
Device Orientation

Project Report
Location Aware Systems (ITI45206)

Forskning, skriving og publisering (ITI40906)

Sizarta Sarshar
sizarta.sarshar@hiof.no

June 2, 2006

Halden, Norway

2

Abstract

Keywords: Mobile Applications, Device Orientation, Handheld Computers, Virtual Reality

In this project, device orientation and positioning is used to display a 3D virtual model on a

handheld computer from the users point of view. This report describes how a prototype for the

system has been developed and used for proof of concept. It describes the method and technical

devices used.

The user experience of the system was intutitive and worked great, and the prototype did proof

the concept.

i

Preface

This report has been written to meet the needs of the courses Location Aware Systems and Forskning,

skriving og publisering. The project is, however, developed in the first cource. The courses are a

part of the Master Education at Ostfold University College, Halden. I would like to thank Assistant

Professor Glenn Ole Hellekjær and Associate Professor Rune Winther for their help during the

writing process, and Associate Professor Gunnar Misund for lecture and tutoring. The supervisor

for this project has been Associate Professor Rune Winther who also has provided technical support.

Prerequisites

In writing this report I have assumed that the reader know basic computer science and have common

knowledge on handheld computer and virtual reality.

Chapter Breakdown

Chapter 1 (Introduction) provides a brief introduction to the project’s research statement. Chapter

2 (Background) includes motivation and provides neccessary background information. It also il-

lustrates different scenarios where the product might be used. Chapter 3 (Methodology) provides

a brief introduction to the methodology of prototyping and how the method will be used in this

project. The prototype’s essential functionality with success criterias for the system will be ex-

plained. Chapter 4 (Design and Implementation) describes the design of the system. First, the

technical device and hardware used are introduced. Secondly, the overall communication data flow,

followed by the software applications for the server and the mobile device. Chapter 5 (Evaluation)

will evaluate the prototype. The system will be tested for the success criteria described in Chapter

3. Possible solutions to occuring problems are discussed in Chapter 6 (Discussion, Conclusion and

Future Work) with overall discussion of the project followed by a short conclusion and future work.

ii

iii

Similiar Project

There are other ongoing projects with use of handheld computers and device orientation. Glasgow

University, Department of Computing Science, works on similar projects. The device orientation is

measured using gyros and is used in several applications. Check out their Dynamics and Interaction

workshop at:

www.dcs.gla.ac.uk/˜rod/DynamicsWorkshop2005.htm

www.dcs.gla.ac.uk/~rod/DynamicsWorkshop2005.htm

Table of Contents

Abstract i

Preface iii

1 Introduction 1

2 Background 3

2.1 Motivation . 3

2.2 Scenario . 3

2.3 Chapter Summary . 4

3 Methodology 7

3.1 Prototyping . 7

3.2 An Iterative Process . 8

3.3 Required System Functionality . 8

3.4 Success Criteria . 9

3.5 Chapter Summary . 9

4 Design and Implementation 11

4.1 Hardware . 11

4.1.1 Technical Devices . 11

4.1.2 Gyro and Device Orientation . 12

4.1.3 Indoor Positioning System . 14

4.1.4 Overall Device Communication . 14

4.2 Software . 15

4.2.1 Visualizing in Three Dimensions . 15

iv

TABLE OF CONTENTS v

4.2.2 The Virtual Model . 16

4.2.3 Interaction . 17

4.2.4 The Server Application . 17

4.2.5 The Mobile Application . 19

4.2.6 Dataflow . 20

4.3 Chapter Summary . 20

5 Evaluation 21

5.1 Testing for the Success Criterias . 21

5.2 Prototype Limitations . 21

5.3 The Virtual Environment . 23

5.4 Usability . 24

5.5 Chapter Summary . 24

6 Discussion, Conclusion and Future Work 25

6.1 Discussion . 25

6.1.1 The Virtual Model . 25

6.1.2 Mixed Reality . 26

6.1.3 The Positioning System . 26

6.1.4 The Orientation . 26

6.2 Conclusion . 26

6.3 Future Work . 27

6.3.1 Indoor . 27

6.3.2 Outdoor . 28

6.3.3 Device Orientation . 28

References 29

List of Figures 30

List of Tables 31

A Bluetooth Configuration 32

B Server Application Code 34

vi TABLE OF CONTENTS

C Mobile Application Code 48

Chapter 1

Introduction

Handheld devices are a part of everyday life and include more and more functionality. New devices

offer services such as web browsing, email management, and document creation. In addition they

feature multimedia functionality such as music players and image and video capture and editing.

