
Experience Augmented Pedestrian Wayfinding

Master Thesis, 30 credits

Håkon Arneng Holmstedt

January 8, 2007

Halden, Norway





Abstract

This thesis explores collaborative route planning for pedestrians, where the users’s experience with

the system and with the suggested routes augment the route planning for other users.

I describe a technique for sharing experiences between groups of users that share some com-

mon characteristics. The technique is demonstrated with an experimental application running on

Smartphones and PDAs.

The device that the application is developed on is connected to a GPS device via a Bluetooth

connection, and it uses open, freely available Web Map Services (WMS) for map images. The

application allows for point to point route planning, searching for a route to the closest point of

interest of a particular kind (f.ex. the closest accessible parking space), user feedback to routes,

GPS tracking and recording of user movements, and creation of new roads by the individual user.

Route planning is performed using the classic A* algorithm on a road network consisting both

of proprietary data (from the Norwegian Mapping Authority) and open data (from the Open Street

Maps project).

Keywords: Collaboration, Mobile Devices, Pedestrian Navigation, Route Planning

i



Acknowledgements

This thesis would be impossible to write without the help and support of a number of different

people and institutions.

First and foremost, I would like to thank my advisor, Gunnar Misund, for helping me focus on

the important issues and for making me understand the errors of my ways when I have strayed.

I would like to thank my family and my very dear Kate Tonkin for their steadfast support and

patience with me during my long, academic isolation. Without them, I would certainly be lost a

long time ago.

I would also like to extend my thanks to Harald K. Jansson and Torbjørn Halvorsen for their

cooperation and friendship during our work on the Okapi Framework. They have been a steady

stream of ideas and I have learned a lot by working with these fine gentlemen.

The Østfold branch of the Norwegian Labour and Welfare Organisation, Halden Ergotherapy-

service, and the Halden chapter of the Norwegian Association of Disabled have been most helpful

in regards to testing the system, and I would like to thank them for their enthusiasm and aid.

ii



Table of Contents

Abstract i

Acknowledgements ii

1 Introduction 1

2 Background 5

2.1 Project background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The Accessibility Project . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Okapi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Technological foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Mobile devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Web Map Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Route Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Classifying Route Planning Problems . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Graph Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Classic Algorithms for Route Planning and Graph Searches . . . . . . . . 26

2.3.4 The Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Pedestrian Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.2 Collaborative Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.3 Collaboration in Route Planning . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 My contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iii



iv TABLE OF CONTENTS

3 Design of the Ranger 45

3.1 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Finding your way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.2 Giving back to society . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.3 Making yourself heard . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Assumptions and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Modelling the User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Collaboration in the Ranger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Combining Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.2 Sharing Experiences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Datamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6.1 The Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.2 The Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Testing 63

4.1 System testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 Calculate Route from A to B . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.2 Calculate Route from A to a Point of Interest . . . . . . . . . . . . . . . . 69

4.1.3 Calculate Route after network has been reviewed . . . . . . . . . . . . . . 70

4.1.4 Adding edges to the network . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.5 Conclusions from the system testing . . . . . . . . . . . . . . . . . . . . . 78

4.2 User Meeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Test Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Findings and Future Work 87

5.1 Project Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.1 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.2 Open Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 User-drawn Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.2 Miscellaneous Future Features . . . . . . . . . . . . . . . . . . . . . . . . 92



TABLE OF CONTENTS v

References 93

List of figures 99

List of tables 100

A Implementation Details 101
A.1 Client Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.2 Server Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.3 Server Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B Ranger messages and XML Schemas 115
B.1 Error Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B.2 Track . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

B.3 Track with POIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116





Chapter 1

Introduction

In my thesis I will explore the problems of route planning for pedestrians, and I will focus on

pedestrians that have impaired mobility such as wheelchair users.

Route planning is, in simple terms, the act of finding a way to move from one point to another.

For example, if you are sitting in your car and you want to go a particular place, you first need to

know how to get there. In most cases, you already know the way and simply drive the same route

as you always do, but sometimes you need to cover unfamiliar territory. In such cases, you may

consult a digital route planner.

The market is replete with route planning devices that one can use to find the way when one is

driving. These devices uses positioning systems to discover where in the world the car is and come

equipped with detailed road information that helps it calculating a route. The final route is usually

represented by visual clues overlayed a map, and there is often a voice telling you when to turn left

or right.

Although route planning for cars is by far the most common type of route planning in the

contemporary consumer market, one can also imagine uses for route planning for so-called soft

trafficants. These trafficants include pedestrians, cyclists, and similar. For example, a cyclist may

want to find a scenic route through a particular area of rural landscape, or a wheelchair user in a

new town may wish to find the way to the nearest hotel with wheelchair ramps.

Pedestrian route planning introduces some issues that are not seen in the more common route

planning scenarios. One such issue is the map that needs to be far more detailed than the maps used

for vehicular route planning (route planning for cars and other road-vehicles). With the latter form

of route planning, one needs only know a few things like where there are intersections, whether

a particular road is one-way or not, and possibly what the speed limits are. However, in the case

1



2 Chapter 1. Introduction

of pedestrian route planning, it becomes necessary to include such things as information about

sidewalks and crosswalks.

A further complication of pedestrian route planning lies in the underlying algorithms. Regular

route planning employ a number of optimization based on some common assumptions. For example,

in a car one can assume that it is good to get onto a highway as early as possible in the trip and only

get off the highway when necessary. The highway is a road that offers high speeds and ease of

navigation. By assuming this, one can reduce the route planning problem to include small roads and

by-ways only near the start and end of the proposed trip. However, there are no good analogies to

the highway for the pedestrian. In essence, any road is a good road and no road offers higher speeds

in and of themselves. It then becomes impossible to reduce the planning problem in the same way

as with vehicular route planning.

To further complicate matters, pedestrians come with a mulitude of different needs. A dra-

matic example is the difference between a wheelchair user and blind person. Both want to use the

sidewalks and crosswalks available in a city, but one is hindered by tall sidewalks that hamper the

wheels of the wheelchair, while the other is helped by the very same tall sidewalks that represent

good clues to where the sidewalk ends and the road begins.

Clearly, the issues surrounding route planning for pedestrians with disabilities are many and

challenging. I want to find out:

Is it is possible to create a mobile application for pedestrian routeplanning that give

good routes for users with different and sometimes conflicting needs and interests?

I will try to answer this by attempting to create an application that performs such a task. To achieve

this, I will need to solve a number of sub-tasks:

• Create a mobile application capable of displaying maps and routes

• Create a mechanism for generating routes

• Create a mechanism for determining the subjective quality of a route and apply this to the

routeplanning mechanism

If the three subgoals are met, I believe that I have shown that the issue outlined in the problem

statement is indeed solvable with contemporary technology and data. The key to the problem lies

in the third subgoal where routes are assigned some subjective measure of quality. Done right, this

gives rise to personalized routes as the routeplanning algorithm will take into account the user’s

preferences through this measure.



3

The problem I want to explore relates to whether or not currently available technology and

data is enough to create an application as I have outlined above, rather than looking at the human-

computer interface (HCI) aspects of developing mobile applications.

Methodology

This Master Thesis is an exploration into the feasability of personalized routeplanning on mobile

devices. Because of this, it is natural to focus on the practical aspects of the problem, i.e. a prototype

application. I will persue the problem as a practical case study. The case will be to develop a proof

of concept application that solves or at least highlights the issues involved in creating a personalized

mobile navigation aid for pedestrians.

Development of this prototype will occur in a number of steps:

1. Pre-analysis. This step includes gathering background material for the project. I will need

to learn about classic route planning techniques as well as gaining an understanding of cur-

rent trends and developments in both the mobile applications field and the broader field of

collaborative information systems.

2. Analysis. In this step I will consolidate relevant knowledge for the project and decide on

suitable platforms and frameworks for the project. The step will also include selecting a

relevant user group for future testing and determining what specific tasks a prototype must be

able to perform in order to adress the problem statement of the thesis.

3. Design. Here the prototype will be designed, i.e. I will develop a data-model for the domain

as well as deciding on the architecture of the prototype. The design phase will focus especially

on capturing the interaction between user collaboration and personalization.

4. Implementation and testing. The final step includes developing the final prototype and per-

form a number of tests to discover whether or not the concepts developed in earlier steps are

sound. This step includes a meeting with actual users to further anchor the prototype in the

real world.

The prototype that I will design and develop is intended as a proof of concept. That limits the

amount of time I will spend on otherwise critical factors such as usability and robustness. On the

other hand, I expect the prototype to perform the necessary tasks identified in the analysis step.



4 Chapter 1. Introduction

Document outline

This thesis is organized in five chapters, where the first is the introduction you have just read.

Chapter two covers various topics that serve as a backdrop for this thesis. It will introduce the reader

to two projects that have inspired my own project. It will also go over the technologies necessary

for the realization of the project, and give some details regarding route planning including common

algorithms. Finally, chapter two will give a brief overview of previous work done in the field of

pedestrian navigation.

In the third chapter I give a detailed description of my suggested solution with a design and

some notes on the final implementation. Chapter four details testing of the system, and in chapter

five I reflect over the results of my work.



Chapter 2

Background

Before I go into the details of what I want to do with this project, I will discuss a numer of related

topics. First, I want to look at two other projects that have a direct link to my work. Then I

will review various technologies available that can contribute to realize the project. I will proceed

with discussing route planning more indepth, looking at some selected algorithms and datastructures

amongst other things. There is also some previous work on pedestrian navigation that I will examine

before I offer a preliminary outline of the application I will attempt to create.

2.1 Project background

There are two projects that serve as a foundation for my thesis. One is the Accessiblity project which

provides among other things a case for the project, i.e. a particular set of users that can provide a

focus for the design. The other project is called the Okapi Framework which is an application for

Windows Mobile that I will use as a platform for my own work.

2.1.1 The Accessibility Project

The Accessibility Project is a joint project headed by the Norwegian Mapping Authority. The

project’s initial aim was to provide maps to help physically disabled people navigate the streets of

Oslo. In the future, the project is expected to branch out to several major cities in Norway.

The project is divided into three phases where the first phase consisted of gathering accessibility

data and presenting this on a paper map[3] (see figure 2.1 for a small cutout of the map). The data

that was gathered was on the quality of the sidewalks, the presence of traffic lights, and the presence

5



6 Chapter 2. Background

of street-crossings. The map also included data from a previously created Accessibility Guide which

is a catalogue of accessible resturants, shopping malls, etc. in Oslo.

The second phase of the project is adopting the paper map for web publishing. This phase is

being handled by the private company Norkart [34] and has resulted in an interactive map of Oslo

showing all the same data as the paper map. In addition, users are able to turn on and off various

features as they see fit. For example, one might not be interested in the multitude of wheelchair

accessible museums if one is looking for how to get from the train station to the hotel, and in such

a case one could simply turn off museums and see a map with only pertinent information.

In the third phase of the project, the Accessibility map is to be made available on hand-held

devices. In this phase, the Østfold University College has participated by offering prototypes and

ideas for solutions.

In addition to the Norwegian Mapping Authority and Norkart, the Norwegian Association for

the Disabled is involved in the project. They supply test users and the most pertinent domain knowl-

edge.

2.1.2 Okapi

Okapi is a general pedestrian geotagging tool created at the Østfold University College by myself

and two other students during the spring of 2006 as a redesign of an earlier project by the same

name [18]. The aim of Okapi was twofold: Firstly, the application would provide the user with the

ability to browse maps on a mobile phone or Pocket PC. Secondly, the application would allow the

user to create so-called geotags or points of interest (POIs).

The application has been used in the Accessibility project as a prototype for its third phase.

There are also suggestions that is should be used in data gathering for future expansions of the

project.

Figure 2.2 shows mapbrowsing in the first Okapi version where user generated POIs are repre-

sented by smilies.

Geotagging

The greatest strength of the Okapi application was in its focus on user generated content. It allowed

each user to tag the map with a wide variety of information, including texts, images, sounds, and

videos. Furthermore, it allowed the user to share this information with any other user of the system.

This way, Okapi allowed people to share geographically positioned information in a quick and



2.1. Project background 7

Figure 2.1: A sample of the first Accessibility map.



8 Chapter 2. Background

easy way. People could create tags showing places with a great view, restaurants with good food,

or anything else they wished to share. They could complement the location and description with

images of the topic at hand, for example the food served at a restaurant or a panoramic view, and

they could even add spoken commentary or videos.

In the Okapi application, each tag is called a Point of Interest (POI), and these are displayed on

the map as clickable icons. When an icon is clicked, the name of the POI is displayed along with a

short description. By further clicking the user can see any additional media, like images or sounds

that are associated with the POI. The user is also able to edit a POI by adding more text or other

media.

Maps and User Positioning

Apart from POIs, the basic Okapi is a mapbrowser written in C] for Windows Mobile 5.0. It features

map tiling for rapid displaying of maps, three tile sets, and user-positioning.

The Okapi server offers three basic tile sets: The Standard map (figure 2.3), the Satellite map

(figure 2.4), and the Hybrid map (figure 2.5). The Standard map is a selection of layers offered

by the Arealis Web Map Service (WMS) [24], although we are currently looking at the possibility

of adopting other WMSs that give more detailed images. This scheme is intended for everyday

browsing and navigation. It has relatively clean images and occasional texts to help the user orient

himself.

The Satellite map is a simple map that takes its images from NASA’s Global Mosaic WMS [33].

This WMS gives relatively detailed satellite imagery of the entire world, and is currently the only

global map service used by Okapi.

Finally, the Hybrid map combines the GlobalMosaic and the Arealis images to show roads and

buildings on top of a satellite image. Due to the low quality of the satellite images and the relatively

small scale necessary to show building mass, this scheme should be considered more of a curiosity

than a usefull feature. The inclusion of the scheme has been an exercise in combining multiple

WMSs and shows us that this is something we can do successfully and that we should look into

more at a later point.

In addition to the various maps and the ability to tag the map, Okapi offers rudimentary position-

ing. If the user has attached a Global Positioning System (GPS) device to the Pocket PC, Okapi can

find this device and interpret the signals. This way, the system can display the user’s own position

on the map, and it is also able to continously update the map, so that the user is always in the center

of the displayed map.



2.1. Project background 9

Figure 2.2: A screenshot of the first version of Okapi

Figure 2.3: Standard map showing downtown Oslo. Images courtesy of the Arealis WMS.



10 Chapter 2. Background

Figure 2.4: Satellite images showing Oslo and surrounding areas. Image courtesy of NASA’s GlobalMosaic
WMS.

Figure 2.5: Hybrid map showing downtown Oslo. Images are a combination of NASA’s GlobalMosaic and
the Arealis WMS.



2.2. Technological foundation 11

2.2 Technological foundation

In addition to the parent projects described above, the project will be founded on a number of

different technologies that deserve some illumination.

2.2.1 Mobile devices

The application I plan on implementing will be heavily influenced by the choice of platform. Since I

want the application to be used by people that are out in the real world, it becomes natural to choose

a mobile device. At the time of writing Microsoft’s Windows Mobile 5.0 seems the most promising

in terms of both features and future compatability; It is guaranteed to have the same feature-set

regardeless of the individual device, something that is sadly not currently true about Java MIDP or

other platforms.

Developing for mobile devices introduce opportunities as well as challenges not seen in a desk-

top environment. These stem as much from the limitations and features of the devices themselves

as from the context in which the devices are used.

Advantages of mobile devices

Choosing a mobile platform for developing one’s application opens up a number of possibilities that

one lacks on other platforms.

First and foremost, one can usually assume that the user is always around the device. That is,

the user tends to carry the device around wherever they go. This leads to a major opportunity: The

developer can assume that wherever the device is in physical space has some bearing on the user’s

location and even motivation. Long et al. described as early as 1996 a location aware family of

mobile applications [29], and a number of commercial applications have been developed to take

advantage of location. These applications range from the simple location based advertisement (i.e.

when a user is inside a supermarket, one can push grocery-ads to his mobile phone) to location

based games like Geodashing [14].

Another important difference beween the mobile platform and a desktop/laptop environment is

that the mobile device is usually turned on. This allows the device to engage in continous activity

that desktops are not able to. For example, one can usually assume that the device is available for

network contact whenever an outside service needs or wants to push information to the client.

Finally, most mobile devices are almost always connected to some network or other. This net-

work could be anything from a broadband WLAN to a simple GSM connection, but the result is the



12 Chapter 2. Background

same: A service provider is always able to get in touch with the device. This attribute of the mobile

platform lends itself naturally to push-services. A provider can at any point send information of

any kind to the mobile device. The device may then choose to either alert the user or deal with the

new information in some other way. For example, a map application could be silently updating its

map-set while the user is not useing the device for anything else. This way, the device always has

an up-to-date map of the area it is in, and the user will have a better experience.

Special challenges with limited devices

There are a number of issues that a developer must be concious of when targeting a mobile platform.

The first problem facing developers for mobile devices is the inherent dangers in using a device

that runs on batteries. Every time the device is used, it draws on its batteries for power, and once the

batteries are drained, the device stops working. Unfortunatly, heavy use of the device’s processor

will drain the batteries and in some cases drain them fairly quickly. It is therefore necessary for the

developers to make sure their application doesn’t perform any unneeded actions, like keeping user

interfaces running that are no longer usable. Furthermore, additional services the phone may offer,

like WiFi or Bluetooth antennas use even more battery power. The developer must therefore try to

minimize the time spent using these services. This can be achieved by, for example, postponing

any network activity until no more actions can be taken without the network, then perform all the

network activities necessary before shutting down the connection again.

Another problem with mobile devices is the unreliable nature of both the device and the net-

works the device uses. A running application may for example experience loss of network as the

user moves out of range of any antenna or cell-tower. More dramatically, the device may decide to

shut down from lack of power, or the user may abruptly turn the device off. The consequence of

this is an application should never put the device in a state it cannot recover from. For example, if

an application runs a database, it should have the necessary tools to recover from an aborted write

action.

An issue that is more in the realm of user interface design is that of user focus. In contrast with

a desktop environment where the user is assumed to be sitting down to do a piece of work, a mobile

device is usually used casually. The user tends to keep the device active for only short periods of

time, and is used to put the device away at any time and for any reason. In essence, the user’s

concentration is rarely on the device.

Finally, with a device that is easily stolen or forgotten in a multitude of locations, privacy be-

comes a concern. One can therefore never assume that the user is the owner of the device, and so



2.2. Technological foundation 13

storing personal information like passwords becomes an unacceptable risk.

2.2.2 Web Map Services

A Web Map Service (WMS) is a server that lets users download maps according to a specific set of

rules.

The WMS interface was developed by the OpenGIS Consortium (OGC) to allow clients to

access maps on any server and even combine maps from any number of servers in a quick and easy

fashion. The WMS specification goes into detail about how a server should treat various queries and

how the response should be fashioned [6]. It allows a client to specify a large range of options that

mostly boil down to what the map is to be a map of. These options are called layers and determine

the kind of data that the WMS will make use of when drawing the map. For example, the Arealis

WMS has a great many layers available for Norway. A client could then ask for a map with soil-

types, placenames, and roads (figure 2.6(a)) or a map with bodies of water, height curves, and such

(figure 2.6(b)). The user can also specify such things as the size of the resultant picture in pixels,

the format of the image (i.e. PNG, JPEG, etc.), and of course the geographic bounds of the image.

However, the greatest strength of the WMS specification becomes appearant whenever two or

more servers implement the interface correctly. Figures 2.6(c), 2.6(d), and 2.6(e) show a scenario

where a client downloads a road network from Arealis and a background image from OnEarth.

Since both these services implement the WMS interface it is trivial to combine the two images into

a new map showing roads on a satellite image.

The WMS specification is actually one of several specifications developed by OGC to create a

interoperable set of services for the exchange of geographic information. Another specification is

the Web Feature Service (WFS) [48]. The WFS defines an interface to get access to vector data.

This is the raw data used for drawing maps, and access to this allows a client to both draw their

own maps or do other more advanced analysis. The data is presented in the XML-language GML

(Geographic Markup Language) that is also created by OGC for the exchange of raw geographic

data.

2.2.3 Positioning

As mentioned earlier, location becomes an important parameter when dealing with mobile devices.

Here I will introduce some common means of positioning a mobile device and I will look especially

at outdoors positioning using the Global Positioning System.



