucial that the
structure is built and stored externally. Even though one suggested external implementation is de-
scribed in this thesis, this problem is not solved. The solution given here is not efficient enough, and
was not even useful for performing tests on the complete 2D Range Simplification Tree, because it
was too time consuming. However, it did show that an external implementation can be made, and,
hopefully, some of the techniques described can be used in a future, more efficient implementation.

6.1.2 Constructing the 2D Range Simplification Tree

The current implementation of the PST is not optimal, because in every subtree, all the points must
be checked to find the one with the greatest y-value. The base structure of a PST is a balanced
binary tree, and for a tree to be balanced, it must have approximately the same number of nodes in
each subtree. As the nodes are placed in the subtrees in a PST according to their s1-value, and in
theory, all the nodes can have the same s1-value, the question of how to construct the tree arises.
Since searching in a PST is an output sensitive algorithm, and the nodes will be reported no matter
which subtree they belong to, the complexity of the search will be the same in either case. However,
during the construction of the tree there is a difference.

When the nodes that have the same s1-value are separated in different subtrees, a problem arises
when selecting the node with the largest s2-value to be the root. If all the nodes that have an s1-value
that is below a certain value are in one subtree, and the ones that are above in the other, the node
with the largest s2-value can be chosen from a list where the nodes are sorted by the s2-value, and
a simple check to see if the s1-value is within the current subtree can be performed. If the nodes
with the same s1-values are separated into different subtrees, this check will not be sufficient, and
one must check all the nodes in the subtree to select the one with the largest s2-value. In the current
implementation a balanced tree has been preferred, and, hence, the latter method chosen.

Another way to solve this problem is to figure out how the PST can be constructed using the
bottom-up construction of a heap. This method is introduced in the first section of the previous
chapter (Further Work), but it has not been implemented.
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To avoid this, one can sort the points both according to their x- and their y-values, but that raises
another issue. The base structure of a PST is a balanced binary tree, and for a tree to be balanced, it
must have approximately the same number of nodes in each subtree. As the nodes are placed in the
subtrees in a PST according to their x-value, and in theory, all the nodes can have the same x-value,
the question of how to construct the tree arises. Since searching in a PST is an output sensitive
algorithm, and the nodes will be reported no matter which subtree they belong to, the complexity
of the search will be the same in either case. However, during the construction of the tree there is a
difference.

There are also some issues concerning the selection of the splitting values in the y-range tree.
It is important that points with the same y-coordinate are stored in the same subtree, but it is also
important to maintain the tree balanced to ensure a logarithmic complexity in the search. As several
points have the same y-coordinate, the middle of the list is not a good choice for the split value.
What is done at the present time is that the two values in the middle of the list are compared. If
these are different, the median of these two values are chosen. If they are the same two loops are
run up and down the list to find the pair of values that are different and that are closest to the middle
of the list. Then the median of these two different values are chosen to be the node’s split value.
This may lead to the tree being unbalanced, as there can be many points with the same y-value in
the middle of the list. However, it is vital that all nodes with the same y-values end up in the same
subtree, so maybe this possible imbalance must be accepted.

6.2 Conclusion

Based on the tests that were carried out, it is clear that the new data structure for combining orthog-
onal range search and line simplification is applicable. It is possible to solve these two problems
simultaneously using the proposed approach, and queries can be answered within an acceptable
amount of time. However, there are still some issues that must be solved.

It is clear to see that without an efficient external implementation of the 2D Range Simplification
Tree, this method for combining range queries and line simplification can not be used. Nevertheless,
it is important to keep researching this problem. More and more geographic data is made available,
and updating layers of different resolutions becomes increasingly more resource demanding, and
very easily lead to inconsistencies.
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Appendix A

Glossary of Terms

Amortized analyses: Bounds the cost of a sequence of operations and distributes this cost evenly
to each operation in the sequence.
Approximation: A visualization of a geographical area presented with a lower resolution than the
original data.
Area partitioning: A structure used when creating maps in which each point belongs to exactly
one of the areas; hence, there are no overlaps or gaps.
Associated data structure: The second-level data structure associated with each node in the first-
level in a two-level data structure.
Binary tree: A data structure consisting of nodes, where each node has no, one or two children.
The top of the tree is a node called root.
BLG: Binary Line Generalization. A binary tree used for storing the results of performing the
Douglas-Peucker line simplification algorithm on a polyline.
Bucket query: A semi-infinite range query. It is called a “bucket” query because the query range
is undefined in the upper y direction.
Cartographer: A person who creates, revises and analyses maps and geographical data.
Complexity: The number of operations needed to complete a process in a computer program. Of-
ten formulated as number of operations compared to the number of nodes that is involved in the
process.
Computational Geometry: A field of research, combining computer science and geometry which
involves using computers in solving geometry related problems.
Dynamic data structure: A data structure that can have nodes added to it or deleted from it after it
has been constructed.
Fan-out: The count of the number of subordinates for a module, for instance the number of children
of a node.
Generalization: The process of reducing the size and complexity of a spatial data set with visual
quality preserved or enhanced.
GIS: Geographic Information System. A system of hardware and software used for storage, re-
trieval, mapping, and analysis of geographic data.
Heap: A binary tree in which every node has a value that is higher than both its children.
I/O-operation: One operation of finding the correct index and reading information from a file.
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MBR: Minimal Bounding Rectangle. The smallest rectangle that contains all subdivisions of what
it is the MBR of.
Node: An object in a binary tree. Can have two or less children. A node with no children is called
a leaf.
Orthogonal: Axis parallel. Used here for describing axis parallel range queries.
Output sensitive complexity: The expression for the efficiency of a search algorithm where the
complexity depends on the number of nodes reported from the search.
PPP Purchasing Power Parities. Currency conversion eliminating the differences in price levels be-
tween countries.
PST: Priority Search Tree. A binary tree which is a hybrid of a heap and a balanced search tree.
Query key: The criterion the nodes reported from a search must satisfy. In the orthogonal range
queries covered in this thesis, the query key is four values giving the upper and lower limits of the
search area in both the x- and the y-direction.
Raster: A square. Often used in connection with computer graphics, photography and television.
Recursion: See Recursion.
Semi-infinite range query: A range query where the query key is infinite in at least one direction.
Stabbing-max query: Find the largest interval that intersects the stabbing value.
Stabbing query: The term for maintaining a set of intervals so that for any given value h, all inter-
vals that contain h can be reported efficiently.
Staircase query: A semi-infinite range query with the shape of a staircase.
Subtree: A part of a binary tree that is a binary tree it self.
SVO: Smallest Visible Object. The size of the smallest object that shall be visible after performing
a simplification of a line after one of the simplification methods presented by Li and Openshaw.
Two-level data structure: A data structure, for instance a binary tree, where all the nodes are
connected to another complete data structure.
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