However, these devices often have limited input and output capabilities. Limited screen space means

displays can easily become cluttered. Input is also limited; slow and cumbersome methods such as

small keyboards or inaccurate handwriting recognition are common.

The innovative aspect of this project is to explore a new paradigm for interacting with mobile

computers, based on three dimensional device orientation and positioning. I will use a three axis

gyro attached to a handheld computer and a positioning system, using the computer’s screen as

output and hand and device gestures for input. This will allow me to investigate possibilities for

using mobile devices in a range of new ways.

The purpose of this project is to develop a prototype for viewing 3D virtual models on a hand-

held device, using an attached gyro and positioning system. With a gyro attached to the handheld

device, the view angle can be controlled by the user’s hand gestures. Likewise, the position of the

point of view in the virtual model is moved around using a positioning system attached to the hand-

held device. These features attached to the handheld device will give the user the opportunity to

control the view angle and the position displayed on the device screen by moving around and point-

ing the device in desired direction. I will develop a prototype for evaluating this system. Due to

time limitations, the prototype in this project will be developed for proof of concept mainly, and not

for design or usability testing. This approach will focus on the problems and their possible solutions

with the prototype and its concept.

The following chapters will provide motivation and background information, methodology and

1

2 Chapter 1. Introduction

how the prototype will be developed. The prototype will then be evaluated and discussed.

Chapter 2

Background

This chapter includes motivation and provides neccessary background information. It also illustrates

different scenarios where the product might be used.

2.1 Motivation

The motivation for this project is based on the work of Institute for Energy Technology (IFE), which

is the research institute for energy and nuclear technology in Norway [1]. Their research on the

Visualization Technologies Supporting Design, Planning, Operation and Training area is built upon

virtual and wearable technologies [2]. One area is to develop virtual reality techniques to support

early human factors design input in control room design projects. Another topic is to improve the

projects radiation visualization methods to visualize differebt varying radiation levels in 3D space.

My project is motivated by their new interesting topic; the visualization of risk information in a 3D

environment.

2.2 Scenario

The scenario I envision is walking in a real room, but where a virtual model of the room is displayed

on the handheld computer. Many applications running on stationary computers provide 3D virtual

scenery where the user can move and view different objects using the computer mouse and keyboard

to navigate. First person games are played from the first person’s point of view, and the user uses the

mouse to control view angle and the keyboard to move camera position around the person. While

handheld computers have small or even no keyboard and no mouse, they have the benefit of being

3

4 Chapter 2. Background

handheld. Therefor, connecting a three axis gyro to the device will give the device orientation, i.e.

yaw, tilt and roll (Figure 2.1). Combined with the position, the user can walk in a room with a

handheld computer, while the virtual model of the room will be displayed on the device screen and

the view angle can be controlled by the user’s hand and device gesture. This approach gives the user

valuable information of the present room from a virtual model.

(a) Yaw (b) Tilt (c) Roll

Figure 2.1: Device orientation

For instance, a room full of smoke can be quite difficult to navigate through. With a handheld

computer a virtual representation of the room can be shown for the user. The user can simply point

the device in the desired direction to see the virtual representation of that area. If no obstacles are

in the way the user may easily navigate through the smoke.

Another example is in nuclear areas where radiation is a major hazard, and where different

sensors placed in the area measure radiation. This information is valuable for a worker who works

where radiation is present. The radiation level measured by the sensors can be plotted in a virtual

model of the area, and can help the worker to avoid areas with high radiation. Thus, pointing the

device in a desired direction simply gives the worker an indication of the radiation levels and a

warning to leave if the level is too high.

Both scenarios can be expanded with new features as guiding the fireman through the smoke in

scenario one and guiding the worker in scenario two along the path with least radiation.

2.3 Chapter Summary

In sum, this chapter includes the motivation for the project and describes two different scenarios

where the system might be used. The motivation is based on the work of IFE and their topic; the

2.3. Chapter Summary 5

visualization of risk information in a 3D environment. The scenarios described illustrate differ-

ent usage of the system; in rooms with no or little view and in different areas where additional

information can be provided on a model.