14 Chapter 2. Background

(a) The request asked for
soiltype, roads, placenames,
and municipality borders

(b) The request asked for bod-
ies of water, roads, height
curves, and municipality bor-
ders

(c) A request for only roads
from the Arealis WMS

(d) A request for a satellite im-
age from the OnEarth WMS

(e) Blending the two resulting
images produces a nice road
map

Figure 2.6: Some examples of WMS use



2.2. Technological foundation 15

There are two basic approaches to mobile positioning resulting in two very different situations,

the first of which is self-positioning. With this approach the mobile device uses some way of dis-

covering its location and can modify its behaviour, or the behaviour of onboard applications, ac-

cordingly. The other approach is remote positioning, which occurs when a mobile device’s position

is calculated by some separate device or process. This kind of positioning is more interesting in

top-down systems like billing systems, or in situations where a third-party needs to know some-

one’s location. The latter situation covers emergency services that try to locate missing persons

by discovering the location of their mobile phones such as E911 [11] and E112 [45]. Of the two

approaches, the first, self-positioning, is the most interesting for my work.

Self-positioning comes in a number of flavours, each with its own strengths and weaknesses.

Evennou et al. suggests a method for indoors positioning using particle filtering, knowledge of the

map of the user’s surroundings, and the signal strength of the local wireless network to get a fairly

accurate location of the user’s position in the building [8]. Another method is to use ultra wide band

radio signals, and such a method can yield fairly good results [22]. Even better precision can be

had by exploiting ultrasound for positioning [19]. All of these methods have two major problems,

though. One is that they only work in predetermined and prepared areas, i.e. one needs to set up

the infrastructure for positioning in the exact location the system is to be used. Another problem, at

least in terms of usefullness in this thesis, is that they are all meant for indoors use.

Outdoors self-positioning is fortunatly far easier and allows for near universal service. There

are two basic methods for ubiquitous, outdoor self-positioning: Global Positioning System (GPS)

or equivalent and Mobile Terminal Positioning over Satellite UMTS [51]. Both methods exploit

the global availability of satellites to calculate the location of the mobile device. The latter method

offers a precision of only about 150 meters, but puts fewer demands on available satellites than GPS.

Such precision can be enough in many situations, but for routeplanning where the route might not

be much longer than a few hundred meters, GPS becomes the only real alternative.

The Global Positioning System

The GPS is a positioning system owned and operated by the United States armed forces and was

heralded by the first launch of an experimental GPS satellite in 1978. Today a large number of

such satellites orbit the earth, providing fairly accurate time and place positioning to anyone with a

receiver capable of intercepting the signals.

A GPS receiver is a device that is capable of intercepting the GPS signals from the various



16 Chapter 2. Background

satellites and interpreting them. Such devices are commonly available on the market and the ba-

sic models cost less than an entry level mobile phone. As location aware services become more

common, we can also expect to see an increasing number of mobile devices with integrated GPS

receivers. For now, however, the most common receivers are car navigation computers and stand-

alone receivers with bluetooth antennas for communication with other devices.

Provided one has a GPS receiver, one can ascertain a number of things. The receiver will output

in any way it can a number of NMEA strings. These strings are well formatted strings encapsulating

the appropriate data. Each string encapsulates a different set of data, so that an application usually

only reads the string that most closely serves the application’s needs.

Table 2.1 shows three selected NMEA strings that are commonly used by GPS applications. I

will detail the parsing of the first string as it contains the most information and is the most pertinent

to the thesis.

The common GPGGA string details the GPS fix data gathered by the GPS device. That is, this

string contains information about where the GPS receiver is in time and space, in addition to some

information about the quality of the data. The string consists of 16 fields as seen in table 2.2. Some

of these fields take more interpretation than others, and I shall attempt to explain the ones that are

not intuitive.

The second field, Time, is expressed as hours, minutes, and seconds in Zulu time. Using the

example value of 151023 we get the time 15:10:23 Z which is ten past three in the afternoon in

London.

Latitude and longitude are also compounded values and they are parsed in the same way. The

first two digits represents degrees, and the final six digits represent minutes. So the value 5923.6843

means 59 degrees and 23.6843 minutes which in the more humanly readable form is 59’ 23” and

41.058 seconds. Fields four and 6 simply state whether the preceeding value is north or south (or

east or west) of the equator (or the Greenwich meridian).

Fix quality can be either 0 for no fix, 1 for GPS fix, or 2 for DGPS fix. DGPS fix means that the

device is receiving signals from a special ground station that can increase the accuracy of the fix to

less than a centimeter. DGPS is a service available mainly to military operatives or civilians that are

willing to pay large sums of money for that kind of precision.

Horizontal Dilution of Precision (HDOP) is a measure of the quality of the fix and the number

is calculated internally by the GPS receiver. The lower the HDOP number is, the better the quality

of the fix. A number below 4 is considered good, while a number above 6 is not to be trusted. In

between lies gray areas where the application needs to make some judgement calls as to whether



2.2. Technological foundation 17

NMEA Description Example
GPGGA GPS fix data $GPGGA,151023,5283.6843,N,1109.1079,E,

1,05,1.5,150.3,M,12.0,M,,*75
GPGSA Satellite overview data $GPGSA,A,3,04,05,,09,12,,,24,,,,,2.5,1.3,2.1*39
GPZDA Date and time $GPZDA,201530.00,04,07,2002,00,00*6E

Table 2.1: A few typical NMEA strings

Field Description Example
1 Sentence identifier $GPPGA
2 Time 151023
3 Latitude 5923.6843
4 Latitude hemisphere indicator N
5 Longitude 1109.1079
6 Longitude hemisphere indicator E
7 Fix quality 1
8 Number of satellites seen by this receiver 05
9 Horizontal Dilution of Precision 1.5

10 Altitude 150.3
11 Unit measure of altitude M
12 Height above the WGS84 ellipsoid 12.0
13 Unit measure of height M
14 Time since last DGPS update blank
15 DGPS reference station id blank
16 Checksum *75

Table 2.2: The 16 fields of the GPGGA string

the fix should be used or not.

The fields referring to DGPS updates and station ids are not commonly used in civilian appli-

cations. They refer to the positioning aid that can be rendered from specialized ground stations in

certain areas. However, due to the prohibitive price to access such station, most GPS receivers are

not capable of this kind of positioning.

The checksum is a value that can be used to ensure that the NMEA string was transmitted

correctly. The checksum can be calculated by performing an 8-bit exclusive OR operation on the

entire string between the $ and * delimiters.

A sampling of other positioning methods

Two other means of positioning worth mentioning are positioning by cell id and positioning through

a gazetteer.



18 Chapter 2. Background

Cell id positioning is a somewhat crude, but functional positioning technique where the mobile

device is located by figuring out what cell tower it is currently communicating with. In the simplest

form, the device is simply associated with the current radio tower it uses and assumes it is within

some distance of this. Such a method of positioning gives a fairly inaccurate position, but it can

be improved upon. A mobile phone does not only see its current cell-tower, but it can also see a

number of other weaker signals. If the device knows the position of three towers, and can figure out

the strength of each signal, it can calculate its position with a relatively high degree of accuracy.

An even less accurate positioning method is positioning by gazetteer. Using this method the

user inputs his location as a text string, for example the user may say that he is in Oslo. This textual

position is then submitted to a gazetteer-service that knows the location of several such places and

can give this in geographic coordinates. This method gives a very poor accuracy for positioning,

but for some situations, it is good enough.

2.2.4 Data

For this project I have three main sources of data. I get my road data from the VBASE database and

from the Open Street Maps project, and I get information about special points of interest from the

Accessibility project.

VBASE: Road Network with SOSI

VBASE is a centerline road network database that I have been given partial insight into via the

Accessibility Project. This data is represented using the SOSI (Samordnet Opplegg for Stedfested

Informasjon, i.e. Coordinated Methods for Locative Information)[41] standard developed and main-

tained by the Norwegian Mapping Authority and others.

The data is presented as a flat text file and it is defined by a Baccus-Naur grammar. First in the

file is a header that describes the data. This is followed by a number of divider lines and then the

actual data. The VBASE file I have been allowed to use has a header that looks like figure 2.7. The

lines that will be important to my project are 13, 14, and 15. These describe the coordinate system

used, the coordinate shift to be applied, and the size of the units in the file.

The coordinate systems used in SOSI files are described using a single number that correlates

to the SOSI table of coordinate systems [42]. KOORDSYS 22 means that the file uses Universial

Tranversal Mercator zone 32 coordinates based on the EUREF89/WGS84 datum.

The SOSI header also defines a relative origin for the file, although in this case, this origin is



2.2. Technological foundation 19

01 .HODE
02 ..TEGNSETT ISO8859-10
03 ..OMRÅDE
04 ...MIN-NØ 6631301 582962
05 ...MAX-NØ 6667873 609395
06 ..SOSI-VERSJON 3.2
07 ..SOSI-NIVÅ 3
08 ..EIER "Statens kartverk"
09 ..VVERS
10 ...VVERSNAVN "2005 VEGNETT "
11 ...VVERSDATO 20041011
12 ..TRANSPAR
13 ...KOORDSYS 22
14 ...ORIGO-NØ 0 0
15 ...ENHET 0.01
16 ..OVERORD_KVALITET
17 ...PROSESS_HISTORIE "20051103 - Trans (SKT2NOR1): fra 3 til 22"

Figure 2.7: The header for a partial VBASE export to SOSI, comments have been removed

same as that of the coordinate system. The origin simply defines a constant value pair that should

be added to any coordinate pair found in the file.

Finally, the SOSI header defines a unit value. This is usually some number between zero and

one that is used to find the actual coordinate. In the case of the VBASE file, the unit value is 0.01

meaning that every value found in the file is one hundred times larger than the actual coordinate.

Putting all of this together and looking at an example curve (figure 2.8) we find that the first

coordinate, on line 14, is ”664330351 60310466 14840 ...KP 1”. Applying the trivial origin and the

unit we get (664330351 + 0) ∗ 0.01 (60310466 + 0) ∗ 0.01 14840 ∗ 0.01 which gives a coordinate

of 6643303.51 603104.66 148.4. If we translate this to geographic coordinates while maintaining

the WGS84 datum we get the coordinate 59.9143067 North, 10.8438852 East and a height of 148.4

meters above sea level. Finally, the last token of information on this line, ”...KP 1”, means that this

point is belongs to more than one curve and is to be considered a node in the graph representation

of the network.

Parsing and reprojecting the VBASE data gives a dataset that adequately represents Oslo for the

purposes of this project.



20 Chapter 2. Background

01 .KURVE 15:
02 ..OBJTYPE SenterlinjeVeg
03 ..LTEMA 7001
04 ..KOMM 0301
05 ..DATO 19970602
06 ..KVALITET 22 36
07 ..GATE 20202
08 ..VLENKE
09 ...VNR K V 20202
10 ...VPA 2 1561 1756
11 ...VKJORFLT 12
12 ...VLENKEID 13734
13 ..NØH
14 664330351 60310466 14840 ...KP 1
15 ..NØH
16 664326849 60311167 14830
17 664325288 60311517 14880
18 664324136 60311847 14900
19 664320674 60312927 14970
20 664317772 60314013 15110
21 664316507 60314566 15180
22 664313177 60316123 15370
23 664311984 60316804 15420 ...KP 1

Figure 2.8: A single object from the VBASE Oslo data.



2.2. Technological foundation 21

Open Street Maps

The Open Street Maps (OSM) project is a collaborative project aimed at providing open, free, and

accurate streetmaps of every city on the planet. The original project started out by mapping London,

but as the number of volunteers attached to it grew, it came to cover more and more cities.

The project relies on volunteers tracking their movements using GPS devices. These tracks are

uploaded to the OSM servers where they are analyzed and merged with the data already present.

The resulting data is available for perusal by anyone either through the OSM websites or through

any other application that connects to the OSM servers.

The way I have accessed the OSM data is through an application called JOSM (Java Open

Street Maps). This application allows me to select a rectangular portion of the earth and export this

as XML data. The XML schema for this data defines nodes, segments, and ways, all of which are

identified by unique integers.

A node in the OSM schema is a single point in space. This point may have additional data asso-

ciated with it, such as a description or a label, but are meant as anchors for higher level structures.

A segment is an ordered pair of nodes that define a traversible road while a way is an ordered list of

segments describing any road, path, or otherwise that has been uploaded to the project’s servers.

The schema also defines a datastructure known as ’area’. This datastructure is not used in my

project and does not appear in the data export I made for Halden.

Accessibility: Points of Interest

In addition to the road map, it would be of interest to include data on points of special note. During

the first phase of the Accessibility Project mentioned earlier, a lot of data was gathered that is best

represented as points. The project gathered information about accessible toilets, museums, hotels,

parking, and a host of other subjects. This information has been made available to me in the same

format as the VBASE data, and this allows me to include it in my route planning.

Since I have the data for the roads in Oslo, it should not be very hard to associate these points

of interest to locations in Oslo and allow a user to ask for routes leading to a particular feature, like

a museum with wheelchair ramps.



22 Chapter 2. Background

2.3 Route Planning

The field of route planning will naturally be central in my thesis. Here I will try to describe the

problem of route planning and look at some of the more common solutions including a look at the

best known algorithms.

Route planning is the task of finding a path from point A to point B, preferably at the lowest

possible cost. Here, cost refers to a measure of the resources one has to expend to traverse the path.

The measure itself is arbitrary, but should have some relevance to both the path and agent traversing

it. For example, for a pedestrian, distance is a good measure of cost, while for a car, the expected

time spent traveling might be better.

The subject has its roots in the so-called Travelling Salesman Problem (TSP), although the

mathematical background can be traced to a game designed by William Rowan Hamilton in 1857

[2, p569]. In this problem a salesman wants to travel through a particular set of cities, visit every

city exactly once, and return to his city of origin. The salesman wants to do this in as short a time

as possible. It has been shown that finding an optimal solution for this problem is NP-hard1. To

solve the problem, one must find every Hamiltonian cycle in the graph, and test them for optimality.

Given n cities, this makes for up to n! cycles, which means that we have a lot of comparisons ahead

of us.

Fortunately, route planning usually deals with less complicated problems, mostly variations of

the Shortest Path Problem. The simplest form of route planning, which happens to be the kind of

route planning I will be looking at, is single-source single-destination (One-to-One) shortest path

search. In this kind of problem, we want to find a path from one specified point one the map to

another specified point. Thus, we have no requirements for a cycle, nor for the shape of the path,

and the problem becomes much simpler.

2.3.1 Classifying Route Planning Problems

There are three main classes of route planning problems, and they all have different applications

and solutions. The classes are One-to-One, One-to-All, and All-to-All.

The One-to-One class of problems is the simplest case. Here, we have a specific target and a

specific source. The problem is then simply a matter of finding a single path between the two points.

In addition, one may want some way of showing that the path found is an optimal path between the

two points.

1By NP-hard, it is meant that the problem is at least as hard as any NP problem.



2.3. Route Planning 23

Figure 2.9: A graph with two optimal paths between S and T, each marked in red.

Note that I say an optimal path rather than the optimal path. This is because there may be several

distinct paths from the source to the target that each are optimal. In the graph show in figure 2.9, for

example, we have two distinct paths from S to T that are both optimal. Only the path through the

point B is sub-optimal.

One-to-All problems are problems where we wish to find the shortest path from a specific point

to all other points. This is intuitively a more involved task, but it is solved quite elegantly using the

well known Dijkstra’s Algorithm that I will look at in some detail later. A subset of this problem is

One-to-Some, where we want to find the paths to all points that fulfill some criteria. For example,

it could be interesting to find the shortest path to all accessible bus-ramps so that we could find the

closest accessible bus-ramp. More commonly, this type of route planning occurs when we have a

fleet of vehicles at a central garage and a number of destinations for our vehicles.

The third class of graph search problems are known as All-to-All or All-Pairs. In this class, we

wish to find the shortest path between all the points on the map. It can be solved using the space and

time efficient Floyd-Warshall algorithm [2, pp584-587]. This kind of problem is most commonly

tackled in network routing and similar.

2.3.2 Graph Representation

When dealing with route planning problems, it is common to represent the map as a graph. The

graph is a collection of nodes and edges, where each edge represents a road and each node represents

a place where roads meet. This way, we create a road network of interconnected edges that mirror

the real world as closely as possible without having to store unnecessary information.

Because of the vast amount of information usually present on a regular map, representation of

the road network quickly becomes an issue. Ideally, one would simply hold in memory a number



24 Chapter 2. Background

of nodes, their connections, and the cost of using these connections. However, in real life, such an

approach will lead to catastrophy on account of the size of real road networks. Instead, one must

find a strategy for storage and retrieval that is efficient in terms of time and space. Commonly, one

uses the graph metaphor as it lends itself intuitively to any network of roads and intersections, but

the problem of storage and retrieval remains the same.

The storage of the graph should be so that it supports a number of queries [5] :

• Shortest way queries and context-specific queries (considering the amount of

points of interest, the degree of slopes, user profiles, etc.);

• navigation in graphs (predecessors, successor nodes and edges);

• search in hierarchical graphs (distinction between levels of detail);

• spatial selection of sub-graphs (contains and intersects region query).

If met, the demands outlined above give a database that can very efficiently support route plan-

ning.

The first requirement includes context-specific queries and is of special interest to my project.

To meet this requirement we need to associate a potentially large variation of meta-data to each road

segment.

In order to navigate the graph, we need properly defined successors and predecessors. If the

database maintains a relation that defines geographic points as nodes, this is easily done by allowing

queries to made about what edges run out of any give node, and having every edge know about what

it’s start and end nodes are.

The two last requirements are more challenging to meet.

One way of efficiently selecting sub-graphs by geography is to use Minimum Bounding Boxes.

This technique does demand some forethough, however, as it may break the search algorithm.

Minimum Bounding Boxes

A strategy to reduce the search space is to use Minimum Bounding Boxes (MBB). An MBB is a box

that exactly encapsulates a geometric shape, like a curve. If each curve in the dataset is associated

with an MBB, one can limit one’s search network to only those curves whose MBBs intersects or

are contained within the box created by the source and target points of the search. Figure 2.10 shows

a situation where most of the network is never loaded into memory, but where an optimal path can

still be found.



2.3. Route Planning 25

(a) The entire map with source
and target position marked

(b) The bounding box for the
source and target is shown in
green

(c) The lines marked red are the
only lines loaded into memory

Figure 2.10: Extracting road segments based on a Minimum Bounding Box



26 Chapter 2. Background

Figure 2.11: The pruning box approach removed the only viable path

Figure 2.10(a) shows the entire map. The red circle is the current source from where the path

finding is to take place, and the blue circle represents the target. The black lines are roads, and

they are represented as curves in the database. Each curve represents a stretch of unbroken and

unintersected road, i.e. a single road with many byroads would be represented as many curves.

In figure 2.10(b) I have drawn a green square around the source and target. This square is then

used to select out the edges that is to be used for route planning. Every curve in the database has an

associated MBB, and if this MBB intersects, contains, or is contained by the green square, then the

curve is included in the search. Figure 2.10(c) shows the curves that have been selected from the

database.

The use of MBBs can radically reduce the memory needed for route planning in large networks.

However, by implementing such a pruning strategy, the algorithm is no longer guaranteed to work.

By selecting out parts of the network we are no longer able to say that if a route exists it will be

found. There may exist routes from the source to the target that uses roads that do not intersect with

the bounding box at all. In fact, in some rare cases, the optimal route or even the only route may

need to use roads outsided of the pruning box (see figure 2.11).

2.3.3 Classic Algorithms for Route Planning and Graph Searches

At the core of route planning and graph search lies some small and elegant algorithms. I will present

some of the best known algorithms known from graph searching, and begin with Dijkstra’s Single

Source Shortest Path (SSSP).



2.3. Route Planning 27

01. function Dijkstra(Graph, Source, Target)
02. for each Vertex V in Vertices(Graph)
03. Weight(V) = infinity
04. Parent(V) = null
05. Weight(Source) = 0
06. ResultingSet = empty set
07. Workingset = Vertices(Graph)
08. while Workingset is not empty
09. Vertex U = remove lightest vertex from Workingset
10. if U equals Target
11. terminate search
12. ResultingSet = ResultingSet union U
13. for each Edge E(U, End) in Edges(U)
14. if Weight(End) > Weight(U) + cost of traversing E
15. Weight(End) = Weight(U) + cost of traversing E
16. Parent(End) = U

Figure 2.12: Dijksta’s Single Source Shortest Path algorithm

Dijkstra’s Algorithm

The dutch computer scientist Edsger Dijkstra was the first to formalize the shortest path problem and

proposed a general solution in 1959. Dijkstra’s algorithm relies on relaxation of individual nodes,

and continues to relax nodes until a minimal spanning tree including the source and the target node,

but not necessecarily all of the nodes in the original graph, is found.

When we are looking for the path from a specified source to a specified target, the algorithm

looks like figure 2.12. However, if we ignore lines 10 and 11, the algorithm will allow us to find the

shortest path to any node from the source node, making this a one-to-all algorithm.

The first seven lines, including the function signature, sets up the system for processing. Lines

2 and 3 sets the cost of every node to infinity and every node’s parent in the resulting path to null.

Further, the cost of the source node is set to zero, as it is obviously free to get to where we already

are. The working set we define on line 5 starts as the complete set of nodes in the graph and is

gradually shrinked until it is empty or the target node is found.

On line 9 we select the currently cheapest node to travel to in the working set. On the first

iteration this will be the source node, as it is free and every other node cost infinitely much. Provided

we have not yet reached our goal, we then relax each edge of the selected node. We perform this

relaxation by testing to see if the cost of traveling to the node on the other side of the edge in



28 Chapter 2. Background

question is cheaper by travelling through the currently selected node (line 14), or if a shorter path

has already been discovered. If it is cheaper to use the current node, it is set as the parent node of

the node on the other side of the edge (line 16) and the cost of getting there is updated (line 15).

The weight of each node is the summed cost of the current best path to the node from the source

node. It will be useful for later discussion to define a function f(n) that gives this weight for any

given node n.

When we have reached the target node, we have a set of nodes ResultingSet that contains

at least every node in the path from the source to the target. By beginning at the target node, the

path can be recreated by following Parent references all the way to the source node. This path is

guaranteed to be a shortest path from the source to the target.

An important limitation of Dijkstra is that it is unable to discover an optimal route through a

graph containing negative edges.

A brief analysis of Dijkstra In the worst case, the Dijkstra algorithm must scan every edge of

every vertex. It will scan each vertex at most once and every edge at most twice.

Assume a graph with v vertices and e edges. In the most naı̈ve implementation of the algorithm,

we store the vertises in an unordered fashion, like an array or a linked list. Then line 9 in the

algorithm becomes a linear search that needs to search the entire remaining graph each iteration.

We get a run time complexity of O(v), i.e. one O(v) search for each of the v vertices. Clearly, a less

naı̈ve datastructure would improve the efficiency of the algorithm. For example, a min-heap would

reduce the complexity of the search for smallest node to O(log v), for a O(v log v) complexity.

Furthermore, the complexity of the cost function can play a role in the efficiency analysis of the

algorithm. Assuming a cost function of complexity O(n) for some n, we get a total complexity of

O(n ∗ v log v). In the simpler situations, the cost function will in fact be a constant function, and

will therefore not have a serious effect on the algorithm. It is conceivable, however, that the cost

function could be more complex, and in such cases the run-time efficiency of the algorithm would

suffer.

Another concern is the order in which alternative paths are explored. Dijkstra’s algorithm will

always explore the cheapest path from the source node, making it a bredth-first algorithm. This

path, however, may not actually lead to the target node, so until we have discovered the target, it

will explore in every direction. One can imagine this as an ever increasing circle expanding from

the source node until the target node is found. A better approach might include some estimation

of whether the explored path actually leads towards the goal. The well known family of Best First



2.3. Route Planning 29

01. function BestFirstSearch(Source, Target)
02. OpenSet = Source
03. while OpenSet is not empty
04. WorkingNode = BestNode(OpenSet)
05. if WorkingNode is Target
06. return PathToWorkingNode
07. OpenSet = OpenSet union WorkingNode.Successors

Figure 2.13: The basic Best First Search Algorithm

Search (BFS) algorithms does just that.

Best First Searches, or Heuristic Searches

Best First Search algorithms are a family of algorithms that use some way of estimating what di-

rection the search should take [39, pp94-129]. They are a reaction to the uninformed algorithms

that grew from Dijkstra’s algorithm. The basic idea is to avoid searching down paths that lead away

from the target node.

Figure 2.13 shows the basic Best First Search algorithm, with a lot of detail left out. An im-

plementation needs to make some allowance for generating the path hinted at in line 6, unless the

algorithm is just deciding if there exists a path from the source to the target. The other detail of

some importance is left out of line 4. In fact, this line introduces the heuristic function that we will

call h(n), where n is a node in the graph.

A heuristic function is simply a function that guesses whether or not a node is likely to be on

the path to the target node or not (see the next section). The function usually assigns some numeric

value to a node, so that it is possible to compare two nodes to see which node should be explored

first.

In a route planning context, it could be considered expedient to let the heuristic be the straight

line distance to the source. However, while this makes sense in many situations, the heuristic fails

in maze-like environments. Consider a situation like figure 2.14. The red dotted line represents a

path that would have to be fully explored by any basic BFS algorithm, since every point on the red

path is closer to the goal than the first node (and second, and third, etc.) on the blue path. Sadly, the

blue path represents the only path that will take you to the goal.

Clearly, basic Best First Search algorithms have weaknesses that needs to be adressed, and this

is where A* (pronounced ”A star”) comes into play.



30 Chapter 2. Background

Figure 2.14: A Best First Search would follow the red path to the end before exploring the only viable path.

The Heuristic Function The heuristic function is quite simply a function that looks at the current

node and guesses how far it is to the target node.

The quality of the guess impacts the search time of the algorithm. The more accurate the guess,

the quicker the search. Obviously, if the heuristic guess correct each time, i.e. the heuristic function

is actually an oracle function, the algorithm will choose the correct path every time, and the shortest

path will be found immediatly. The worse the heuristic guesses, on the other hand, the less likely it

is that the algorithm picks the correct path to explore, and thus the query takes more time.

A typical use of a heuristic search is when solving the Slide Puzzle. In this puzzle, the player is

presented with a tiled image where the tiles are placed incorrectly, and one tile is missing. It is the

player’s task to slide the tiles around the board until the image is restored. In figure 2.15 I present a

slide puzzle with numbers for the sake of clarity.

A common heuristic in the situation represented by the slide puzzle, is to use the sum of the

Manhattan Distances2 needed for each piece to slide into place. That is, a piece that must be moved

three times in order to be at its correct position would have a Manhattan Distance of three.

When the search algorithm has reached a particular situation (our opening position figure 2.15(a)),

it evaluates the heuristic function for the four possible next moves (2.15(b), 2.15(c), 2.15(d), and

2A.k.a. Taxicab Geometry, Minkowski Distance etc.



2.3. Route Planning 31

2.15(e)) before it chooses what direction to explore. In this case, figure 2.15(e) is thought to be clos-

est to the solution and therefore it is explored first. This quickly leads us to the target configuration

seen in figure 2.15(f).

In the slide puzzle, we could have used any number of heuristic functions, but the Manhattan

Distance works well enough and it fulfills a number of the requirements of a good heuristic. The

most important of these requirements is admissability [46]. A heuristic is considered admissable

if it is guaranteed to always give a value at least as good as the true value for any given node. In

other words, if we have an oracle function o(n) that gives the actual distance from the node n to the

target node, then the heuristic h(n) would be admissable if and only if h(n) ≤ o(n) for all nodes n.

An admissable heuristic can also be either informed or uninformed. The heuristic is informed

if it equals the oracle function on all input. Clearly, a fully informed heuristic is, in any real world

situation, unattainable. On the other hand, a heuristic may be uninformed. In this case, the function

returns zero for all nodes. An uninformed heuristic is by itself useless, but by introducing this

term, one can for example discuss Dijkstra’s Algorithm as a heuristic algorithm with an uninformed

heuristic.

In real world route planning situations, it is common to take the Euclidian distance to the target

as a heuristic. This is clearly an admissable heuristic, as there can never be a route shorter than a

straight line, as long as we stay within classical physics. It may not be a particularly good heuristic,

however, in the case of urban environments, where many streets are one-way, and one often has to

drive north to get south.

A*

The A* algorithm was designed in 1968 by Hart and others [10] to improve upon the now forgotten

algorithm A. Like the Best First Algorithms, it employs a heuristic function to guess whether a node

should be explored or not. However, it also takes into account the path already traversed to reach

each individual node.

Given a source and a target node, the A* algorithm looks like figure 2.3.3. It is guaranteed to

find an optimal path through the graph.

The three first lines initializes the algortithm, giving us an empty set of closed nodes and a set

of calculated paths consisting of only the source node. The implied function MakePath (line 3 and

13) creates a directed path from the first node in the list to the last, through every node in the list in

succession.

The iterative part of the algorithm is lines four to thirteen. On line five we remove the most



32 Chapter 2. Background

(a) Opening position, Manhat-
tan Distance: 2

(b) Manhattan Distance: 3 (c) Manhattan Distance: 3 (d) Manhattan Distance: 3

(e) Manhattan Distance: 1, the
heuristic favors this move

(f) The puzzle is solved

Figure 2.15: Various options for the slidepuzzle



2.3. Route Planning 33

01. function A* (Source, Target)
02. ClosedSet = Empty Set
03. OpenSet = MakePath(Source)
04. while OpenSet is not empty
05. Path = OpenSet.RemoveBestPath
06. Node = Path.LastNode
07. if Node is not in ClosedSet
08. if Node is Target
09. terminate search and return Path
10. ClosedSet = ClosedSet union Node
11. for each SuccessorNode of Path
12. if SuccessorNode is not in ClosedSet
13. OpenSet = OpenSet union (MakePath(Path + SuccessorNode))

Figure 2.16: The A* algorithm

promising path from the open set. We find the most promising path by applying the heuristic

function to the path, i.e. the implied function RemoveBestPath implements our chosen heuristic.

Obviously, it is expedient to implement the open set as some sort of priority queue like a min-heap

or a fibonacci-heap.

Line six to nine tests if the path leads to the target node, in which case we terminate the search.

Otherwise, we close the last node in the current path, and create a new set of paths by extending the

current path with all the successors of the last node in the current path (line eleven to thirteen).

Efficiency of A* The A* algorithm promises to be a very time-efficient algorithm, although this

depends to some degree on the heuristic function. In the extreme case where h(n) = 0 for any n, we

only consider the current length of the path from the source. In fact, in this case we have reverted to

Dijkstra’s Algorithm, and so the algorithm would perform likewise. In fact, A* will in the worst case

perform just as bad as Dijkstra’s, and so the algorithm has a complexity of O(nlogn). However,

given that A* performs as bad as Dijkstra only in the worst cases, it follows that the algorithm has

a fairly decent average run time.

On the other hand, A* is not a very space-efficient algorithm. Since it insists on keeping in

memory all the generated paths until an optimal path is found, it usually runs out of space long

before it runs out of time. Some efforts have been made to remedy this situation, and Iterative

Deepening A* was one of the earlier attempts.



34 Chapter 2. Background

Iterative Deepening A* The A* algorithm is one of the best known search algorithms around,

and so it has spawned a number of improvements and variations. One such variation is known as

Iterative Deepening A* (IDA)[35]. This algorithm is a combination of A* and Iterative Deepening

Depth First Search (IDDFS) search.

During the execution of IDA, the system keeps track of the current iteration and an associated

cutoff value that is increased with each iteration. If a path has a cost that equals or exceeds the cutoff

value, it is ignored until the next iteration. When the the algorithm iterates, the new cutoff value is

equal to the cost of the cheapest path that exceeds the old cutoff value.

Although IDDFS can be shown to be space efficient, the hybrid solution IDA does not do well

in real life. While IDA executions where cost is measured in units will do the job well enough while

keeping memory usage to a minimum, it gets into trouble when applied to other situations. If IDA

is faced with a problem where cost is measured in real numbers, the iterations will start to grow the

admissable solution space too slowly, which means that the algorithm will search through the same

solutions extremely often before finally finding an optimal solution.

2.3.4 The Cost Function

Every route planning algorithm uses some concept of cost, and this is usually encapsulated by the

ever-present cost function. This function determines the cost of traversing a node or an edge in the

graph.

Commonly, cost functions are relatively simple approximations. For a standard route planning

application where the graph consists of nodes along the real, physical road network, the cost func-

tion may be the geographic distance between to adjacent nodes. Given a network that faithfully

represents the actual roads, every node would be connected by a straight stretch of road, so the

function would return a value that has real, physical meaning.

Other common functions include estimated time to travel from one node to another. This time

may be a function of distance and known speed-limit, or it could be an average of reported time

spent traversing the edge in question.

Multivariable Cost Functions

The most interesting cost function are those that take into account several discrete parameters, such

as the function described by Rippel et. al. [37]. Basically a multivariable cost function looks at

several different aspects of each path and weighs these parameters. For example, a cost function



2.4. Related work 35

for pedestrians could at both the length and incline of the road in order to find a pedestrian-friendly

road.

The challenge of designing multivariable cost functions lies in finding a balance between the

variables and weighing them agains each other. In the case of using both length and incline of a

road, one cannot use the absolute values themselves. Because one parameters describes a physical

length and the other describes a ratio between two physical lengths, one must find another way of

combining the parameters to express one non-negative cost. In our example, one could multiply the

parameters like this: length ∗ (1 + vertical meters per horizontal meter) = cost, while other

parameters may need other formulas.

Context Awareness in Cost Functions

When we introduce context awareness into our cost functions, things start to get interesting. With

context awareness we mean that the cost function takes into account the user’s situation and moti-

vation. For example, if the cost function knows that the user is a wheelchair user, it will increase

the cost of paths with steep inclines and disregard routes that are inaccessible to wheelchair users.

Context awareness demands that a lot of data is available on both the user and his immediate

situation.

2.4 Related work

I am far from the first to have looked at pedestrian navigation, and I will introduce a small sampling

of what has already been done on this topic. I will also introduce some concepts that, while they

are not directly related to pedestrian navigation as such, they lend themselves to my project. More

specifically, I will look at the concept of collaboration and knowledge sharing.

2.4.1 Pedestrian Navigation

Pedestrian navigation is a subset of geographic information systems that has grown out of the ever

increasing power and connectiveness of mobile devices like mobile phones and PDAs. It is con-

cerned with the same basic problem of the more common navigational systems used in cars, but it’s

faced with a number of issues that vehicular navigation can ignore.

Perhaps the most immedate such issue is related to the role the navigational device plays for

the user. Pedestrian navigation systems are usually developed for small, mobile devices like cell



36 Chapter 2. Background

phones or smart phones. These devices suffer from rarely having the full focus of the user, and

are instead relegated to a secondary position in the user’s awareness. When such a device is used

for navigational purposes, this problem is exacerbated by the user’s often stressfull situation. For

example, a tourist may be trying to find his way to his hotel while dragging heavy luggage behind

him and taking in the sights and sounds of a new city. In this situation, he has only very little time

and patience to stare at the small screen of his mobile phone or wait for the device to gather the

necessary data for his query. Several attempts have been made to adress this: Sester provides us

with an overview of several methods for generalizing and presenting spatial information on limited

devices [43]. Her work provides an excellent starting point for providing intuitive and user-oriented

geographic displays. Baus et al. created a hybrid system that takes the user’s position, movement,

and even plans and motivation into account to present only the most pertinent information to the

user in a way that suits the situation [4].

East-Asia, and especially Japan has seen an explosion in pedestrian navigation systems, in part

due to the relatively low market penetration of cars, and the comparatively high reliance on public

transportation. Many pioneering companies have made inroads into the field of pedestrian naviga-

tion and on of the earliest such system was DoCo-Navi. This product was released by NTT DoCoMo

as early as 2000 [47] and was a subscription service that would guide users towards services of in-

terest, like banks, hospitals, etc.. Using a patented enhanced GPS system from Snap Track, they

provided a service that could make use of geographic information, even in urban canyons. At launch

time, the system provided 210.000 points of interest and was released on a special ”Naviewn” de-

vice shown in figure 2.17. Other service providers, like KDDI followed up with similar services in

the following years [25].

The DEEP MAP project is an ambitious project to create a framework for intelligent spatial

information systems [30]. It is an agent-based system that, among other things, includes a route

agent. This agent is responsible for generating routes that the user may be interested in following.

These routes are customized so that each individual user are given routes to their preference. The

preferences are captured by the system as both hard and soft parameters. The hard parameters

describe such things as distance, height, and other physical attributes of the environment, while the

soft parameters attempt to +capture more subjective features like nice viewpoints, traffic noise, etc..

Another team looked at classic machine learning techniques to aid navigation and route planning

for disabled pedestrians [23]. This project used a new method for learning fuzzy models that would

allow the system to learn about what sort of routes would be appropriate for different users. Each

user would describe himself in terms of things like disability, age, gender, etc. The users would then



2.4. Related work 37

Figure 2.17: The DoCoMo Naviewn device connected to a mobile phone.

fill out a form about what sort of things they would consider obstacles to their travel, and the system

would extrapolate navigation rules from this.

The most prolific area of pedestrian routeplanning, however, has been tourist guides. Huji-

nen provides us with a comprehensive overview of european projects surrounding so-called mobile

tourism [21], although she points out that the social aspect of tourism is missing in most of these

projects.

Some projects, like WalkOnWeb[1], allows hikers to share routes or tracks with eachother, al-

though editing such tracks is limited to the original author. Another project called MAPPED aims

to provide complete route planning for disabled users. This includes planning routes using public

transportation, wheelchairs, etc., all the while factoring in accessibility factors.

Many other projects, like Crumpet[40] and Eureauweb[27], have already conluded and they

have resulted in mobile applications that let tourists plan routes, browse maps, and read information

about typical tourist attractions, resturants, etc.. Crumpet delivers typical tourist information in the

form of recommendations based on location and personal interests, while Eureauweb specializes in

planning trips based on Europe’s waterways.

2.4.2 Collaborative Data

Humans are social animals, and throughout our history one can find evidence that we like to share

our knowledge with eachother. From the earliest cave-paintings to text-messaging and e-mail, peo-

ple have had the need to express themselves and share their thoughts and ideas. As technology has



38 Chapter 2. Background

progressed, so has the oppurtunities for communication: the bookprint made it possible to spread

ideas and knowledge to the masses, the telegraph, the telephone, and the radio made it possible to

communicate over large distances, and the internet made mass-communication trivial.

The latest addition to this ever-increasing number of available media was the World Wide Web.

The web offered instant, world wide publication and anyone could in principle become a web-

author. However, due to the cost of running the servers needed to maintain web-pages and the

relativly high technical threshold for setting up web-pages, the web remained a media for the larger

organizations and the specially interested. Some web-services, like the bookstore Amazon.com of-

fers users the oppurtunity to rate their products, and these ratings can then be used to build networks

of similar preferences across users. That is to say, by critiquing a book for example, you also tell

Amazon something about yourself, and this helps them tailoring advertisement on a user by user

basis. However, the user himself is still a relatively passive agent, merely offering up information

about himself to the system. This has all changed with the advent of the blog and the wiki.

The blog is a variation of the traditional homepage. However, rather than being hand-coded it

has a robust collection of scripts that allows the user to author content without having any technical

insight themselves. This lowering of the threshold has caused a massive increase in the use of the

web as a place for self-expression. Rather than simply being consumer, people are becoming active

participants and are shaping the web to their own preference.

While the blog is a personal creation with one author, another technology, the Wiki, is opening

the web for collective authoring.

Wiki

A Wiki is a web-based Content Management System (CMS) where everyone can contribute. The

concept was first explored by Ward Cunningham in 1995 [13] and made its way into the public

conciousness via the Wikipedia project [50]. The basic idea of the wiki is to create an environment

where multiple users can author and edit the same document through the well-known web-browser

interface. Some wikis are small, closed systems where only selected users may edit pages, while

other wikis, like Wikipedia, offers editing oppurtunities to anyone.

A common use of a wiki is for maintaining technical documentation for a development project.

As issues become appearant, they can be documented online and this documentation becomes avail-

able to every reader of the wiki immediatly. Since every wiki maintains a history of every change

made to every document, it becomes easy to track issues, their discovery, probable causes, and their

eventual resolution.



2.4. Related work 39

The most dramatic use, however, remains the Wikipedia project. This project is

”an effort to create and distribute a multilingual free encyclopedia of the highest

quality to every single person on the planet in their own language”

according to its co-founder Jimmy Wales [50]. It achieves this by allowing any reader to edit almost

any entry. The idea is that while no individual knows everything about a subject, when many

individuals come together to describe something, the description will over time become accurate.

Kolbitsch and Maurer compare this phenomenon to an ant hill [28]; Although no single ant knows

how to build and maintain the ant hill, they each know just enough to do their job. Over time, the

ant hill emerges as a result of the concerted labour of the many. In the same way, the entries in

Wikipedia grows steadily in accuracy as more and more people read and contribute with their own

insight and knowledge. Acts of vandalism, lies, or other negative contribution is quickly remedied

either by subsequent corrections or by reverting the article to an earlier version.

Although wikis have brought document collaboration to a new level, they are not without their

problems. Wei et al. points out that a basic wiki is usually both intimidating to novice users and often

lacking in usability [49]. This point is in part refuted by an experiment performed in Canada, where

usability researchers had children try to write a story in collaboration [7]. The experiment showed

that non-technical users could easily use a wiki-style tool to collaborate on a story. However, the

participants had problems dealing with the hyperlink aspect of the media, so the technical threshold

has not quite yet been removed.