Chapter 3

Methodology

This chapter provides a brief introduction to the methodology of prototyping and how the method

will be used in this project. The prototype’s essential functionality with success criterias for the

system will be explained.

3.1 Prototyping

A prototype is an initial version of a system which is used to demonstrate concepts, try out designs

and, generally, to find out more about the problem and its possible solutions [3]. It is not a final

product, it is a step on the iterative way to a final product. In this project, I will use prototyping as

method and develop one for proof of concept. It is in my interest to clarify whether it is possible

to use a gyro and indoor positioning to achieve a usable prototype based on the project description,

and whether the response time and accuracy for the system will be good enough. These, and other

criterias which must be fulfilled for the system to be useful, are defined in Section 3.3. The design

aspects of the project is not addressed in this first prototype of the system. One of the reasons is

that use of a smaller gyro with another interface can reduce the size and hence change and affect the

design.

Besides hardware connectivity, building this prototype also includes software to connect and use

the required hardware. In addition, the prototype will give me an opportunity to learn more about

the system, to find problems and difficulties, test and evaluate the system, find possible solutions and

get ideas for future work. The prototype makes use of a handheld device, an orientation device and

a positioning system. It is required that the handheld device runs Windows Mobile 5 and support

Bluetooth technology. The orientation device can be a gyro and the positioning system must give

7

8 Chapter 3. Methodology

position in three dimensions and have centimeter accuracy.

3.2 An Iterative Process

Prototyping is a method in iterative processes and there are several varieties of prototypes: paper,

evolutionary and executable prototype. Choosing the proper one depends on the type of risk that

is likely to exist in the system. The paper prototype (throw-away) is used to develop a mock-up of

the system and to do some system experiments. The evolutionary is used when a person simulates

the response of the system based on a user’s input. The automated prototype (operational) involves

the use of a rapid development environment to develop an executable prototype [4]. The prototype

used in this project is an operational one were the coding is done quick and dirty to realize computer

execution without to much time or effort taken.

3.3 Required System Functionality

The system functionality describes the main features and functionality for the system. It will also

set the guideline for how the prototype should be designed and developed. The handheld device

must display a 3D model according to its position and orientation. To do so, the device has to:

- download a 3D model for display, from a server

- establish connection with the gyro and retrieve orientation data

- establish connection with a positioning system and retrieve its current position

- display the model according to the device position and orientation

- allow user to interact with the loaded 3D model by offering services related to the selected

object’s properties

To be able to download models, a server is needed. A server can also be used to communicate

with the handheld computer. The software prototype for the server’s main functionality is to:

- establish connection with the handheld device

- upload a 3D model

3.4. Success Criteria 9

- display the uploaded 3D model from a point of view set by the position and orientation of the

handheld device

- allow user to change point of view to a predefined position and orientation giving an overview

of the model

- allow user to interact with the loaded 3D model by offering services related to the selected

object’s properties

3.4 Success Criteria

The success criteria for the system are set to determine if the achived concept is as required. The

prototype must fulfill these success criterias before further work is worth while. Having mentioned

the importance of these criteria, let us now describe them. I will devide the criterias in five groups:

positioning, orientation, virtual modeling, interaction and usability.

• Positioning: The estimated position must be within 20 cm of the actual position and must be

updated at least once per second.

• Orientation: The orientation accuracy must be within 10 degrees without drift and be up-

dated several times per second.

• Virtual Modeling: The virtual model must be exactly the same on both the mobile device and

the server. The room size must be in actual size and the room must maintain it’s characteristics

in the virtual model.

• Interaction: Success criterias in this case is that change in properties for an object must occur

to the correct object.

• Usability: The user experience of the system has to be good and intuitive. The user must not

experience significant time delays with the system.

3.5 Chapter Summary

This chapter has provided information about the methodology for prototyping and described how it

is used in this project. The system functionality and system criteria for the prototype are also de-

scribed. These system functionality and criteria are used in the Design and Implementation (Chapter

4) and Evaluation (Chapter 5) chapter later on.

Chapter 4

Design and Implementation

The scenario with radiation level in a nuclear facility and the scenario from a room full of smoke

(from Section 2.2) are examples that are difficult for me to implement and develop. Instead, I will

create a virtual version of the robot laboratory room at Ostfold University College [5], in which the

indoor positioning system is installed.