Other problems associated with wikis stem from the number of users, and the diversity that

naturally occurs. Especially when dealing with controversal issues, one can experience so-called

editor-wars. These wars occur when two or more groups of editors have conflicting views on a

subject. Often editing is reduced to reverting an article to a point before the opposing viewpoint is

entered, and as both or all parties engage in such behaviour, the history page grows with needless

revisions and becomes unmanagable.

Other popular kinds of online sharing

As the idea of sharing one’s knowledge and insight caught on, a new trend emerged. With new

technology is has become easy for non-technical users to record sound, video, and images digitally

and publish these online. Service such as Flickr and Photobucket allows users to upload photos and

share them with anyone browsing the websites. Uploaders are encouraged to create tags, essentially



40 Chapter 2. Background

just descriptive words, to classify their images, and these tags become the basis for performing

searches.

Some of these services operate under licences that allow anyone to download any image from

their database and use these in their own work. This way, these services become a commons for

intellectual property, where budding artists can find material free of charge.

Podcasting is another way people are expressing themselves on the internett. Podcasting is a

kind of radio, where people create soundfiles in which they talk about subjects that interest them.

These files are made available on the web and distributed like any other media file. Essentially,

podcasting is to the spoken word like blogging is to the written word.

Sharing specialized knowledge: the Open Street Map initiative

One instance of collaboration is of special interest for my thesis, and this is the Open Street Map

(OSM) initiative [31]. This project is organized like a Wiki for geographic data. Aimed at offering

the prohibitively expensive street data in England, the Open Street Map initiative began as an effort

to make a free and open street map of London. Since then, the project has grown and now covers

many cities all over Europe.

The project relies on the public to generate its maps. In order to contribute, a user tracks his own

movements useing a GPS. The log from the GPS showing where the user moved is then uploaded

to the OSM servers where it is made available to the general public. These GPS tracks are simply

an ordered series of geographic coordinates that define lines or curves. When many users upload

logs that describe lines or curves that are very close to eachother, it becomes likely that the data

describes an actual road.

The project has expanded to allow users to add metadata to their geographic uploads. One can

for example add street names to tracks.

Data from the OSM project is published as XML files that are easily interpreted by client ap-

plications. The XML defines points as geographic coordinates without height. These points are

subsequently referred to in line definitions. A line in the OSM data set is a stretch of unbroken road,

i.e. a line is terminated by either a dead end or an intersection at either end, but does not have any

intersections other than at its ends. Lines can also be combined to form so-called ”ways”, which

represent named roads.

The OSM project is just one example of the idea of sharing knowledge for the common good

spreading and becoming a modus operandi for people and organizations around the world. However,

as more and more people begin sharing, an issue of trust emerges.



2.4. Related work 41

Trust

In recent years, a lot of research has been done on the topic of trust in electronic commerce. The

work has been motivated by the inherent trust a user must show a system before he commits to use

it for financial or otherwise sensitive transactions. With the steady growth of online identity theft

[20], the topic remains vital to online commercial activity.

Kini and Choobineh suggested an Integrated Model Of Trust that takes into account many of

the divergent trends in previous trust research [26]. This model focuses squarly on the human-

computer side of the trust issue, however, and fails to adress the inter-process trust necessary to

perform complex transactions. This inter-process trust describes to what degree an application can

trust other applications to perform their services and not do anything to compromise either the users

or the system as a whole.

In the topic of collaboration and data sharing, the problem of trust is somewhat different than in

online commerce situations. We are for the most part, less concerned with the validity of identities or

transactions. Instead, we become interested hard-to-quantify attributes like what level of agreement

exits between ourselves and others regarding music-tastes or political inclinations. For example,

in a hypothetical book-review application, we could be interested in getting suggestions for new

readings based not only our own past reading, but also the past reading of other users with similar

reading habits.

One way of dealing with such inter-personal trust is for the system to simply assume that every-

one is similar, and differentiate based on actions. The hypothetical mentioned above is one such

example where your previous actions alone determine what other users you are expected to trust.

While such a model of trust is relatively easy to implement, it lacks in depth and customizability.

Another approach could be to let people decide who to trust and propagate this through the

system. For example, user A may trust the judgement of user B, but not of user C. When user

B makes a recommendation, this is passed on to user A, but user C’s recommendations are not.

Furthermore, if user B values the opinions of some fourth user D, this trust is reflected back to user

A which gains some level of transitive trust for user D. Such trust networks have received some

criticism [15], especially in situations where trust may be forwarded unintentionally. However, I

believe that the critique is unwarranted provided the trust does not allow third parties to perform

actions on our behalf. That is, provided the trust network only details opinions and raw data, it is

safe to assume that the friends of our friends are also friendly.



42 Chapter 2. Background

2.4.3 Collaboration in Route Planning

In situations where you have many agents3 searching the same space for routes, it can be useful to

let the agents share the routes they find.

In real time strategy games, one often wants many agents to move from one place to the other.

In such a case, it can be useful to let one calculate a path, and then share this path with the other

units on the gameboard [36]. The other units may then be able to move in a constructive direction

while recalculating a better path for themselves. Real world path finding may not be quite as clear

cut, but we still find it beneficial to exchange information.

McGinty and Smyth [17][32] identify two types of route planning scenarios that are relevant

when sharing experiences. The first type refers to solving an unfamiliar problem in a familiar

territory, while the other type involves solving an unfamiliar problem in unfamiliar territory. In the

case of familiar problems, we already have a solution that we can reuse. If do not have any familiar

problems, we must instead explore the unknown territory.

However, other work shows that purely Case Based Reasoning (CBR) will reach a saturation

point where additional cases will not improve the routes to any reasonable degree. In fact, too many

cases will slow down the search and thus be detrimental to the planning process [44]. This problem

is known as the Utility Problem [9] and is a well known problem in CBR. What happens is simply

that the number of cases grows to such a size that simple case-retrieval becomes such an involved

task that the overhead for memory-access outweigh the time saved by not exploring bad solutions.

That is to say, the baby is thrown out with the bathwater.

Haigh et al. [16] describes a system where users may give a simple critique of the provided route.

The critique consisted in that case of a single positive number. This number would be integrated

into the route’s current rating β, and this combination of users’s experiences would be used when

determining whether a particular case would be used in a solution. This way β becomes not only

a measure of the quality of a particular case, but it also becomes a factor determining whether the

planner should use old cases or explore unknown territory.

The Haigh approach to learning user preferences and critiquing paths solves two problems in

one go. Firstly, the Utility Problem is dealt with by simply reducing every experienced case to

a number and then incorporating this into an already existing feature. This way the volume of

experience does not affect the search time in any way; the algorithm will only look at one single

value regardless of the number of cases that have been entered into the system.

3I define an agent to be an entity with goals, this includes both human and software agents.



2.5. My contribution 43

Secondly, the single value evaluation captures the user’s preferences implicitly. As noted by

Rogers and Langley [38], it is often futile to attempt to accurately model the user’s preferences in

a route planning environment. The user may not know his or her true preferences, it is costly and

impractical to perform in depth interviews with all users, and many features that would weigh in on a

route may be of value only to some or even one individual user. Rogers and Langley present a neural

network that learns the preferences of the individual user after a long series of user feedbacks. The

solution provided by Haigh, however, assumes that most users will have many similar preferences

and collects every user’s feedback in one universial quality measure. This way the system quickly

learns what roads to avoid and what roads to emphasize during a search.

The main drawback of the Haigh solution lies in its universial application. In using only one

value for each road, the individual’s preferences are ignored. Given that different users may have

different preferences, this could lead to a situation where generally good routes are ignored. In the

case of regular route planning this may not be very problematic, but in the case of personalized route

planning, where the users have very different preferences, it becomes a major obstacle. For example,

if there’s a tall step from the sidewalk and out to the road at a zebra crossing, a wheelchair user would

find this detrimental. On the other hand, a blind person can use such a step to identify the change

from sidewalk to road. A blind person is therefore advantaged by the feature that disadvantages the

wheelchair user.

Returning to McGinty and Smyth we find that one way of adressing the problem of overly

general quality quantifiers could lie in an agent based approach. Instead of assigning each stretch

of road one universial value, the individual users, or agents assigned to users, maintain a value for

how they percieve the quality of the road. When an agent wants to find a route someplace, it asks

agents that it knows have similar attitudes for advice on what roads are good or bad. This would

imply some basic implementation of a trust network [12], but given an efficient such network, the

drawbacks of CBR could be avoided.

2.5 My contribution

For my thesis work, I wish to create a proof-of-concept application capable of generating and dis-

playing personalized pedestrian routes on a mobile device. I propose to create the Ranger, which

will be an expansion to the Okapi application I described earlier. The Ranger will consist of a server

side application that is responsible for maintaining all the necessary data and for performing any

calculation that is needed. It will also have a client side component that will be integrated into



44 Chapter 2. Background

the Okapi mobile application. This component will gather input from the user and present results

generated by the server.

I will attempt to personalize routes by inferring user preferences through user feedback, rather

than by forcing the user to conform to static parameters. User feedback will be disseminated over

usergroups determined by self-identification, i.e. everyone that self-identifies as a jogger will share

feedback with everyone else that identifies as a jogger.

I will use open and freely available road data for the majority of the route planning, although

during the inital stages of development I shall use the closed VBASE dataset as it is known to be

good and this helps me focus on my own implementation. However, I believe that the open, free

road data available is good enough for route planning of the kind I propose, and when the application

is implemented, the proprietary data should be replaced by open data.

The Ranger will allow users to modify the network of roads to reflect their experience of the real

world, and I believe that over time, this will lead to a more accurate network of traversible paths. In

turn, this will lead to a situation where I can generate good routes for a wide variety of users with

different and even conflicting needs.

The application will use GPS positioning to position the user on the map and for tracking user

movements. This should allow the Ranger to infer roads in places where it lack road data. It will

also draw upon the considerable work performed by various institutions and individuals to make

good, detailed map-images freely available through open standards like WMS.



Chapter 3

Design of the Ranger

This chapter contains an examination of the design of the Ranger. I will approach the design by first

looking at some scenarios for the typical use of the system. This will give the design some focus,

as I will know how I expect the user to interact with it. The user himself will also be examined and

I will explain how I intend to model him. The datamodel for the project will also be examined and

I will offer a detailed look at both the database design and the final design of the Ranger client and

server. The actual implementation details can be found in appendix A.

3.1 Scenarios

A good place to start designing any system is looking at various scenarios in which the future system

is used. I describe three typical uses of the Ranger module of Okapi. These cover the basic usages

I envision for the module.

3.1.1 Finding your way

In this scenario, a person is located somewhere in Oslo and needs to visit a toilet. He is a wheel-

chair user, so he may not be able to use just any toilet, but is in need of an accessible toilet. The

user consults his SmartPhone and asks for the nearest accessible toilet. The mobile then passes the

request off to the sentral server which answers with a location and a path to that location from where

the user is. The user is presented with a path from his current location to the nearest accessible toilet,

and he is even given a short description of the location he is being guided towards. The path appears

on his SmartPhone as a map with a curve drawn from the location of the user to the toilet.

45



46 Chapter 3. Design of the Ranger

3.1.2 Giving back to society

Here, an experienced user has discovered a short cut through a park that is very well suited to his

particular preferences. He decides that it would be nice if more people knew about this shortcut, as

the alternatives are long winded and fairly difficult to traverse. The user has access to a GPS, so he

simply tells the Ranger to record his trip the next time he uses the path. Once he has reached his

destination, he asks the system to upload the usertrack he has created, and it becomes available to

all other users of the system.

As an alternative, a user has discovered that the Ranger never gives solutions crossing through

a park he knows has excellent paved paths. To share his knowledge with other users, he proceeds to

draw a line across the park on the map where he knows the paths are. These tracks are uploaded to

the Ranger and integrated into the network of roads and paths.

3.1.3 Making yourself heard

A user has asked for a route somewhere, but finds that the Ranger gives a poor solution. The route

takes the user down a road that lacks a sidewalk and it is therefore unacceptable. He selects the

route given to him on the map and selects the option for feedback. When he gives the track a bad

grade, the Ranger is able to take this into account whenever someone asks for a route in the same

area.

Similarly, the user could have given the thumbs up for a route that was especially well suited

for his needs. In such a case, the selected route would be preferred by the system when calculating

routes in the area.

3.2 Assumptions and Scope

I will have to limit the scope of the project and make some assumptions about both the available

data and the usage situation that one might not have made in a production quality project. Instead,

I will focus on creating a proof-of-concept application that demonstrates the viability of my thesis.

The project will still be functional as a route planning tool, and I believe it will be able to answer

the problem statement about whether it is possible to create a route planning application that can

give good routes for diverse usergroups.

The base road network I will use for the route planning comes from the VBASE data. This data

is actually centerline road data for Oslo. That means that my road data does not include things like



3.3. Modelling the User 47

sidewalks, so I will assume that every road is traversible by anyone. I believe that with use, tracks

using roads without sidewalks, or where the sidewalk is inaccessible will be selected against as the

users give such tracks bad reviews.

Furthermore, I have assumed a planar road network. That means that I disregard bridges, un-

derpasses, and other similar features. The result is that the system may believe that an intersection

exists in places where they don’t, for exampel where a footpath crosses a road by brigde.

3.3 Modelling the User

In designing this project, I need to give the user considerable thought. The system is supposed to

be able to give the user a route that fits the user’s particular needs: Two users standing at the same

spot, asking for a route to the same place, should not get the same route if they have different needs

and preferences. To achieve this, I need a model of the user that is accurate enough for me to be

able to plan the routes properly.

There are two basic approaches to modelling the user. These method differ both in the way data

about the user is gathered, and how this data is being applied.

The most obvious way is to perform an in-depth analysis of the intended user groups. By

performing several interviews and usertests as the system is developed, the user model is gradually

refined until a satisfactory model is achieved.

This approach has many benefits, not the least that the user model will be well documented.

However, it is an expensive process and the end result is a somewhat static model. If the model fails

in some way, it may be difficult to address the problem.

The other approach is the implicit user model. In this case, the user is never actually modelled.

Instead, the system starts out by making a number of assumptions as to what is good and not, and

as the users utilize the system and offer feedback, the system adjusts its parameters. With use, such

a system will eventually offer a very accurate image of the user’s preferences[38].

The main drawback of the latter method is that it takes time for the system to properly adjust to

the all the user groups. During this time the system will likely generate less than optimal solutions,

and this may cause discontent amongst the users. However, given the difficulties of designing an

accurate user model, I believe that the implicit model is the better alternative.

For the Ranger project, I have decided on an implicit usermodel. Instead of trying to describe the

individual user or even the various groups of users, I define a number of labels. Users will be free to

select any one of these labels to describe themselves. When a user critiques a track, his impressions



48 Chapter 3. Design of the Ranger

are shared with everyone else that has chosen the same label. In other words, if a user labels himself

a powered wheelchair user, everyone else that shares that description will benefit from his attitudes

towards the various tracks.

The labels I have defined for the system are

• Powered Wheelchair

• Wheelchair

• Crutches

• No special needs

These labels define a preliminary look at various categories of physical disability. The labels

describe only the means of transport a person uses, as I believe this to be the most important for

the project. These labels also define an important point to be explored during user-testing, i.e. will

users find these labels adequate or do they have other thoughts surrounding grouping.

3.4 Collaboration in the Ranger

The project hinges on collaboration between the users. This collaboration takes form in two partic-

ular ways: The creation of tracks and the assesment of paths.

To share a track, the user must record his or her movements on the device and then upload this to

the Ranger database. The recording can be automated, i.e. one can use a GPS to mark one’s moves,

or it can be manual. In the case of manual recording, the user draws a track by placing points on the

screen. When a track is uploaded, it must be combined with the road network already in place. This

can lead to some situation that needs special consideration.

3.4.1 Combining Tracks

When users record new tracks, it is highly likely that some of their recorded positions will coincide

closely, but not completely, with points already existing in the database. Furthermore, it is not

unlikely that tracks will cross either other tracks or the base road network. Whenever anything like

this happens, the system needs to be able to take appropriate action.

In the case of a track crossing an already existing edge (see figure 3.1 for an example), it be-

comes necessary to insert a new node into the network. This node represents the place where the



3.4. Collaboration in the Ranger 49

(a) The black track is the road network and
the red track is a newly recorded user track.

(b) The blue circle represents a newly cre-
ated node that binds the tracks together in a
network.

Figure 3.1: Crossing tracks

track and the edge meet. There are two tasks that the system must perform here. First, the system

must discover the intersection, and then it must create the node to represent it and alter the affected

edges appropriatly.

The first task is easy to solve using the JST Topology Suite, an open source Java library for

representing graphs and geometry of any kind. It provides efficient methods for discovering inter-

sections between geometric objects which vastly simplifies the process of solving the first task in

integrating a crossing track. Using this library, I can simply ask for the point of intersection between

two lines, the JST equivalient of a curve, and the suite returns a point or an error-value if the lines

does not intersect.

Once an intersection has been found, the second problem of altering the geometry to fit the

intersection begins. The result of the merging should be a set of edges such that it is possible

to traverse both the original edges, and to go from one of the original edges to the other via the

intersection.

In order to create the intersection between the edge and the track, a number of tasks must be per-

formed. Specifically, these tasks are creating a reference-point at the point of intersection, splitting

the two intersecting geometries into four geometries that meet at the intersection point, removing

the old edges from the network, and inserting the new edges into the network. Furthermore, the

old edge that was present in the network before the user’s track was inserted may have had various

feedback associated with it from earlier use of the system. This feedback must remain intact after

the merge and be applied to the two new edges that cover the same ground as the old edge.



50 Chapter 3. Design of the Ranger

(a) The black track is the road network and
the red track is a newly recorded user track.

(b) The blue circle represents the merging
of two nodes.

Figure 3.2: Incident tracks

The other possibly problematic case is that of incident tracks and edges, or more specifically

incident points (see figure 3.2). In this situation there exists a point on a track that lies very close

to a point on the already established network. The goal of dealing with this situation is to alter the

user’s track just enough that it uses a point on the established network rather than its own point,

provided this does not change the user’s track too much.

Fortunately, this is a relatively easy job compared to insertecting edges. For each point of the

user’s track, we use the JST Topology Suite to locate the closest edge. This is done by applying

a small buffer to the point, turning it into a circle. This circle is then intersected with the selected

edge. If this circle intersects with the network edge, we find the closest point on the edge to the

original point. This closest point then replaces the original point in the user’s track.

Figure 3.3 outlines the pseudocode for inserting a new track into the network. Lines two to four

deals with incident tracks by altering the user’s track to fit the network in those places the two are

very similar. In line five, I use the JST Topology Suite to discover intersections between the network

and the user’s track. Provided there are intersections, these are then used to split both the network

and the user’s track in lines nine through 16.

The first thing that is done is to create a local copy of any feedback that may have been given

to the part of the network that has been intersected. This part is referred to as oldEdge in the

pseudocode. The old edge is then removed from the network and new edges created on line 12 and

13. The edges that came from the old edge are given the same feedback as the old edge had, and



3.4. Collaboration in the Ranger 51

01. insertNewRoad(network, newroad)
02. for each point P on newroad
03. if P is closer than some cutoff value V to a point Q on network
04. replace P with Q in newroad
05. intersectionSet Is := JST->findIntersections(network, newroad)
06. if Is is empty
07. network := network union newroad
08. else
09. for each intersection I{oldEdge, newEdge, Point} in Is
10. feedbackSet Fs := any feedback related to oldEdge
11. network := network \ oldroad
12. oldRoadSet := split(oldEdge, Point)
13. newRoadSet := split(newEdge, Point)
14. apply Fs to oldRoadSet
15. network := network union oldRoadSet
16. network := network union newRoadSet

Figure 3.3: The algorithm for inserting a new track

finally both sets of edges are inserted into the network.

The other way of collaborating is for users to critique the routes they are given by the Ranger.

When they do this, they essentially share their experiences with the system, so that others may learn

from them.

3.4.2 Sharing Experiences

In addition to sharing tracks, the users may share their opinion on how well suited a particular path

was to their needs. This serves to maintain a model of how the cityscape is percieved by the users.

Each usergroup maintains a running average of the points each segment has scored. This number

gives an approximation for how well suited a particular segment is for the usergroup in question1.

This way I use Haigh’s idea of the β-value [16] to capture the general value of a stretch of road.

The β-value is a single real number that is factored in with the cost-function like this: cost =

β ∗ realCost. However, I do not fall into the trap of using a single value for all users [17][32],

creating a universially inaccurate measure of quality. Instead, the users define themselves as part of

a particular group, and these groups share experiences. Provided the users are honest in choosing a

group and the groups themselves are well enough defined to capture the general needs of different

1One could also use the weighted averages of other usergroups, provided one had some way of establishing realtion-
ships between the usergroups. This is for future considetion, though.



52 Chapter 3. Design of the Ranger

users, this method should alleviate the problems of universial application while avoiding the need

to know each user’s individual needs and wants.

An Example of Sharing

Figure 3.4 shows a scenario where one user’s impressions of a path affects the subsequent requests

for other users. Assume we have two users, named A and B. These users are positioned in different

locations in the city, but they want to go the same place, see 3.4(a). Person A makes the first request

for a path, and is given a straight line east. This path is given a score of 90 and is the cheapest

possible route to the Goal. Note that the score is in an arbitrary unit.

However, A is not happy with the path he was given. For some reason, A feels that the path does

not provide for his particular needs. Perhaps it was too steep at times, or maybe it lacked proper

sidewalks. No matter the reason, A gives the path a scorching critique, and the system re-assigns

cost to the edges involved, see 3.4(b).

At some later point, person B asks the Ranger for directions to the Goal. Although a straight

line to the east would have been the best path according to the basic network, the system gives B an

entirely different path, see 3.4(c). This alternative route takes into account A’s critique of his path

and takes a detour that may be better suited to A and B’s user group.

3.5 Datamodel

Here I will outline the logic to the data used in the project. I will describe the concepts that I need

to design the Ranger and how they are related to eachother.

The Ranger data is basically geographic data and associated metadata. The geographic data

represents roads or other traversible ground and intersections that allow one to move from one road

to another. The metadata associated with the geography describes the quality of the roads relative to

the various user groups. Figure 3.5 shows the relationship between the various entities in the model,

and I will describe the various entities in some detail.

The Point

A point is a geographic position identified by latitude and longitude. This represents the smallest

geographic entity in the Ranger, and serves as a building block for many other constructs.

A point is created when the system needs to represent geography and it wants to use a latitude/-

longitude pair that does not already exist. A point is never destroyed as it might always have some



3.5. Datamodel 53

(a) A and B both want to find a route to Goal

(b) A get a bad route and gives it a poor review

(c) B is given a route augmented by A’s review

Figure 3.4: Changing the cost of travelling depending on user’s experiences



54 Chapter 3. Design of the Ranger

Figure 3.5: The datamodel

use in future geometries.

The Node

A node is a point that sits at the end or beginning of an edge. In addition to having a location

inherited from the Point, it also knows about its neighbouring nodes. A node’s neighbourhood

consists of all the nodes belonging to the edges that this node belongs to. In figure 3.6, node A has

three neighbours coloured blue.

A node exists as long as it belongs to at least one edge. When the last edge it belongs to is

removed, the node is demoted to a regular point.

The Curve

A curve is an ordering of points that define a connected set of lines. Figure 3.7 show a number of

such curves. The points labeled P0, P1, and P2 form one curve, while the points P3 and P4 form

another curve. The point P5 does not participate in a curve.

Curves describe the geometry of tracks and edges. They are created when the system wishes to

describe the actual geography of an edge or if the user draws a track.



3.5. Datamodel 55

Figure 3.6: Node A’s neighbourhood includes nodes B, D, and F, but not nodes C or E

The Edge

An edge is a central object in the model. It represents a single, unbroken stretch of traversible

ground, and a collection of edges makes up a searchable network. An edge is created when a stretch

of road from one intersection to another is being described in the system. It lives as long as no

changes are made to the network it belongs to, but may be destroyed if a new edge is created that

intersects or runs incidental with it. In such a case, new edges will be created to take the place of

the destroyed edge.

An edge is defined by a single curve and two nodes. The curve represents the geometry of the

edge, i.e. its geographic appearance. The nodes represent the two ends of the edge.

An edge may also have user feedback associated with it. This user feedback will affect the value

of the edge, which is calculated from the geographic length of the edge’s curve.

The Network

A network is a collection of edges and nodes. It is the umbrella object that is used for searching

for paths and for inserting tracks. Every time a route planning or track insertion operation is to be

performed, a network is created from edges located around the geographic location of the operation.

For example, for a route planning session from the hotel Oslo Plaza to Oslo City Hall, only edges

in Oslo Downtown is included.

The network allows changes to be made to it’s members. Specifically, it allows edges to be

created and destroyed in response to the integration of tracks, and it allows edges to change their

user-feedback members in response to actual user feedback.

The Path

A path is a continous ordering of edges through a network. They are created when the Ranger

performs route planning tasks, and live throughout the route planning session. The first path that is



56 Chapter 3. Design of the Ranger

Figure 3.7: Two curves and a loose point.

discovered during route planning that connects the start and end point of the search is considered

the solution to the query.

The Track

A track is a recording of a user’s movement in the real world, either created automatically by a

GPS or manually by a human. The track is created as a user-action to record his or her movements.

It lives until either discarded by another user-action, or replaced by a path representing the same

geometry.

The UserFeedback

UserFeedback represents the user’s critiques of edges. Each instance of UserFeedback is a combi-

nation of all the feedback received for a particular edge and a particular usergroup. User feedback

is created the first time a particular edge is given critique by a new usergroup, and is then mutated

with every subsequent critique offered by members of the same usergroup. User feedback can also

be created in the event of an edge being created. If the edge is created to replace an earlier edge

with user feedback, a new UserFeedback instance is created to be associated with the new edge.

The user feedback is discarded when the edge is belongs to dies.

The UserGroup

A usergroup is a collection of users that share some characteristics. These characteristics are not

spelled out, and each individual user must join a usergroup that seems to fit their own characteristics

the best. A usergroup is identified by its name which should be enough to describe it to human

users.

Usergroups are permanent objects in the Ranger, although they may be created or destroyed by

a database administrator. I future iterations, users should be allowed to create new usergroups to



3.6. System Architecture 57

Figure 3.8: The Rangerarchitecture in brief

better meet their individual needs.

The User

A user represents an actual human user of the system. The user is created when someone registers

with the Ranger, and lives, in theory, for ever. Users must belong to a single usergroup, but can

change usergroup at will.

3.6 System Architecture

The Ranger is designed around a classic client-server architecture (see figure 3.8). The server sits

on the data and creates paths on demand from a client, and the client presents these paths to the user.

The user may then change the paths or create new tracks and store these on the server.

The client resides on a handheld Windows Mobile device and communicates with the server

using the device’s network connection. This can range from Wireless Broadband to a GSM modem

connection. The server resides on a stationary computer and is accessed through a regular web-

server, such as Apache 2.0. The database resides on the same computer as the server code. It is

contacted through Java Database Connectivity (JDBC) calls via Apache as well. JDBC is a well

known architecture for Java applications to connect to databases and execute SQL statements. The



58 Chapter 3. Design of the Ranger

client-server communication is purely synchronous http-requests, where the request takes the form

of a parameterized URL and the response is an XML document.

A more detailed description of the client, server, and database can be found in Appendix A.

3.6.1 The Client

The client is the user’s window into the Ranger system. It is responsible for presenting the user with

the various routeplanning services offered, and for displaying the tracks the user has asked for. It

must also keep the user informed about any errors that may occur or if the system needs time to

think.

The client adds two menu-items to Okapi’s already existing menu. These menu-items are di-

vided by functionality: One provides the user with an interface to route planning. The user may

place starting points and end points, or he may ask for a route to the closest point of interest. He

may also use this part of the interface to offer feedback to the routes available on the client.

The other menu-item allows the user to draw his own tracks. Here the user may choose to

create a user track by adding points at the current position of the cursor, or he may opt to start GPS

tracking. GPS tracking is performed by the client polling any GPS connected to the mobile device.

This GPS polling is handled by the Windows Mobile GPS Managed API.

Tracks can be edited by the user. As tracks are essentially just ordered points, they can be edited

by simply relocating the points. The clients allows the user to do this in a drag-and-drop fashion.

The user can click on a point and then drag it to a new position. When the user lets go of the point,

it is given it’s new position, and the track is updated.

The client communicates with the server using http-calls; simple URLs with field-value pairs

to pass parameters. One such call could be http://platypus.hiof.no/okapi/server/

xsd/trackster.php?userID=123&act=feedback&route=234&score=0.5. Here,

the user has offered feedback to a particular track.

The response from the server is always an XML document that contains a reference to an XML-

schema for validation purposes. By validating the server XML, the client can always be certain is

has been given a proper, well-formed response to its request and can treat the document accordingly.

When the client receives routes from the server, it displays these as a yellow line on the map.

These routes can be selected by the user, and when selected they are outlined in red to make them

more visible. In order to offer critique of a route, the route must first be selected. The user then has

the option of different fuzzy terms to describe his feelings about the route, ranging from ”Very bad”

to ”Very good”. These terms are translated to numberical values and transmitted to the server.

http://platypus.hiof.no/okapi/server/xsd/trackster.php?userID=123&act=feedback&route=234&score=0.5
http://platypus.hiof.no/okapi/server/xsd/trackster.php?userID=123&act=feedback&route=234&score=0.5


3.6. System Architecture 59

3.6.2 The Server

The Ranger server is responsible for managing tracks and paths, as well as user feedback and

geometry-merging. It’s responsibility can be broken into three main areas. First, it must perform

route planning tasks. Second, it must handle user feedback and organize this is a sensible way, and

finally, it must integrate the users’s tracks into the already existing geometry.

The route planning task is in many ways the least innovative part of this project. The Ranger

server handles route planning by performing the A* algorithm, using a MinHeap to store intermedi-

ary solutions. The heuristic used is the Haversine distance from the end-node of an edge to the goal

position.

The Haversine formula is a formula for calculating the distance between two points on a sphere

given the radius of the sphere. Since the earth is not spherical, this leads to some inaccuracies,

but these are negligible considering the relatively small area the project is concerned with. This

heuristic is guaranteed to be admissable, as there is no shorter distance between two points on a

sphere than that which is described by the Haversine formula.

The route planning is influenced by user feedback as well as the heuristic, and the server needs

to maintain control of all the users’s input. The server assigns each edge in the network a β-value

for each separate user group. This value represents the average score each user has given the edge

during its life. This β-value is multiplied with the actual cost of an edge to produce a weighted cost.

The cost of an edge is taken to be the length of the curve that represents the edge’s geometry.

The final responsibility of the server is to merge the original geometry with any new tracks the

users may produce. To perform this, it uses the algorithm I outlined in Figure 3.3. This algorithm

alters the user’s track slightly to avoid situations where many similar tracks generate multiple edges

covering nearly the same real-world paths. Once this alteration is done, the algorithm attempts to

create new nodes where the user’s track crosses or touches already present geometry. This implies

that some old edges may need to be replaced by new edges, and that old feedback must be copied to

the new edges. When the algorithm terminates, the network should have been altered so that the new

track is traversible and searchable like any other part of the network. The original network should

retain enough edges, or have old edges replaced so that any path that was discoverable before the

geometry merge is still discoverable after the merge.



60 Chapter 3. Design of the Ranger

• Point to point route planning

• Route to nearest point of interest

• User group based route ranking

• User created tracks

Figure 3.9: Rangerservices

3.7 Services

This section will outline the various services that the Ranger is to offer the user. Figure 3.9 shows

an overview of the these services.

Point to point route planning

Point to point route planning involves the user selecting two points on the client’s screen and then

having a route between the points generated by the system. The user will designate a start point

from where the route planning begins. He will also designate a target point that the system will

search for during the route planning.

When the user asks for a route, the client will indicate that it is searching for a route, and the

user is free to persue any other activity during this time. When the system has found a route, the

indicator disappears, and a route is drawn on the map.

Route to nearest point of interest

This services resembles the point to point route planning, except that the system will discover the

target point based on criteria given by the user. With route to nearest point of interest, the user

specifies a starting point, and then asks for a route to the nearest point of interest that matches what

the user is looking for. For example, the user may ask for the closest accessible parking to his

current location.

User group based route ranking

Once a route is displayed on the client screen, the user may offer feedback on the route’s quality.

The user can click on the track and enter a feedback/edit screen. This screen allows the user to make

a statement of quality of the track and have this uploaded to the server.



3.7. Services 61

By collecting feedback this way, the Ranger aims to generate routes that fit the user’s needs

better than straight up route planning.

Usertracks

The final service the Ranger offers the user is usertracks. This service is actually split in two:

Manual drawing and GPS tracking. With manual drawing, the user places points on the map using

the stylus or other direct input device. These points are linked together to create a continous curve,

or track through space. As an alternative, the user may connect a GPS device to the client and have

the GPS draw points on the map.

In either case, when the user has created a usertrack he is satisfied with, he can give the usertrack

a name and upload it to the server. The server will then attempt to integrate the usertrack with the

road network already present in the database. When the integration is complete, the client presents

the user with the resulting track, which may be slightly altered to better suit the underlying model.





Chapter 4

Testing

Testing is the bread and butter of a system developer. It includes everything from ensuring that

single methods or code-snippets do as they are intended, to having end-users try out the system and

offer feedback as to what is good and what needs improvement.

Although the Testing chapter comes near the end of the thesis, be advised that testing has been

an integral part of the development from the very beginning of this project. In addition, at several

points during the development, I have had fellow students and staff at the college try out the system

and offer me feedback.

In this chapter I will describe two major tests and their results. These tests include a final,

in-house system test that ensures that the system performs reasonaby well and that is adresses the

issues outlined in the introduction, and an informal user test to explore the application’s ability to

interact with real users and garner experiences regarding the user interface.

4.1 System testing

For the sake of this project, system testing takes precedence over user testing. This test will result in

an overview of what functionality is ready for user-testing, and what functionality needs more work.

However, due to the lack of time and resources, this will not be a comprehensive test covering every

contingency. It is intended to demonstrate functionality rather than ensure robustness.

The test is divided into four parts, each exploring different aspects of the Ranger system. Many

parts are partly dependent on one or more of the former tests to have ended successfully in order to

be run. Most parts have several sub-parts that all must be tested. In some cases it is possible for a

test to succeed in several sub-tests and still fail.

63



64 Chapter 4. Testing

Every test is performed on a Windows Mobile 5.0 Pocket PC VGA emulator for best screen shot

opportunities. The emulator is cradled using the .NET Device Emulator Manager and connected to

the internet through ActiveSync 4.0. These tests will not depend on bandwidth, so using a high-

speed connection shouldn’t be a problem.

The server and the code-base are both final before these tests. That means that as long as the

tests don’t uncover major issues, there won’t be any fixes made until after the user test.

This section includes a lot of screenshots. On many of these screenshots, one can find a blue

circle and/or a red cross. The blue circle represents a point selected by the user as the starting point

for a route planning session. A red cross on the screen is a point selected by the user to be the goal

position of a route planning session.

4.1.1 Calculate Route from A to B

This is the most basic functionality of the Ranger. Here a route is requested between two user-

defined points on the map. There are a number of various cases that must be tested:

1. Source and target point are positioned at or near nodes in the network

2. Source and/or target point is/are positioned at or near an edge in the network, but not near a

node

3. Source and/or target point is/are positioned inside the network, but not close to any edge or

node

4. Source and/or target point is/are positioned outside the network and not close to any edge or

node

Criteria

The four variant tests have slightly different criteria for success.

In the case where both source and target point are positioned at or near nodes in the network,

success means that the client displays a yellow line running from the source point to the target

point. This yellow line must follow roads or other traversible paths on the network at all times.

Minor success is acheived if this yellow line connects the two points. Major success implies that

this route is in fact an optimal route between the two points. Testing for major success may be

difficult in a real world application, however, and minor success is sufficient.



4.1. System testing 65

The second case deals with situations where one or both of the user’s points lie on the network,

but not near any node. The critera for success are the same as with the above.

In the third and fourth case, one or both of the user placed points are positioned so that they

don’t have a reasonable approximation to the network. In both cases, the system should return an

error message. If these two tests succeed, the client will indicate that it is done loading tracks, but

no tracks will be displayed. If the user opens the track overview, it will show an error message for

the last requested track.

Tests

Setup The setups for all four tests are identical. I start the Okapi application on the emulator by

clicking on the Okapi executable. In tests one through three, I move the map to Oslo downtown

where I know I have a road network. In the last test, I move the map to Halden, where I don’t

currently have a network.

Result

Variant one For the first variant test, I started the Okapi application from the emulator. Figure 4.1

shows two typical runs. In sub-figures 4.1(a) and 4.1(c), I have positioned target and source near

intersections visible on the map. In the latter figure, the intersections become visible as you zoom

in. I know that intersections that are visible on the map are represented as nodes in the road-graph,

so these setups fullfills the demand of this variant test.

Once the start and end points are set, I double click on the screen to get the context menu, and

select ”Find route” from this. Sub-figures 4.1(b) and 4.1(d) show the reaction from the client once

the server is done calculating the routes.

This test can be considered a success, as routes were found between the two points specified by

the user, and these routes were successfully displayed on the screen.

Variant two The second variant test started just like the first. I positioned target and source

points on roads on the map, but away from visible intersections (see sub-figure 4.2(a) for a typical

placement).

The resulting paths from these tests, like the one in sub-figure 4.2(b), lack precise start and end

points. Instead, it looks as if the system selects points from the edges the user placed his points on,

to use as source and target.



66 Chapter 4. Testing

(a) The user has set up a start and end point (b) The resulting path

(c) The user wants a significantly longer route (d) The resulting path is more detailed than the shown
map

Figure 4.1: Screenshots from Test 1 Variant 1



4.1. System testing 67

(a) The user has set up a start and end point (b) The resulting path is not as good as in variant 1

Figure 4.2: Screenshots from Test 1 Variant 2

This test is a minor success. Paths are discovered that would help a user find his way between

the points. However, the paths only approximate the user’s selected points, and can therefore be

confusing in certain situations.

This is a point where improvements should be made, were this system to be released.

Variant three For this variant test, I set up points inside of Oslo, but in parks or small forests,

where I knew the network didn’t cross. See figure 4.3(a) for an example. In most cases, the client

would show a ”Track Loading” icon briefly. When the status icon disappeared, the client showed

the same state as before the path finding request. However, when the user opens the feedback menu,

he is met with an error message saying that a track could not be found (see figure 4.3(b)).

Every now and then, however, the system would give tracks that only approximated the user’s

points very crudely. Figure 4.4 shows one such situation, where the user positions a source point in

the middle of nowhere. Here, the system, rather than admitting failure, selects a point a rather long

way away from the user point and start.

Variant four This variant involved me asking for tracks far away from Oslo. The setup and results

for this test were identical with variant three, but I noticed that the system reacted far more quickly.



68 Chapter 4. Testing

(a) The user has set up a start and end point inside the
extremes of the network, but away from any nodes or
edges

(b) The resulting error message

Figure 4.3: Screenshots from Test 1 Variant 3



4.1. System testing 69

This is likely due to the network not being loaded into memory before the request is denied.

Both variant three and four can be deemed successes, with the proviso that the crude approxi-

mations when the user’s points are not on the network consist a good enough solution.

4.1.2 Calculate Route from A to a Point of Interest

This test is in many ways similar to test 4.1.1. However, instead of the user defining the target point,

the system discovers a suitable target point based on the user’s criteria.

The various cases that must be tested are identical to those of test 4.1.1, but does not include the

target point. However, these cases must be performed for each possible set of criteria the user may

set.

Criteria

For each set of target POI (these are ”Toilet”, ”Subway Station”, ”Parking”, ”Attraction”, and ”Ho-

tel”), the client must display a route from the user’s selected starting point to a POI of the selected

sort.

Some POIs may suit several target types. For example the POI category ”Hotel” will often have

access to toilets, so a search for a POI of type ”Toilet” will succeed even if it points to a ”Hotel”.

These tests succeed if the client shows a route from the source point to a POI that meets the

criteria.

Test

To perform these tests, I go through most of the same steps as in test 1. However, in each case I

refrain from placing a target point. Instead, I double click the screen and from the ”Route Planning”

menu I choose ”Find nearest...”. Then I select one of the displayed categories and await the result.

Every available category is tested for each of the four variants of the test.

Result

Each test gave more or less the same result as their test one counterparts.

Variant one and two both succeeded, with variant two lacking in accuracy.

Variant three suffered from the same crude approximation that was discovered in test one, while

variant four succeeded with flying colours.



70 Chapter 4. Testing

Figure 4.4: Sometimes the approximation is over-eager

4.1.3 Calculate Route after network has been reviewed

In this case, the system calculates a route between two point and takes into account feedback offered

by users about the edges that take part in the search.