In the following, hardware and software design will be described.

4.1 Hardware

This section describes the hardware equipment used to develop the prototype.

4.1.1 Technical Devices

The handheld computer used in this project is a Qtek9000 (Figure 4.1), combined with a gyro to get

the orientation. Bluetooth1 technology provides wireless communication between the gyro and the

handheld computer. The orientation is however not enough; I will need to know the device position

as well. Since Global Positioning System2 has 2-100 meters accuracy, which is far too high for

this project, it would be almost impossible to get a correct height. I will therefore use an Indoor

Positioning System3 (IPS) developed by Sonitor Technologies [6] which is already installed in the

robot laboratory at Ostfold University College. The IPS has an accuracy of 3-5 centimeters, but

1Short-range radio links in the 2.4GHz ISM
2Satellite based navigation system on a worldwide basis
3The Sonitor indoor positioning system uses ultrasound to locate the source.

11

12 Chapter 4. Design and Implementation

covers only an area of 5x5x5 meters. The benefit of good accuracy is however more important than

the limitation of space.

Figure 4.1: Handheld computer Qtek9000

4.1.2 Gyro and Device Orientation

The three axis gyro used in this project is a 3DM-GX1 developed by MicroStrain [7], and is used to

get the device orientation. It has a serial communication port interface, and is connected to the hand-

held computer using Handyport HPS-120 [8], which is a wireless Bluetooth RS-2324 transceiver

(Figure 4.2). The connections are illustrated in Figure 4.3.

The Bluetooth tranceiver must be configured to communicate with the handheld computer be-

fore usage. The configuration is described in Appendix A.

Figure 4.2: Required equipment for gyro connection to handheld computer

4An asynchronous serial data interchange standard.

4.1. Hardware 13

(a) Gyro with battery and Bluetooth (b) Gyro connected to the handheld computer

Figure 4.3: Physical connections to the handheld computer

The gyro incorporates three accelerometer sensors to measure earths gravity, three magnetome-

ter sensors to measure magnetic fields and three rate gyroscope sensors to measure the rate of rota-

tion about their sensitive axis. It is a self-contained sensor system that measures the three degrees

of its orientation in space with respect to earth5. It defines a coordinate system that is fixed to the

Earth with the Z-axis pointing down through the center of the earth, the X-axis pointing North and

the Y-axis pointing East as illsutrated in Figure 4.4. By fixed means that this coordinate system is

stationary and provides a reference to measure against [9].

Figure 4.4: Earth’s coordinate system

5When we say Earth, we are referring to the coordinate system established by the cardinal axes of our planet earth
itself

14 Chapter 4. Design and Implementation

4.1.3 Indoor Positioning System

The indoor positioning system installed in the robot laboratory of Ostfold University College, uses

ultrasound. The system use an ultrasound transceiver tag (Figure 4.5), and eight sensors in the room

to locate the tag. The tag sends short messages with time stamp three to four times per second. The

sensors are placed strategically to cover the entire room area (Figure 4.6). They detect the message

sent by the tag and use the time from the message was sent until it was received by each sensor to

calculate the tag’s position. The position is then sent to a server computer which forwards it to the

handheld computer. The tag with battery will be attached to the handheld computer.

Figure 4.5: Ultrasound tranceiver tag

Figure 4.6: IPS sensors in the robot laboratory, with the tag in the center

4.1.4 Overall Device Communication

The overall device communication for the system is shown in Figure 4.7. The gyro and the server

communicate with the handheld computer using Bluetooth technology. The server does not have

4.2. Software 15

Bluetooth suppurt, and I will therefor use a Handyport HPS-120 which is a Bluetooth tranceiver.

The Handyport is connected to the serial port of the server. Bluetooth is a common communication

technology on mobile devices, so the handheld device can easily be replaced by newer or better

ones on newer prototypes.

Figure 4.7: Overall device communication for the system

4.2 Software

This section describes how the software is designed and created for both the handheld device and

the server. The applications are written in Microsoft Visual Studio .Net [10] using the C-Sharp

programming language. The generated code for the server application is included in Appendix B

and the code for the mobile device applications is included in Appendix C.