There are two basic variations of this test: Avoid edges that have been deemed bad, and prefer

edges that have been deemed good.

Criteria

For the first variant test to be successfull, the system must first give an adequate route from A to

B. Then the edges in this route must be marked as bad, and the route recalculated. The new route

should avoid the edges used in the first route.

In the second case we must offer positive feedback to some edges and then see that these edges

are preferred in a route planning scenario.



4.1. System testing 71

(a) The user has set up a start point (b) The resulting path and point of interest

Figure 4.5: Screenshots from Test 2



72 Chapter 4. Testing

Test

Variant one For this variant, I need to find a place on the network where I can easily create

situations where feedback alters the system’s preferred routes. An idealized network can be seen in

figure 3.4, and figure 4.6(a) shows a location in Oslo that can be used for similar tests.

The last figure also shows the positioning of start and goal points.

For this variant test, I first ask for a route. When the route is received, I select it by clicking on

the yellow line (see figure 4.6(b)). I then proceed to offer my feedback. I give the track the worst

possible critique. When I am returned to the map, I ensure that my critique is received by checking

the database.

Finally, I ask for another track between the same two points. This second route should go along

different edges than the original.

Variant two Using the same location as in variant one, I can explore this test. It involves a couple

more steps than the first test, though. Since the lower route is the preferred route if we discount

the previous feedback, i.e. we refresh the database, we need to get access to the edges involved in

the upper route in a different way. To do this, I repeatedly ask for routes along shorter stretches of

the upper route. This way, I can guarantee that I get the edges I want. Once I have access to the

designated edges, I give them the most positive feedback available to me. With this is set up, I can

ask for the route between my original two points.

Result

As figure 4.6(c) shows, the second path gives an alternative to the path originally suggested. This

was the result in both variants of this test. In conclusion, test two was a success.

4.1.4 Adding edges to the network

In this test-segment we add new edges to the network. There are two ways of adding edges: by

drawing them on the screen or by recording one’s movement with a GPS.

Once the method for adding edges are decided, there are a small number of variant cases in this

test:

1. No part of the user track crosses or touches the original network

2. The user track crosses the original network



4.1. System testing 73

(a) A suitable location for the test

(b) The first track (c) The second track

Figure 4.6: Screenshots from Test 3, Variant 1



74 Chapter 4. Testing

Figure 4.7: An idealization of the fourth test

3. Part of the user track overlays the original network

Criteria

For the first variant test, the criteria for success are few and simple. After the upload, the client

should display the uploaded track as identical to the drawn track. It should also be possible to

perform regular route planning from either end to the other.

In the second variant, we should get a new node at the point of intersection. A successfull test

would result in the client displaying a track near identical to the track drawn by the user. It should

also be possible to generate routes travelling between the end points of the user’s track, between the

end points of the edge that was intersected, and between any of the four ends to any of the others.

For the last variant, we expect a number of things. Please consult figure 4.7 for the following

description. We start with the original network represented by the blue line running from A to B.

The user then adds a second path starting at C, running through D and E, and terminating at F. After

uploading this path, is should be possible to get a number of routes. In fact, it should be possible to

get from any of the labelled points to any of the other points. This makes for fifteen possible routes,

if we assume that a route can be traversed both ways.

Test

For each of these tests, I start out with a refreshed database, so that I do not have to consider any

previous user created content. For variant one, I use a location on the map that I am sure does



4.1. System testing 75

not already contain a network. For the two other variants, I use the downtown area of Oslo, as it

contains several straight edges that make it easy to plot test lines.

Result

Variant one In this variant, I simply find someplace on the map where I know there isn’t a pre-

existing network. This is easy, as only Oslo currently has a network.

Once I have found a suitable location, I can draw a track using the manual function of the

system. The number of points I use to create the tracks differ from only two to more than twenty.

Figure 4.8 shows a user plotting close to 20 points along a known road (4.8(a)). He uploads

the track to the database, and the client displays the track as it was stored in figure 4.8(b). I have

selected the track to make it easier to see.

To ensure that the track is searchable, figure 4.8(c) shows a route planning request using the

ends of the submitted track as start and end points.

Given that the route is returned as expected after a track submission, and that the user track can

be used for subsequent route planning, this test can be considered a success.

Variant two In this test, I first find a location where route planning gives a somewhat long winded

route, as show in figure 4.9(a). Once such a place is found, I create shortcut by laying a user track

across the already existing network like in figure 4.9(b). Then, by asking for another route between

similar points as for the first request, I demonstrate that the user track has been integrated into the

network of roads. This is shown in figure 4.9(c).

Variant two of this test is a success.

Variant three For this test, I find a location that includes a fairly long stretch of unbroken road.

One such road, with the edge in question already beeing searched for and found as a route, can be

seen in figure 4.10(a). I then proceed to create a user track that is partially incidental to the original

track, as seen in figure 4.10(b). This new track can then be used in route planning, like in figure

4.10(c).

However, not all route planning using the new track works as planned. As one can see from

figure 4.11(a), an extra bend has been introduced. It is as if the first point that hit the original

network is disregarded with respect to linking edges together. Figure 4.11(b) shows an ever worse

situation, where the system gives the user a long detour for what should have been a straight-forward

route. In this case, it seems as if parts of the original network is lost. Subsequent testing shows that



76 Chapter 4. Testing

(a) The user has drawn a track along a known road

(b) The result of uploading the track (c) The result of a route planning request close to the
user track

Figure 4.8: Screenshots from Test 4 Variant 1



4.1. System testing 77

(a) The user has been given a long winded road

(b) The user has created a new track along a shortcut (c) The shortcut is used in subsequent route planning

Figure 4.9: Screenshots from Test 4 Variant 2



78 Chapter 4. Testing

(a) The original edge is easily traversible

(b) The user draws a track that runs incidental to the
original network

(c) The mixed network is searchable

Figure 4.10: Screenshots from Test 4 Variant 3

this is not the case, however, as the original edge is still traversible through the original query for

this variant test.

In conclusion, this variant test must be considered a failure. It has uncovered a serious flaw that

must be rectified before user testing commences.

4.1.5 Conclusions from the system testing

Four functional tests have been performed, each with a number of variants to cover the more com-

mon uses of the system. The tests ran from simple route planning to integrating user tracks into the

already existing network. The results of the tests are gather in table 4.1.

All of the tests, except for one, succeeded to such a degree that no further work needs to be

done. Some minor issues were uncovered, but by and large, these tests showed that the Ranger is

functioning as intended. The tests that revealed weaknesses are marked with a ’*’. Note that this

was not a formal or thorough test to ensure robustness, rather it showed that the services offered by

the system does indeed work.



4.2. User Meeting 79

(a) A strange hiccup in the track (b) An unnecessary detour

Figure 4.11: Test 4 Variant 3 gave some unfortunate results

One single test failed in such a way as to warrant more development work before user testing.

This test was a variant of adding new edges to the network. Although adding new edges for the

most part gave sane results, something would go wrong when the added edge ran incidental with

the original track for some distance. The testing revealed that there is a weakness in the integration

where several points after eachother lie on the already established network.

This weakness was adressed by refining the track integration algorithm to include several types

of intersections. An intersection between a track and the network could appear not only as a point,

but as a line or even a collection of points. Regression testing after the bugfix ensured that no other

functionality had been affected by the alterations, and that the repair was successfull.

After concluding the system test, I met with some potential users for an informal usertest and

interview session.

4.2 User Meeting

Rather than performing a full blown user test, I organized an informal meeting with some potential

users. The purpose of this meeting was to see real users experiment with the application in a natural



80 Chapter 4. Testing

Testname Variant Result
Route planning

Points on nodes Success
Points on edges Success*
Points inside network Success
Points outside network Success

Route to POI
Starting point on node Success
Starting point on edge Success*
Starting point inside network Success
Starting point outside network Success

Review of track
Negative review Success
Positive review Success

Adding edges to network
New edges outside network Success
New edges cross network Success
New edges lie incidental with network Failure

Table 4.1: The results from the system testing

Figure 4.12: An informal demonstration of the project



4.2. User Meeting 81

setting. This way, I would hopefull learn something about the system’s strengths and weaknesses

as well as gathering some user experiences. This meeting will server as a source of ideas for future

refinements and additions to the Ranger project.

The test users experimented with the system in an informal setting. Figures 4.12 and 4.13 shows

photographs taken at the meeting which was held at a café in Halden.

The users raised a number of interesting points while interacting with the system, some of which

pertain to my thesis on collaborative routeplanning in addition to a few regarding the usability of the

system. I will include the usability issues raised for the sake of completeness, and because usability

always remains important for any system. However, it is the issues relating to route planning and

feedback that is the most interesting for this thesis.

Main routes and general feedback

One very interesting point raised by a user is that wheelchair users tend to use main-roads when

they move about in a city. In Halden there is a pedestrian street that runs through the center of the

city. This street does not have sidewalks and therefore lacks curbs which makes this street especially

well suited for wheelchair users. Furthermore, Halden has a large number of difficult to navigate

sidewalks lining the streets around the pedestrian street. This has the effect that the pedestrian street

becomes the equivalent of a high-way for the wheelchair users.

One of the assumptions of this thesis was that pedestrian navigation cannot rely on optimaliza-

tions along main roads because pedestrians are unaffected by such things as speed-limits or traffic.

With the above observation, it seems that this assumption is flawed with regards to at least one user

group. It would be interesting to see if it is possible to discover more such routes by monitoring

the movement of users over time and then use popular streets or roadsegments more actively in

optimization.

Another point offered related to the way routes are critiqued. In the current incarnation of the

Ranger, critique is offered for an entire route at a time. This feedback is then disseminated down

through the system until it lands on the individual edges in the road network. This lead users to

find it difficult to point out individual problems with otherwise good routes. For example, one user

found a route that was very similar to one he would have chosen himself, except for one particular

road that was practically impossible for him to traverse. In reaction to this, the user wished to tell

the system that this particular road in extremely bad, but that the rest of the route was good.

The user suggested a method to solve the above problem. If the user could draw on screen a

possible route and tell the system that this is good, this could give the user some added alternatives



82 Chapter 4. Testing

Figure 4.13: The users experimented with the application

for suggesting routes for his user group. An alternative solution could involve the user being allowed

to edit the route given to him by dragging points or lines to better locations on the map. Such

alterations would demand non-trivial amounts of reimplementation but remains interesting venues

for further work.

Tight Geometry

As the users drew tracks on the screen, the geometry representing Halden started to become some-

what cluttered, and after a while errors crept in. Certain small areas of Halden would suddenly

become impossible to search, and if the user engaged in some action that would cause the geometry

in such areas to be loaded, the server code would return a fatal error. This error is traced back to

loading degenerate edges which is probably caused by bugs in the track-integration code. This dis-

covery highlighted the problem of discovering geometry-related bugs in clinical trials like the one

performed prior to this meeting.

Specific critique and point-based feedback

The users also requested more specific methods for critiquing routes. As it stands, the users were

only given the opportunity to assign a route a grading ranging from very bad to very good. The users

expressed a desire to explain why a route was good or bad in addition to this grading. For example,

one user wished to point out that a particular stretch of road was very steep which prevented him

from traversing it.



4.2. User Meeting 83

The ability to comment on particular obstacles emerged as a need after some discussion around

specifying the reasoning behind feedback. This ties into the original Okapi implementation that

offered users the oppurtunity to create Points of Interest (POIs). While the original implementation

defined a POI as simply a geographic point with associated media like images, text, or videos, it

could be expanded to include relevant accessibility-data.

Finally, the users were very interested in factoring in height in the route planning. In the early

stages of implementation, height was factored in, but as the data source turned out to be inconsistent

in terms of whether or not height was included, it became too difficult to use in this prototype.

However, given the possibility for a GPS to report its current height above the sea level, one might

consider slowly growing a perception of height-differences based on tracking users as they move

around.

Usability Issues

In addition to issues pertaining to route planning, the test uncovered a number of usability issues. I

have included a short discussion of these, since usability remains an important topic of any devel-

opment project, even though it is not something this thesis focuses on.

The primary usability issue the users talked about was the lack of a search-function. One user

wondered about the usefulness of a system that planned a route between two point he already knew

about. Instead of this function, she would have liked to see a method to search for particular adresses

or businesses. Such functionality already exist to a small degree, but was turned off for this test, as

it relies on a POI database. Such a database is available for Oslo, but not for Halden.

There were also concerns about the legibility of the map and particularly the markers that the

Ranger place on the map to denote tracks, routes, starting points, and goal points. These things

should be adressed before any future user tests, as they are relatively simple to fix, but very important

to get right.

Finally, the action of drawing tracks on the screen seemed to confuse the users, both in terms of

how to draw, but also in terms of why. Users seemed to think that drawing the track on the screen

meant that you suggested a solution to the system, rather than suggesting entirely new roads. This

confusion led to the suggestion for a new feature that I outlined in the previous section.



84 Chapter 4. Testing

Other issues

During the conversation with the users, we discussed a number of issues surrounding the use of this

system and similar systems. Of particular interest was the issue of privacy. According to Norwegian

law, a person’s health is considered sensitive information. For example, the member lists for the

Norwegian Handicap Society is considered classified information and can not legally be published.

We also talked about the premisses of accessibility. The users came from a very active group

of wheelchair users and had some fairly well grounded ideas about the issue, but they conceeded

that other people had entirely different ideas. In addition, what may be considered accessible for

one wheelchair user may be completely unusable for another. This means that the initial division

of users into broad usergroups like ”manual wheelchair” and ”powered wheelchair” could end up

being too broad a division.

I believe that the meeting with users was extremely fruitful. The users were given the opportu-

nity to try the Ranger application, and although they never actually used the routes offered to them,

they drew upon their knowledge of Halden to produce accurate feedback. They uncovered usability

weaknesses that the project should adress in future iterations, and more importantly for this thesis,

they pointed out important facts about how they move about in the city streets and how they would

use an application such as the Ranger.

Once alterations have been made to the project codebase to address the issues raised in this

meeting, it would be prudent to hold a more formal test where the users actually moved about using

the routes. It would be interesting to first have people with knowledge of a city use the application

for a while, and then introduce an outsider. This outsider will not know any of the city’s good or bad

streets, and would be entirely reliant on the system to offer good routes. In such a test, the metric

would be the percieved quality of the routes from the perspective of the outsider. If the system does

what it promises, the outsider should immediatly get fairly good routes and be relatively pleased.

4.3 Test Conclusions

The two separate tests performed on the Ranger, the system test and the informal user test, both

showed that the system meets the requirements set out for it. The system successfully calculated

and displayed routes on a mobile device, and it could be persuaded to prioritize certain stretches of

road over other based on the user’s professed user group and previous feedback offered by users in

that group. This way, routes were given a subjective measure of quality that played into whether or

not the route’s particular road segments would be used in future route planning.



4.3. Test Conclusions 85

The system also allows for adding new roads to the network, thus giving users a truly collabori-

tive way to build a road map for their own neighbourhoods or towns.

User testing uncovered a number of usability issues. Although these are not directly linked

to this particular project, they are important issues to consider when looking at the Ranger from

a wider perspective. In the future, more formal user testing should be performed to gain a more

accurate impression of the system’s actual usage.





Chapter 5

Findings and Future Work

The Ranger project aimed at creating a route planning application that offered good routes to dif-

ferent users with widely differing and often conflicting route planning needs. Furthermore, the

application were to be available on mobile devices. Particularly, the project aimed to create an

application to display maps and routes, a mechanism for generating routes, and a mechanism for

measuring the quality of these routes in a way that related to the individual user.

The project sought to solve the last of these sub-problems by allowing users to partake in user-

groups defined by some shared characteristic. The users would then be able to assign grades to

routes. Routes that users found good would be prioritised in subsequent route planning activities

initiated by the user or any member of the user’s group, and this would guarantee that routes would

be considered good by any user of the system.

The project drew inspiration from earlier work in collaboration, such as Wikipedia and Flickr,

that has shown that user-contributions can lead to robust and useful content. It also owes a lot to

the vast amount of previous work in route planning and graph search, especially to the research into

user-feedback and collaboration in route planning that has preceeded this thesis. Of special note

is the work done by Haigh et al.[16] on weighing roads according to user feedback, and that of

McGinty and Smyth[32] on exchanging route planning experience between similar user agents.

Pedestrian route planning, like this application, has had fairly little attention in the Western

world, with the honorable exception of a few German researchers. However, in East Asia, pedestrian

route planning has matured into an industry, and much research on the subject has been done there.

Especially in Tokyo, where many streets are unnamed and people use public transportation to a

much higher degree than in the west, has pedestrian navigation tools found a market. This project

has attempted to tap into some of the accumulated knowledge to adress issues relevant to the general

87



88 Chapter 5. Findings and Future Work

problem of personalizing routes.

Ultimately, I believe the project has been a success, although it does not represent a finished

product. Testing showed that the concept was sound, although the implementation needed some

refinement.

5.1 Project Results

The Ranger project sought to answer the question of whether it was technologically possible to cre-

ate a mobile wayfinding application that delivered good solutions to a wide variety of users. These

users would have differing motivations and needs and sometimes two users would have conflicting

ideas about what constituded a good route. To answer this question, the project needed to solve

three subproblems. It needed to:

• create a mobile application that could display maps and routes

• create a mechanism for generating routes

• create a mechanism for determining the subjective quality of a route

These three subgoals were met and to some degree exceeded in the Ranger application. In

addition to creating a way to rate routes relative to the user, it also gave users the opportunity to

create new routes where the system didn’t already have a network.

The Ranger project resulted in a heavily modified Okapi application that added route planning

capabilities to the original application and a server that kept track of the roadnetwork and whatever

modifications users would make to it. The route planning capabilities came in two flavors: the user

could either ask for a route between two arbitrary points, or from one arbitrary point to the nearest

point of interest of some particular type to that point. For example, the user could ask for the nearest

accessible toilet to his own position. This modified Okapi client met the first of the sub-goals, as it

displayed routes and maps, and the server, through a standard A* implementation, met the second

sub-goal.

More importantly, the application allowed users to grade these routes after their own experience

with them. If a user found a route to be especially well suited, he could give the route a good grade.

These grades were shared across users belonging to the same user-group and route planning efforts

of the members of said group would be affected by the grading. Roads participating in routes that

had predominantly been deemed good by users would be prioritised during route planning requested



5.1. Project Results 89

by users in the relevant user group, while roads in bad tracks would be avoided. This way, the Ranger

introduced a mechanism for subjectively grading routes to help in creating personalized routes.

The modification also added tracking options for the application. Users could track their own

movements using a GPS, or they could manually enter new tracks by drawing on the screen. These

tracks could be uploaded to the Ranger server and integrated into the already existing road network.

This way, users of the Ranger could share tracks and collaboratively create a road-network that rep-

resented actual roads or paths that the users used in their day-to-day life. Coupled with the feedback

to routes, users were given the ability to change the road network to reflect their personal perception

of the world, which in return would result in route planning activities that gave personalised routes

for each user.

5.1.1 Testing

To show that the application actually acheived the goals outlined above, I organized a meeting with

some potential users. During the meeting, the users experimented with the application and discuss

the results it gave them. The users were wheel-chair users which meant that they were benefitted by

low curbs, plane and paved roads, and similiar features. On the other hand, they are disadvantaged

by sidewalks with many pot-holes, gravel, dirt, grass, etc., or high steps from the sidewalk at places

where they wish to cross the road. On account of their intimate knowledge of Halden’s streets, they

were able to use the feedback system of the application to try to affect the routes given them.

The informal test showed that the system adapted to the users’s feedback, and tried to find

alternative routes when the users were unsatisfied. However, the testing also uncovered some issues

that needs to be addressed in any future work on the Ranger application. I have discussed these

issues in some detail in section 4.2. In short, the meeting showed that the concept is sound and can

be used to allow people to exchange experiences that makes route planning better. However, the

feedback may need to be more nuanced and specified, as the users wanted to know more about why

the system chose a particular route over others.

The technical tests of the system showed that there are some problems with the geometric analy-

sis in integration of usertracks that hinder a smooth track-uploading experience. The problems are

restricted to situations where the user uploads tracks in areas where there is already much geometry

present. This leads me to conclude that the problem lies with the algorithm that simplifies and gen-

eralizes the user track prior to the actual integration. Until this problem is solved, the application

can not be said to fully support user tracks. However, this problem does not appear in most cases of

track uploading, so I expect to be able to fix the problem in future iterations of the project.



90 Chapter 5. Findings and Future Work

5.1.2 Open Data

As a side-effect of the system testing and the informal user testing, I had the oppurtunity to find out

if the open data I got from the Open Street Maps (OSM) initiative was sufficient for routeplanning.

As I expected, the data was sufficiently robust and detailed for me to perform block-by-block route

planning even in a small town like Halden. The data was in such a shape that I only needed to

translate it into the Ranger specific format to be able to use it. That is to say, no massaging of the

data was necessesary and it could be used without even reprojecting the geographic coordinates, as

the OSM project uses raw GPS coordinates for their tracks.

5.2 Future work

The Ranger project will be continued after the end of this thesis, and there are several directions it

could take. First off, there are a number of usability issues and bugs to address before the application

is release-worthy. Furthermore, discussions with users has resulted in a number of ideas for features

that would be interesting to implement.

5.2.1 User-drawn Tracks

Naturally, the bug relating to tight geometry that lead to possibly corrupted or degenerate edges

needs to be addressed. However, since the users didn’t find the offending feature very interesting, it

may be worthwhile to look at alternatives to the feature, rather than spending resources on fixing it.

Users that tried the user-track feature often misunderstood the purpose of it. They assumed

that the user-track feature meant that the user would point out roads that they thought were of high

quality. This way, the users thought they could suggest routes to the system and to their fellow

users. Such a feature is in fact quite interesting and adds to the collaborative aspects of the Ranger

application.

One way to implement this feature would be to allow the user to draw a track on the screen and

then upload this to the server. The server could look at the uploaded track and try to find edges

in the network that cover the same ground as closely as possible. The user-track could be fitted to

a collection of edges and returned to the user for review and clearing. If the returned user-track

follows the roads that the user intended, then he gives it a grading and concludes the track-upload.

At this point the user-feedback would be spread along the relevant edges.

In the case that the returned user-track did not follow the intended road, the user could edit the



5.2. Future work 91

track by moving points or edges to the correct position. During the second upload, the system would

create new edges for the parts of the track that it got wrong. This way the users could still create

new edges to map out areas that lack a road network, but tracking in already mapped areas would

still have a good use. The drawback to this solution is the added complexity of the user-operation,

but this feature would be for experienced users.

Points of Interest

Another feature that is interesting to implement is the integration of points of interest (POIs) into

the route planning. The current Ranger application allows the user to search for the closest POI of

a particular kind. In the future, the user should be able to do free-text searches for POIs and then

perform route planning to a POI of their choice from a search result-list.

However, POIs could be integrated even more tightly into the route planning process. If the

users are given the opportunity to create special POIs designating location or areas as obstacles

or features, such as access-ramps or areas with many potholes, this could be used to affect route

planning. Certain POIs could give edges nearby bonuses while others could server to diminish an

edge’s value. The POIs would only affect certain usergroups and to varying degrees. For example,

a POI denoting a tall step from the sidewalk into the street would be used to downplay a street

whenever a wheelchair user performed route planning. On the other hand, the same POI would

emphasize the street when a blind person asked for a route.

POIs need not be permanent fixtures in the system. For example, a user may want to document a

road or a sidewalk that is currently undergoing work. This could make the road temporarily unusable

and this should be a part of the route planning. However, the POI should not live on forever, as the

road work eventually will end and the road will again become usable. In this case, users should be

able to create POIs with expiry dates that only augments route planning during its lifetime. Such

POIs could have their lifetimes extended if users find that the obstacle or path-feature doesn’t go

away when expected, or they could be removed if the obstacle disappears quickly.

Finally, POIs could become a part of route planning by assigning the POIs that people are

interested in visiting, such as resturant or toilets, ratings that affect route planning efforts to reach

it. This would mean that the A* algorithm that currently controls all route planning in the Ranger

would have to be swapped out with some one-to-all algorithm that could take into account the

relative values of the endpoints of the edges. With such an algorithm in place, the system could

present the user with routes to locations where the quality of the end point would dictate the length

of the route. That is, if the user had to walk a little bit further to get to a location with a much higher



92 Chapter 5. Findings and Future Work

rating, the system could suggest the longer route.

5.2.2 Miscellaneous Future Features

In addition to the suggestions above, the Ranger should look at a number of smaller features that

should be added in the future. First off, the users should be allowed to create new usergroups if they

cannot find one that suits them. This could be expanded to let a user create a profile with a number

of preferred user groups that he could choose to use for route planning and feedback.

There is also the option of storing feedback on a person-to-person basis. This would mean that

users could undo previous grading if they change their mind. It would also open for analysis on the

feedback. For example, one could find people that agree a lot despite being in different usergroups,

and this could in turn lead to more sophisticated exchange of experiences. Basically, a trust network

could be created based on the feedback offered. However, such a change in the way to handle

feedback might lead the project down the path to the Utility Problem, where the database is so full

of feedback that the improvement in route planning is undone by the vast inefficiencies in applying

the feedback.

Users should also be allowed to give on-the-spot feedback. There could for example be a

”Good” and a ”Bad” button on the map that lets the users say that ”where I am now is a bad

place for my usergroup”. The system would look at the user’s location and apply the ad-hoc grade

to the closest edge to the user’s position without giving any thought to any route that may have

been calculated. Such a feature would allow more detailed feedback and avoid problems of the kind

where a single bad decision causes a long and otherwise fine route to be labeled bad.

Another direction of development is looking at reusing the routes the Ranger creates. Currently,

calculated paths are not kept in the system as anything other than reference for feedback. However,

it is possible to use already calculated routes as elite-solutions for future searches. If a route from A

to B has been found to be good, and a user asks for a route from somewhere close to A to somewhere

close to B, it could be expedient of the system to first look at the old route between A and B. If this

route was a good route, then it is likely that getting the user to point A, and then simply offering the

old route rather than calculating a new route, is just as sensible as creating an entirely new route.



References

[1] Koen Aerts, Karel Maesen, and Anton Van Rompaey. A practical example of semantic in-

teroperability of large-scale topographic databases using semantic web technologies. In 9th

AGILE Conference on Geographic Information Science, January 2006.

[2] James A. Anderson. Discrete Mathematics with Combinatorics. Prentice-Hall, Upper Saddle

River, New Jersey, 2001.

[3] The Norwegian Mapping Authority. http://www.universiell-utforming.

miljo.no/file_upload/helekartet2s.pdf. online.

[4] Jorg Baus, Antonio Kruger, and Wolfgang Wahlster. A resource-adaptive mobile navigation

system. In 7th International Conference on Intelligent User Interfaces, pages 15–22, May

2002.

[5] Martin Breunig and Wolfgang Baer. Database support for mobile route planning. Computers,

Environment and Urban Systems, 28(6), 11 2004.

[6] Jeff de la Beaujardiere. Opengis web map server implementation specification. Technical

report, Open Geospatial Consortium Inc, March 2006.

[7] A. Desilets, S. Paquet, and N. G. Vinson. Are wikis usable? In 2005 International Symposium

on Wikis. National Research Council of Canada, October 2005.

[8] Frederic Evennou, Francois Marx, and Emil Novakov. Map-aided indoor mobile positioning

system using particle filter. Wireless Communications and Networking Conference, 4:2490–

2494, March 2005.

[9] Ashwin Ram Jr. Anthony G. Francis. The utility problem in case-based reasoning. Technical

report, College of Computing, Georgia Institute of Technology, 1993.

93

http://www.universiell-utforming.miljo.no/file_upload/hele kartet 2s.pdf
http://www.universiell-utforming.miljo.no/file_upload/hele kartet 2s.pdf


94 REFERENCES

[10] L. Fu, D. Sun, and L. R. Rilett. Heuristic shortest path algorithms for transportation applica-

tions: State of the art. Computers and Operations Research, 33:3324–3343, November 2006.

[11] David Geer. The e911 dilemma. Wireless Business and Tech, pages 40–43, November 2001.

[12] Jennifer Golbeck and Bijan Parsia. Trusting claims from trusted sources:trust network based

filtering of aggregated claims. Int. J. Metadata, Semantics and Ontologies, 1(1), 2006.

[13] Jennifer Gonzalez-Reinhart. Wiki and the wiki way: Beyond a knowledge management solu-

tion. Information Systems Research Center, pages 1–22, February 2005.

[14] GPSGames. Geodashing. online: http://geodashing.gpsgames.org/.

[15] Tyrone Grandison and Morris Sloman. A survey of trust in internet applications. IEEE Com-

munications Sysrveys and Tutorials, 3(4), September 2000.

[16] Karen Zita Haigh, Jonathan Richard Shewchuk, and Manuela M. Veloso. Exploiting do-

main geometry in analogical route planning. Journal of Experimental and Theoretical Arti-

ficial Intelligence, 9:509–541, 1997. http://www.cs.cmu.edu/˜khaigh/papers/

khaigh97d.abstact.html.

[17] Susan M. Haller and Gene Simmons, editors. Proceedings of the Fifteenth International

Florida Artificial Intelligence Research Society Conference, May 14-16, 2002, Pensacola

Beach, Florida, USA. AAAI Press, 2002.

[18] Torbjørn Halvorsen and Harald K. Jansson. Geographitti using mobile devices. Technical

report, Østfold University College, May 2005.

[19] Mike Hazas and Andy Hopper. Broadband ultrasonic location systems for improved indoor

positioning. IEEE Transactions on Mobile Computing, 05(5):536–547, 2006.

[20] Sean B. Hoar. Trends in cybercrime. Criminal Justice, 20(3):4–13, 2005.

[21] Claire Hujinen. Mobile tourism and mobile government. Technical report, EC/DC Infonomics,

April 2006.

[22] S. J. Ingram, D. Harmer, and M. Quinlan. Ultrawideband indoor positioning systems and their

use in emergencies. PLANS 2004, pages 706–715, April 2004.

http://www.cs.cmu.edu/~khaigh/papers/khaigh97d.abstact.html
http://www.cs.cmu.edu/~khaigh/papers/khaigh97d.abstact.html


REFERENCES 95

[23] D. Karimanzira, P. Otto, and J. Wernstedt. Application of machine learning methods to route

planning and navigation for disabled people. In MIC’06: Proceedings of the 25th IASTED

international conference on Modeling, indentification, and control, pages 366–371, Anaheim,

CA, USA, January 2006. ACTA Press.

[24] The Norwegian Mapping Authority (Statens Kartverk). Arealis wms : http://www.

statkart.no/arealis/.

[25] KDDI. Kddi to launch ez navi walk, a full-scale navigation service for pedestrians. online,

June 2003.

[26] Anil Kini and Joobin Choobineh. Trust in electronic commerce: Definition and theoretical

considerations. In Proceedings of the Thirty-First Hawaii International Conference on System

Sciences, pages 51–61 volume 4, January 1998.

[27] Holger Kirchner, Bendick Mahleko, Mike Kelly, Reto Krummenacher, and Zhou Wang. eu-

reauweb - an architecture for a european waterways networked information system. In Conf.

on Information and Communication Technologies in Tourism, Wien, New York, January 2004.

Springer.

[28] Josef Kolbitsch and Hermann Maurer. The transformation of the web: How emerging commu-

nities shape the information we consume. Journal of Universial Computer Science, 12(2):187–

213, February 2006.

[29] Sue Long, Rob Kooper, Gregory D. Abowd, and Christopher G. Atkeson. Rapid prototyping of

mobile context-aware applications: The cyberguide case study. In MobiCom ’96: Proceedings

of the 2nd annual international conference on Mobile computing and networking, pages 97–

107, New York, NY, USA, November 1996. ACM Press.

[30] Rainer Malaka and Alexander Zipf. Deep map - challenging it research in the framework of

a tourist information system. In Information and Communication Technologies in Tourism,

pages 15–27, January 2000.

[31] Open Street Map. Open street map wiki.

[32] Lorraine McGinty and Barry Smyth. Shared experiences in personalized route planning. In

Haller and Simmons [17], pages 111–115.

http://www.statkart.no/arealis/
http://www.statkart.no/arealis/


96 REFERENCES

[33] NASA. Onearth wms : http://onearth.jpl.nasa.gov/.

[34] Norkart. Tilgjengelighetsportalen kart.

[35] Dan W. Patterson. Introduction to artificial intelligence and expert systems. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1990.

[36] Steve Rabin, editor. AI Game Programming Wisdom 2, volume Two. Charles River Media,

first edition, December 2003.

[37] Eran Rippel, Aharon Bar-Gill, and Nahum Shimkin. Fast graph-search algorithms for gen-

eral aviation flight trajectory generation. online: http://www.ee.technion.ac.il/

people/shimkin/PREPRINTS/Rippel04final.pdf, May 2004.

[38] Seth Rogers and Pat Langley. Personalized driving route recommendations. In Proceedings of

the AAAI Workshop on Recommender Systems, January 1998.

[39] Stuart Russel and Peter Norvig. Artificial Intelligence, A Modern Approach. Prentice-Hall, 2

edition, 2003.

[40] Barbara Schmidt-Belz, Achim Nick, Stefan Poslad, and Alex Zipf. Personalized and location-

based mobile tourism service. online.

[41] The SOSI Secretariat. Sosi. Online: http://www.statkart.no/standard/sosi/

html/welcome.htm.

[42] The SOSI Secretariate. The sosi standard, 1987.

[43] Monika Sester. Application dependent generalization - the case of pedestrian navigation. In

Joint International Symposium on ”GeoSpatial Theory, Processing and Applications”, Ot-

tawa, Canada, July 2002. ISPRS/Commision IV, SDH2002.

[44] Barry Smyth and Padraig Cunningham. The utility problem analysed: A case-based reasoning

perspective. In EWCBR, pages 392–399, November 1996.

[45] European Commision Information Society and Media. ecall factsheet. online, May 2006.

[46] Steven L. Tanimoto. The elements of artificial intelligence: an introduction using LISP. Com-

puter Science Press, Inc., New York, NY, USA, 1987.

http://onearth.jpl.nasa.gov/
http://www.ee.technion.ac.il/people/shimkin/PREPRINTS/Rippel04final.pdf
http://www.ee.technion.ac.il/people/shimkin/PREPRINTS/Rippel04final.pdf
http://www.statkart.no/standard/sosi/html/welcome.htm
http://www.statkart.no/standard/sosi/html/welcome.htm


REFERENCES 97

[47] Telecom Tribune. Ntt docomo to launch navigation service for pedestrians using enhanced gps

technology. Telecom Tribune, 14(10):2 – 2, January 2000.

[48] Panagiotis A. Vretanos. Web featture service implementation specification. Technical report,

Open Geospatial Consortium Inc, May 2005.

[49] Caroly Wei, Brandon Maust, Jennifer Barrick, Elisabeth Cuddihy, and Jan H. Spyridakis.

Wikis for supporting distributed collaborative writing. In Proceedings of the Society for Tech-

nical Communcation 52nd Annual Conference. Society for Technical Communcation, May

2005.

[50] Wikipedia. Wikipedia -the free encyclopedia. online, 2006.

[51] V. Zeimpekis, R. Alvarez, R. Tafazolli, and B. G. Evans. Impact of constellation design on

doppler-rate based mt positioning for satellite-umts. In 20th AIAA International Communica-

tion Satellite Systems Conferenec. AIAA 2002-2010, January 2002.



List of Figures

2.1 A sample of the first Accessibility map. . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 A screenshot of the first version of Okapi . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Standard map showing downtown Oslo. Images courtesy of the Arealis WMS. . . . 9

2.4 Satellite images showing Oslo and surrounding areas. Image courtesy of NASA’s

GlobalMosaic WMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Hybrid map showing downtown Oslo. Images are a combination of NASA’s Glob-

alMosaic and the Arealis WMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Some examples of WMS use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 The header for a partial VBASE export to SOSI, comments have been removed . . 19

2.8 A single object from the VBASE Oslo data. . . . . . . . . . . . . . . . . . . . . . 20

2.9 A graph with two optimal paths between S and T, each marked in red. . . . . . . . 23

2.10 Extracting road segments based on a Minimum Bounding Box . . . . . . . . . . . 25

2.11 The pruning box approach removed the only viable path . . . . . . . . . . . . . . 26

2.12 Dijksta’s Single Source Shortest Path algorithm . . . . . . . . . . . . . . . . . . . 27

2.13 The basic Best First Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 29

2.14 A Best First Search would follow the red path to the end before exploring the only

viable path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.15 Various options for the slidepuzzle . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.16 The A* algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.17 The DoCoMo Naviewn device connected to a mobile phone. . . . . . . . . . . . . 37

3.1 Crossing tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Incident tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 The algorithm for inserting a new track . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Changing the cost of travelling depending on user’s experiences . . . . . . . . . . 53

98



LIST OF FIGURES 99

3.5 The datamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Node A’s neighbourhood includes nodes B, D, and F, but not nodes C or E . . . . . 55

3.7 Two curves and a loose point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.8 The Rangerarchitecture in brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.9 Rangerservices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Screenshots from Test 1 Variant 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Screenshots from Test 1 Variant 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Screenshots from Test 1 Variant 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Sometimes the approximation is over-eager . . . . . . . . . . . . . . . . . . . . . 70

4.5 Screenshots from Test 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Screenshots from Test 3, Variant 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 An idealization of the fourth test . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.8 Screenshots from Test 4 Variant 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.9 Screenshots from Test 4 Variant 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.10 Screenshots from Test 4 Variant 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.11 Test 4 Variant 3 gave some unfortunate results . . . . . . . . . . . . . . . . . . . . 79

4.12 An informal demonstration of the project . . . . . . . . . . . . . . . . . . . . . . 80

4.13 The users experimented with the application . . . . . . . . . . . . . . . . . . . . . 82

A.1 The Ranger provides two new menu items in the Okapi context menu. . . . . . . . 102

A.2 The client side architecture. Some connections are left out for readability. . . . . . 103

A.3 The server side architecture. Many connections are left out for readability. . . . . . 106

A.4 An Entity Relation Diagram for the Rangerpart of the Okapi database. . . . . . . . 112

B.1 The Error Message Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B.2 A typical error message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

B.3 The Track Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.4 A typical track . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B.5 The Track Schema, part one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.6 The Track Schema, part two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



List of Tables

2.1 A few typical NMEA strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 The 16 fields of the GPGGA string . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 The results from the system testing . . . . . . . . . . . . . . . . . . . . . . . . . . 80

100



Appendix A

Implementation Details

A.1 Client Architecture

The Ranger client is charged with a number of tasks. First, it must provide a user interface for

requesting routes from the server. It must be able to display these routes to the user, and it must

provide a way for the user to critique these routes. Finally, it must provide two ways for the user to

draw and submit new usertracks.

The module will appear as an extention to the Okapi code, and is contained in a single namespace.

The Okapi Framework will access the Ranger through a single class called Ranger that provides two

menu items that the framework adds to its own menu as shown in figure A.1. These menus will give

the user access to all the functionality of the project.

The full class diagram for the client side code is seen in figure A.2. Please refer to this figure

for the following description of the individual classes.

Ranger

The Ranger is the entry class for the project’s client side code. It provides a menu-item that serves

as access to deeper menues with functionality that the user needs.

The object will draw source and target markers on the screen if the user has placed these.

When the user chooses to search for a route, it is the Ranger that builds a request and passes

this off to the server. The response is validated using .NET’s prebuilt XML verifiers and the Ranger

creates a new instance of the Track class provided the XML is correct.

The Ranger object is also responsible for maintaining control of all the instances of the Track

101



102 Chapter A. Implementation Details

Figure A.1: The Ranger provides two new menu items in the Okapi context menu.

class that are currently alive in the system and for passing draw-commands to these when needed.

Track

A Track instance is a route from one position to another. It consists of an ordered list of SimplePoint

instances in addition to a number of meta-data attributes like name and score. The score of a track

is an approximate measure of the length and quality of the road, where a low score is better than a

high score.

Each instance uses a reference to the OkapiCore to draw itself on the screen. The reference to

OkapiCore is needed to translate the track’s points which are in geographic coordinates to screen

coordinates.

A Track can be selected by clicking on the track’s image on the screen. If another Track is

selected already, that track will be deselected while the track clicked on will be selected. If the

Track that is clicked is already selected, then it becomes unselected and no track will be selected.

EditableTrack

The EditableTrack inherits from the Track and uses MovablePoint instances rather than SimplePoint

instances. The EditableTrack represents a track the user has drawn either using a GPS or by placing



A.1. Client Architecture 103

Figure A.2: The client side architecture. Some connections are left out for readability.



104 Chapter A. Implementation Details

points on the screen directly. The EditableTrack class is the application’s equivalent of the usertrack

mentioned throughout this thesis.

ErrorTrack

The ErrorTrack is a special subtype of Track. It does not draw itself to the screen and instead of hav-

ing a name or a score, it contains an error message. The ErrorTrack is instantiated when the server

returns an error when the client expected a track. Each ErrorTrack instance is accessible through

the Ranger and one can read the message using the TrackXMLForm through the TrackViewForm.