4.2.1 Visualizing in Three Dimensions

The handheld computer Qtek9000 runs Windows Mobile 5 (WM5) operative system. The WM5

SDK6 features Direct 3D Mobile for visualization of three dimensional models. To reduce time and

effort, the virtual model of the room is hard coded into the application in the first prototype.

When the virtual model of the room is rendered, the point of view angle and position must

be set before the model is displayed on the mobile device. The position is by default set to be

in the center of the room and the view angle is by default set to view straight ahead at the wall

on the XZ-plane. When the gyro pitch, tilt and yaw are updated from the gyro, the view angle is

transformed using axis rotation (Figure 4.8a). The first rotation must be a rotation around the Z-axis

followed by rotations around the X- and Y-axis . Changing the order of the axis rotations will result
6Software Development Kit

16 Chapter 4. Design and Implementation

in an inappropriate behavior of the point of view orientation angle. The position of point of view

is transformed by matrix multiplication with the X, Y and Z coordinates given by the positioning

system. Figure 4.8b illustrates a translation to the point P with X, Y and Z equal to 2, 3 and 4. The

translation is done ahead of the axis rotation. The result is that the gyro controls the point of view

angle and that the positioning system moves the point of view in the virtual model.

(a) Axis rotation (b) Translation

Figure 4.8: Point of view translation and rotation

The indoor positioning system has an accuracy of five centimeters, but it is unstable. Sudden

change in coordinates with more than 50 cm, when we are actually standing on the spot, can cause

problems in the visualization. The rendered image on the screen may jump and be difficult to

follow for the user. A simple way to stabilize the positions is to use the last five known positions

in each direction and calculate the mean position. We can also add in a feature to ignore position

changes beyond what is natural (50 cm per second). This is done by the server application before

the calculated position is used and sent forward to the handheld device.

4.2.2 The Virtual Model

A virtual model represents the physical world. The model used in this prototype represents only

a small area of the robot laboratory. A small model is chosen since the positioning system only

covers this area of the room. The model contains a floor area of 4x4 meters and two walls which

make a corner. One of the walls have cabinets for electric wireing. Besides this, the model is low

4.2. Software 17

on details. The colors of the virtual model are almost identical to the real colors of the room. Figure

4.9a shows the area of IPS coverage and Figure 4.9b illustrates the virtual model of the same area.

A minor change has been made to the virtual model though; the floor is devided into squares of

50x50 centimeters. The squares differ in shade of gray so they can be seperated from each other,

like a chess board. This feature makes it easier for the user to follow the model when only the floor

is displayed. The squares are also separated objects. Beeing separated objects makes them available

to the user for interaction and selection.

(a) The robot laboratory (b) The virtual model

Figure 4.9: The robot laboratory with the virtual model of the same area

4.2.3 Interaction

The interaction is implemented so the user on the server can select an object in the virtual room

which will be shown to the client on the handheld device. This interaction with the model is also

available from the clients handheld device. The client can at all time select an object by simply

touching the screen on the handheld device. When an object is selected, it changes its color. If it is

selected by the server, it turns blue and if it is selected by the client, it turns red. The users can only

select one item each at once. An illustration is given in Figure 4.10.

4.2.4 The Server Application

The server application has mainly three functions. The most important one is to retrieve tag position

from the indoor positioning system (IPS) and forward it to the handheld device. Secondly, the server

displays, in the virtual model, what the user is looking at. To do so, the server retrieves gyro data

18 Chapter 4. Design and Implementation

(a) Interaction with the handheld device (b) Interaction from server

Figure 4.10: Interaction

from the clients handheld device. Thirdly, the server can interact with the client. The application

consist of mainly one cycle. The cycle handles positioning and rendering and include the following:

1. Retrieve position from the positioning system

2. Store the position in an array if the uncertainty is beneath 10 percent

3. Calculate the mean position from the array containing the last five coordinates

4. Send the position to the handheld device

5. Perform translation of point of view in the virtual model

6. Perform axis rotation of point of view

7. Apply change of color on selected objects

8. Render the image for display

In addition, the server consists of two event handlers. One event occures when data is retrieved

from the handheld device and includes:

1. Retrieve the data from the handheld device

4.2. Software 19

2. Update pitch, yaw and roll angles if the retrieved data contains gyro data

3. Update selected object ID for the client if retrieved data contains object ID

The other event occures when the user selects an object with a mouse click. It forwards the

selected object ID to the handheld device.