SimplePoint

The SimplePoint is a point in two dimensional geographic space. It has a latitude and a longitude

and accessors to read these.

MovablePoint

The MovablePoint inherits from the SimplePoint and introduces methods for changing the position

of the point. This allows the user to edit tracks by both placing points on the screen and subsequently

moving them to improve the precision of the track.

TrackDrawer

This class runs parallell with the Ranger class and is also presented to the user as a MenuItem. It

opens alternatives for the user to draw tracks on the screen, either by adding a single point at the

location of the pointer, or by turning on a GPS attached to the device.

GPSTracker

The GPSTracker is a wrapper class that, when activated, polls Okapi’s GPS namespace for a location

once every 20th second. These locations are added to any existing EditableTrack instance through

the TrackDrawer services. This class offers no services beyond starting and stopping the polling.

TrackViewForm

The TrackViewForm is a window that contains information about the tracks currently alive on the

client. If a Track is selected when this form is created, it will contain a single TrackEditControl for



A.2. Server Architecture 105

the selected Track. Otherwise, the form will contain one TrackInfoControl for each track including

ErrorTracks.

TrackXmlForm

The TrackXMLForm is a simple form that displays the XML source of a track. If the track did not

come with an XML source, f.ex. it has been drawn by the user on the client, this must be controlled

for prior to creating this form.

TrackEditControl

The TrackEditControl inherits from the Control class in the .NET framework. It presents the user

with the option of renaming a track, and giving it a score. The scores are presented as fuzzy terms

(’Very Good’, ’Good’, ’Ok’, ’Bad’, and ’Terrible’). These terms are translated to a floating point

score and uploaded to the server when the user chooses to do so.

TrackInfoControl

The TrackInfoControl presents information about a single Track. The information presented is the

name and identification of the Track, along with its relative score and the number of points needed

to draw the track.

A.2 Server Architecture

The server side of the Ranger should have been a Java Servlet, but due to restrictions on the op-

erating system available, it had to be a standalone Java application. This causes some concerns

over efficiency and resource use and in a production version of the project the Ranger would have

appeared as a Servlet on a dedicated server. As it stands, the server side of the Ranger project ex-

poses only-PHP scripts to the World Wide Web, so the application is launched through one such.

The application accesses the same MySQL database that the Okapi Framework uses, although some

additional tables have been inserted (see section A.3). Figure A.3 shows the class diagram for the

server.



106 Chapter A. Implementation Details

Figure A.3: The server side architecture. Many connections are left out for readability.



A.2. Server Architecture 107

Trackster

The Trackster is the entry class for the server side of the Ranger. This object receives arguments

from a PHP-script that intercepts the client’s requests.

It is responsible for parsing and validating the client’s arguments and responding with appro-

priate messages. If some of the arguments are invalid, the Trackster will respond with an error

message. Otherwise, it will start a process to answer the client’s request.

If the client has asked for a route between two points, the Trackster will use the Ranger directly

to find this route. The route will be in terms of an instance of the Solution class which contains

methods to be represented as XML according to the appropriate schema in appendix B.

In the case where the client asked for the closest point of interest, the Trackster will make use

of the DBNearestPOIFinder to find the target location. Once this is found, the Ranger is used in the

same way as before.

The client may also submit a new track. When this happens, an instance of DBGraphMerger is

created and passed the relevant data. When the DBGraphMerger returns, the Trackster outputs the

resulting track to the client.

Finally, the Trackster accepts feedback requests. These requests use the DBAdmin directly to

update the feedback values of the edges of the specified track.

Regardless of the request, as long as the Oslo graph needs to be loaded, the Trackster makes

sure this is done by calling the DBLoader.

Ranger

The Ranger class is the serverside counterpart to the client’s class with the same name. It is solely re-

sponsible for finding an optimal path from a provided start-node to a provided end-node. It searches

through the graph representing the road network by discovering each node’s children and traversing

these.

The Ranger implements the A* algorithm and uses an instance of the MinHeap to store Solution

instances in a priority queue. Once the search has completed, the Ranger returns an instance of the

Solution class.

Feedback

Feedback is an intermediary data-storage class. It is used by the DBGraphMerger to keep temporary

copies of feedback given a particular edge. Each instance of the Feedback class represents a single



108 Chapter A. Implementation Details

row in the database’s table wf feedback. The object provides the necessary methods for recreating

this feedback for new edges.

ITrack

This is an interface that encapsulates the functionality of a track on the server. The ITrack proscribes

only two methods for generating XML from a track. This allows the system to treat error messages

from within the route planning mechanisms as tracks all the way to publishing to the client.

IPath

An object that implements the IPath interface can be considered a track from some start point to

the current last point in the path. The services an object must render in order to fulfill this contract

involves enqueueing nodes and retrieving the nodes in the order of entry. It is also necessary for an

IPath to be able to create a clone of itself with an additional node at the end of the queue.

IHeapRoot

The IHeapRoot is an interface that an object needs to implement if it is to be used by the MinHeap.

In order to implement this interface, an object must maintain a concept of cost and have a method

to access this cost.

MinHeap

The MinHeap is a central class for the graph searching part of the route planning algorithm. It

is created by a Ranger instance and it maintains a collection of IHeapRoots in an array organized

as a minheap. These IHeapRoots are then accessed by the Ranger instance during a search for an

optimal route.

The MinHeap contains methods for inserting new values, removing roots, and peeking at roots

for non-destructive inspection of the heap.

By using an array as basic storage, the MinHeap ensures an as efficiently as possible insertion,

although in the cases where the array has filled up, there will be some overhead in creating a new,

larger array.



A.2. Server Architecture 109

UserTrack

A UserTrack instance is represents the results of a user uploading a new track from the client. This

class implements the ITrack interface, but does not contain any other functionality. It is instantiated

when the DBGraphMerger has successfully inserted a user’s track into the database and is meant to

replace the drawn track on the client.

Solution

The Solution class defines a path that can be used by the Ranger class to search for an optimal path

between two coordinates. The class implements a number of interfaces to achieve this.

It implements ITrack because it needs to be able to be published to the client as XML. The ITrack

interface represents the only way the client and server can communicate geographic information

between eachother.

The class also implements IHeapRoot because it is meant to be stored in a MinHeap instance

during the search. During searching, several Solution instances are created as the Ranger probes the

network for an optimal path.

Finally, the Solution implements the IPath interface. This interface allows the Solution object

to have nodes added to it to modify the track. It also gives the system the oppertunity to clone the

solution when it needs to explore a branching of the road-graph.

RoadSegment

The RoadSegment represents a single, unbroken stretch of road or other traversible ground, like a

footpath. It maintains a cost variable that desribes the cost of traversing this particular stretch of

road.

It also has a β value that depends on the current user. This β value is the relative quality of the

road as determined by the collective input from the user group of the user that created this particular

search. If the road is loaded from the database without a user present, or if the user’s user group has

never given any feedback to this particular road, the β value is set to the default of one.

The RoadSegment has methods and variables for keeping and maintaining a name, but this is

for future expansion, when the roadnames are known.

The RoadSegment extends the JTS Topology Suite class LineSegment and inherits many useful

geoemtric methods from there. Another method related to geometry is the splitting of a RoadSeg-

ment. When the DBGraphMerger inserts a new track, it may be necessary to split a RoadSegment



110 Chapter A. Implementation Details

when a track crosses an already existing road. The RoadSegment offers methods to perform such a

split, given a coordinate to perform the split on.

IHeuristic

The IHeuristic interface proscribes a means to guess the cost of travelling between two nodes or

coordinates. The interface is provided so that it is easy to change one heuristic for another for

testing purposes.

HaversineDistance

The only heuristic implemented in the Ranger is the HaversineDistance. By making use of the

convenience class GeoLength, it calculates the line-of-flight distance between two coordinates or

nodes. The line-of-flight distance is not a particularly accurate heuristic, but it is guaranteed to be

admissable.

GeoLength

The GeoLength class is a very simple convenience class. It calculates the length in meters between

two geographic decimal coordinates using the Haversine formula for a distance between two points

on a sphere. It relies on the radius of the earth at a particular latitude, and is therefore not completely

accurate. However, it is more than accurate enough for measuring distances within a single degree

latitude and longitude, which is what this project is concerned with.

DBAdmin

The DBAdmin is the entry class to the Okapi database. This class handles all connections to the

database and executes any query or update to this database. Each instance of this class represents a

single query or batch job, and maintains any error messages that may have been generated.

DBNearestPOIFinder

By instantiating the DBAdmin, this class searches the database for the closest Point of Interest with

the appropriate attributes to a given position. This class is used by the Trackster when the client

asks for a route to the nearest accessible toilet, nearest accessible parking, etc.



A.3. Server Database 111

DBLoader

The DBLoader fetches all the relevant edges from the database, and applies the feedback that is

relevant for the current user to each edge. It then uses the JTS Topology Suite to turn the collection

of edges into a traversible graph. This class is used by the Trackster prior to any operation that needs

to search or manipulate the road network.

DBGraphMerger

The DBGraphMerger is one of the most involved classes on the server. It is responsible for updating

the road network to include tracks created by users. These tracks may coincide with already existing

roads, or they may cross such roads. The DBGraphMerger must alter both the user’s new track and

the system’s old network to create a graph representation of the road network that allows subsequent

route planning sessions to use the new track in searching for a good route.

DBTrackStore

The DBTrackStore is a simple class that is responsible for storing a track that has been generated

by a Ranger instance. This track get stored in the database together with a few pieces of meta-data,

like the time and date of creation and a track id.

DBEdgeFinder

DBEdgeFinder is another convenience class that searches the database for the edge that has the

closest point to a particular coordinate. It is used prior to route planning in order to find a suitable

starting and ending point. Given that the user may select both start and end at positions not rep-

resented in the network, this class tries to approximate the user’s request by finding a place on the

network that is as close as possible to the user’s request.

A.3 Server Database

The data for the route planning will be stored entirely on a central server. This will ensure that every

client will have access to the latest version of the network at all times. The database will only be

accessed by the Ranger server code.

The Ranger introduces a number of new tables to the original Okapi database. It does not alter

the tables that are already there, but it does reference the old database.



112 Chapter A. Implementation Details

Figure A.4: An Entity Relation Diagram for the Rangerpart of the Okapi database.

The Ranger database additions are designed to keep records of the tracks calculated for users.

Furthermore, the database must maintain any and all feedback users may give to the individual

tracks. Finally, the database keeps the entire road network in store, so that the Ranger may search

for routes.

See figure A.4 for an overview of the additions the Ranger has made to the Okapi database.

Geopoint

The geopoint is the smallest geometric unit in the Ranger road network. It represents a single point

in three dimensional space, and has latitude, longitude, and height, in addition to its primary key. In

the current iteration of the project, only the geopoint’s latitude and longitude are used. The height



A.3. Server Database 113

attribute is kept for future use.

Wf edge

The wf edge is a single, unbroken stretch or road or other traversible ground. It is uniquely identified

by its edge id, but the entity is weakly defined. The table specifies a unique constraint over the

edge id and the point id combined. That is, edge id may be repeated in the table, but it must

have a different point id each time. Each edge/point pair is also associated with an ordering which

describes where on the edge a particular point is placed.

Wf track

This entity describes a single track. This track may have been uploaded by a user, or it was created

by the system in response to a request for a route.

The track id is an autogenerated primary key.

The name of the track is given by a user or generated randomly by the system. This name is not

currently used for anything, but as a suggestion to future functionality, tracks could be published to

the user with name and date if the user asks for a route that someone else has already found.

The creator is the unique identity of the user that either uploaded the track or asked for it to be

created. This identity is found in the original Okapi database.

The date is a simple SQL datestamp for the moment in time that the track was first created.

Wf track edge

This associative entity binds the tracks and edges together. Each track consists of at least one edge,

and there is no upper limit to the number of edges to each track. Each edge may also participate in

any number of tracks.

The only attribute to this entity that is not inherited from either wf track or wf edge is ordering.

This attribute describes in which order the edges are to be placed on the track. Since tracks are

bi-directional, one can traverse the track in both ascending and descending order.

Wf feedback

The feedback entity represents an average of feedback given to a particular edge by a particular user

group. The entity is uniquely identified by the key-pair user profile and edge id. The user profile



114 Chapter A. Implementation Details

is a foreign key from the original Okapi database, while the edge id comes from the local wf edge

entity.

Each entity has a score and a contributors count. The contributors count helps calculating the

change that is to be made the score attribute whenever a user offers some feedback.

An alternative way of representing feedback would be to create a new entry every time a user

offered feedback, and then calculating the score run time. This would offer opportunities for more

detailed analysis of user feedback.

A note on normalization

The Okapi database and the Ranger additions reside on a MySQL 5.0 server. Due to the original

setup of this server, I have found that the job of enforcing referential integrity is placed with the

programmer rather than the database management system where it should be. This has made the

task of designing the database somewhat less formal than I would have liked, and my design reflects

this. The Rangerdatabase additions have not gone through any normalization steps and they contain

some design choices that deviate from good practice.

The most glaring of these short-cuts is the wf edge entity. This entity is defined not by a unique

key present on only one row in the table. Instead, it is implicitly defined by an edge identifier that is

repeated in the wf edge table once for every unique geopoint that belongs to the edge. This way, the

wf edge entity becomes its own associative entity. A better solution would be to split the wf edge

table in two where one table uniquely defined each edge and the other defined the relationship

between the edges and the geopoints.



Appendix B

Ranger messages and XML Schemas

The messaging from server to client in the Ranger module is purely based on XML. Each message

must conform to one of several XML-Schemas. These schemas are available on the Okapi server.

B.1 Error Message

The error message is a simple, yet pervasive message in the Ranger system. It is used in every

situation where the server must tell the client that something has gone wrong.

Refer to figure B.1 for the XML Schema and figure B.2 for an example of an error message.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:complexType name="error_message">
<xs:all>

<xs:element name="code" type="xs:integer" />
<xs:element name="message" type="xs:string" />

</xs:all>
</xs:complexType>

</xs:schema>

Figure B.1: The Error Message Schema

115



116 Chapter B. Ranger messages and XML Schemas

<?xml version="1.0"? encoding="UTF-8">
<wayfinder:error_message xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance"
xsi:schemaLocation="http://platypus.hiof.no/okapi/
server/xsd error_message.xsd"

xmlns:wayfinder="http://platypus.hiof.no/okapi/server/xsd">
<code>

0
</code>
<message>
The operation succeeded.
</message>

</wayfinder:error_message>

Figure B.2: A typical error message

B.2 Track

The Track message is a description of a single track from the database. The message should contain

enough information for the track to be drawn correctly, and for the client to be able to refer to the

track when talking to the server. This means that it needs to contain a unique identifier, and an

ordered list of points. The ordering is done by element pointid and element parent that refers to

the id. If the parent element is empty or not present, the point is considered the first point on the

track. If several points lack parents, the xml is erroneous and the client should display an error

message. The pointid is generated on the spot by the server.

The track is presented with a score, which is the relative score of the track.

Refer to B.3 for the XML Schema. Figure B.4 shows what a typical track might look like.

B.3 Track with POIs

Sometimes it is usefull to provide a list of POIs together with a track. When this is done, a Track/POI

message is sent to the client. This message is a combination of the Track message and the POI

message1.

Refer to figures B.5 and B.6 for the XML Schema and figure ?? for an example of a track with

associated POIs.

1The POI message is defined in the Okapi framework.



B.3. Track with POIs 117

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://platypus.hiof.no/okapi/server/xsd">
<xs:element name="track">

<xs:complexType>
<xs:all>

<xs:element name="trackname" type="xs:string" />
<xs:element name="trackid" type="xs:integer" />
<xs:element name="score" type="xs:decimal" />
<xs:element name="pointlist">

<xs:complexType>
<xs:choice>
<xs:element name="point" maxOccurs="unbounded">

<xs:complexType>
<xs:all>

<xs:element name="pointid" type="xs:integer" />
<xs:element name="latitude" type="xs:decimal" />
<xs:element name="longitude" type="xs:decimal" />
<xs:element name="parent" type="xs:integer" minOccurs="0" />

</xs:all>
</xs:complexType>

</xs:element>
</xs:choice>

</xs:complexType>
</xs:element>

</xs:all>
</xs:complexType>

</xs:element>
</xs:schema>

Figure B.3: The Track Schema



118 Chapter B. Ranger messages and XML Schemas

<?xml version="1.0" encoding="UTF-8"?>

<track
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://platypus.hiof.no/okapi/server/xsd track.xsd">

<trackname>Road to School</trackname>
<trackid>2</trackid>
<score>0.27</score>
<pointlist>

<point>
<pointid>1</pointid>
<latitude>59.12</latitude>
<longitude>11.12</longitude>

</point>
<point>

<pointid>3</pointid>
<latitude>59.13</latitude>
<longitude>11.12</longitude>
<parent>1</parent>

</point>
<point>

<pointid>54</pointid>
<latitude>59.13</latitude>
<longitude>11.13</longitude>
<parent>3</parent>

</point>
</pointlist>

</track>

Figure B.4: A typical track



B.3. Track with POIs 119

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://platypus.hiof.no/okapi/server/xsd">

<xs:element name="track_poi">
<xs:complexType>

<xs:all>
<xs:element name="track">

<xs:complexType>
<xs:all>
<xs:element name="trackname" type="xs:string" />
<xs:element name="trackid" type="xs:integer" />
<xs:element name="score" type="xs:decimal" />
<xs:element name="pointlist">
<xs:complexType>
<xs:choice>

<xs:element name="point" maxOccurs="unbounded">
<xs:complexType>

<xs:all>
<xs:element name="pointid" type="xs:integer" />
<xs:element name="latitude" type="xs:decimal" />
<xs:element name="longitude" type="xs:decimal" />

<xs:element name="parent" type="xs:integer" minOccurs="0" />
</xs:all>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>

</xs:element>
</xs:all>

</xs:complexType>
</xs:element>

Figure B.5: The Track Schema, part one



120 Chapter B. Ranger messages and XML Schemas

<xs:element name="poi_list">
<xs:complexType>
<xs:choice>

<xs:element name="poi" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:all>
<xs:element name="id" type="xs:integer" />
<xs:element name="title" type="xs:string" />
<xs:element name="description" type="xs:string" />
<xs:element name="category_id" type="xs:integer" />
<xs:element name="latitude" type="xs:decimal" />
<xs:element name="longitude" type="xs:decimal" />
<xs:element name="height" type="xs:decimal" />
<xs:element name="owner"/>
<xs:element name="datetime" type="xs:dateTime" />
<xs:element name="expire_date" type="xs:dateTime" />
<xs:element name="icon" type="xs:string" />
<xs:element name="media_list" minOccurs="0">
<xs:complexType>

<xs:choice>
<xs:element name="media_item" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:all>

<xs:element name="poiid" type="xs:integer" />
<xs:element name="link" type="xs:string" />
<xs:element name="small_file_link" type="xs:string" />
<xs:element name="type" type="xs:string" />

</xs:all>
</xs:complexType>

</xs:element>
</xs:choice>

</xs:complexType>
</xs:element>

</xs:all>
</xs:complexType>

</xs:element>
</xs:choice>

</xs:complexType>
</xs:element>

</xs:all>
</xs:complexType>
</xs:element>
</xs:schema>

Figure B.6: The Track Schema, part two


	Abstract
	Acknowledgements
	Introduction
	Background
	Project background
	The Accessibility Project
	Okapi

	Technological foundation
	Mobile devices
	Web Map Services
	Positioning
	Data

	Route Planning
	Classifying Route Planning Problems
	Graph Representation
	Classic Algorithms for Route Planning and Graph Searches
	The Cost Function

	Related work
	Pedestrian Navigation
	Collaborative Data
	Collaboration in Route Planning

	My contribution

	Design of the Ranger
	Scenarios
	Finding your way
	Giving back to society
	Making yourself heard

	Assumptions and Scope
	Modelling the User
	Collaboration in the Ranger
	Combining Tracks
	Sharing Experiences

	Datamodel
	System Architecture
	The Client
	The Server

	Services

	Testing
	System testing
	Calculate Route from A to B
	Calculate Route from A to a Point of Interest
	Calculate Route after network has been reviewed
	Adding edges to the network
	Conclusions from the system testing

	User Meeting
	Test Conclusions

	Findings and Future Work
	Project Results
	Testing
	Open Data

	Future work
	User-drawn Tracks
	Miscellaneous Future Features


	References
	List of figures
	List of tables
	Implementation Details
	Client Architecture
	Server Architecture
	Server Database

	Ranger messages and XML Schemas
	Error Message
	Track
	Track with POIs