It is expected that the positioning system is operative and is connected to the server, at all time.

The server connection to the mobile device must also be operative during runtime.

The main functions for the server application is to send updated position, retrieve gyro data and

display the gathered information in a virtual model.

4.2.5 The Mobile Application

The application running on the mobile device has mainly four functions. One is to retrieve gyro

data, update local variables and forward the data to the server. The second is to retrieve the tag

coordinates from the server. Third, it has to render and draw the virtual model on the device screen.

And finally to interact with the server with the feature object selections.

The application consist of one main cycle and two event handlers. The main cycle includes the

following:

1. Poll gyro data from the gyro

2. Send gyro data to server

3. Perform translation of point of view in the virtual model

4. Perform axis rotation of point of view

5. Apply change of color on selected objects

6. Render the image for display

The first event retrieves position from the server and updates the point of view coordinates for

the virtual model. The second event handles user interaction. It occures when the user touch the

device screen and select an object in the model. The object ID is then sent to the server.

20 Chapter 4. Design and Implementation

4.2.6 Dataflow

The dataflow for the system is illustrated in Figure 4.11.The server and the mobile device communi-

cate with each other several times per second. The dataflow contains gyro data, position and object

selection. The gyro data is updated constantly in the mobile application, and is forwarded to the

server on the run. The server retrieves position from the indoor positiong system which is filteret

before it is sent to the mobile device. Besides sending and retrieving gyro and position data, both

the server and the mobile application send and retrieve information about which object is selected.

Figure 4.11: Overall dataflow for the system

4.3 Chapter Summary

The hardwares required to develop the prototype is a handheld computer, a gyro and a positioning

system. They need to communicate with each other which is done by using Bluetooth technology.

I have also developed software for both the server and the handheld computer. Next, I will test and

evaluate the system.

Chapter 5

Evaluation

This chapter will evaluate the prototype. The system will be tested for the success criteria described

in Section 3.3.

5.1 Testing for the Success Criterias

The system has been tested by simply using the system in the robot laboratory. It was set up and the

handheld device was moved around and orientated in different directions. The test results for the

success criteria are described in Table 5.1.

Some of the observed problems were a result of the algorithms used in the applications and

some were caused by the technical device. The time delays are examples of a combination of both

poor software algorithm and unstable hardware. Possible solutions to the problems are discussed in

Chapter 6. The prototype limitiations of the hardware and software are described in the following

sections.

5.2 Prototype Limitations

The positioning system has its limitations. Using the fastest tag, it updates the position three to four

times per second with an accuracy within 10 centimeters. The accuracy gets better if the tag is hold

steady and is pointing straight up. However, when it is connected to the handheld computer, it will

not be pointing straight up all the time and it is unlikely that the user holds the device steady over a

longer period. During movement, the accuracy is worse. The positioning system is also vulnerable

for any metallic objects in the area. Metallic items reflect the ultrasound and interfere with the

21

22 Chapter 5. Evaluation

GROUP SUCCESS CRITERIA TEST RESULTS
Positioning The estimated position must be within The position in the virtual environment

20 cm of the actual position and must did not refresh according to our real
be updated at least once per second position, it was delayed with a few seconds

and the accuracy was within 20-100 cm
depending on where in the room we stood

Orientation The orientation accuracy must be within The orientation worked great, but had some
10 degrees without drift and be updated drift problems
several times per second

Virtual Modeling The virtual model must be exactly the The model was simple, but it maintained
same on both the mobile device and the some of the characteristics from the real
server. The room size must be in actual room. The size of the room and the object
size and the room must maintain it’s on one of the walls seemed to be correct
characteristics in the virtual model

Interaction Change in properties for an object must The interaction with the model was
occur to the correct object a good idea and a useful feature,

but the model was too simple to test
it in a realistic setting

Usability The user experience of the system has to Usability problems occurred as result of
be good and intuitive. The user must not poor accuracy in the positioning system.
experience significant time delays with The position was also updated slowly
the system

Table 5.1: Test results for the success criteria

5.3. The Virtual Environment 23

system.

Having mentioned some of the limitations for the positioning system, let us take a look at the

gyro and the device orientation. The gyro has an on-board processor which continuously executes

a calculation cycle. The steps in this cycle include the following [11]:

1. Convert raw sensor outputs into digital form

2. Scale sensor outputs into physical units (including temperature, alignment, and G-sensitivity

compensation). This provides the Instantaneous Vector quantities.

3. Compute the Gyro-Stabilized Vector quantities using the complementary filtering algorithm.

4. If host has issued a command byte, compute appropriate response data and transmit.

Step 4 in this cycle is only executed if the gyro has received a command from the host, this

is done ten times per second by the application running on the handheld device before the virtual

model is rendered. The calculation cycle continuously repeats itself. The time required to complete

a calculation cycle determines the fundamental limit on the maximum data output rate. Tuning this

and other settings can result in faster respons and more stabilized angle values from the gyro.

The gyro can output different types of data. The one used in this project is the set of gyro-

stabilized Euler angles (pitch, roll, and yaw) which describe the orientation of the gyro with respect

to the fixed earth. These angles are calculated according to the ZYX or Aircraft coordinate system.

The quantities are gyro-stabilized and provide an accurate estimate of orientation even if the gyro is

exposed to transient linear accelerations, or magnetic interference. The yaw angle do however drift.

An alternative output from the gyro is the set of Euler angles which do not incorporate any

gyroscopic stabilization. In this mode artifacts will be present if the gyro is exposed to linear

accelerations, or magnetic interference. None of the angles drift using this mode. The stabilization

done by the gyro using the gyro-stabilized Euler data is not working properly since it drift. Instead

the unstabilized angles can be stabilized in software. This will remove the drift problem, but will

complicate the software a little bit. Due to time limitations, the method has not been implemented

in this prototype.

5.3 The Virtual Environment

The virtual model and environment in this prototype is quite simple and were made for demonstra-

tion purposes mainly. It is therefor not good enough for evaluating the model. It is difficult to say

24 Chapter 5. Evaluation

anything about how small items or objects may appear on the device screen and how close we have

to be to select one. Nor can it be said anything about how advanced models the device can render.

Can the device handle a complete model of the room and how detailed can it be? These questions

can be answered by reviewing the device specification and build a more detailed model for testing.

5.4 Usability

The user experience of the prototype was great. Every one who tried the prototype were surprised

of how well it actually worked. Though the design was clumsy and not all success criteria were

fulfilled, the prototype functioned well. You could actually move around in the room and point the

device in desired direction to view a virtual visualization on the device screen. The interaction with

the model did also work, both on the mobile device and on the server. All in all, the prototype proof

the concept and the user enjoyed using it.

5.5 Chapter Summary

This chapter has provided the prototype evalutation. The prototype worked, but it has to be modified

for further usage. Other software algorithms can be considered, and time delays must be avoided if

they are caused in software. The technical devices also have their limitations. Usability problems

occurred as a result of poor accuracy in the positioning system.

Not all success criteria were fulfilled. The orientation had drift problems, the update time for po-

sition was long and the virtual model was too small to be fully evaluated. However, these problems

can be solved in a new and better prototype. In total, the system works and proof the concept.

The proof of concept is based on the user experience. Though there were time delays on position

update, this was accepted. The user will not mind waiting a few seconds for update after movement.

Despite some problems, the user experience of the mobile device was good and the user enjoyed

using the prototype.

Chapter 6

Discussion, Conclusion and Future Work

This chapter will discuss both the project and the prototype. The solution chosen for the prototype

will be discussed with other possible solutions. After the discussion part, I will summarize the work

done before suggesting future work.

6.1 Discussion

This section will discuss the different decisions made in this project and solutions applied to the

prototype.

6.1.1 The Virtual Model

The user experience of the system has to be good and intuitive. It is therefor important to render an

image on the mobile screen that is easy to follow and easy to understand. There must be a correct

representation of the real room in the virtual model, so users can easily recognize where they are

and what they are looking at. Cohesion between the real world and the virtual world is essential.

A virtual model can give additional information to the real model. With the interaction between

the user with the handheld device and the user on the server, it is possible to select objects and to

change their properties. This feature allows the user in the field to ask for support or additional

information on selected objects. The server application will immidiatly know which object the

client has selected and can then upload information and requested data to the client.

The model used in this prototype is very simple and low on details. It only consists of a small

floor area and two walls. Use of a larger and more detailed model of the room and the objects in it,

would give a more realistic setting and a better user experience.

25

26 Chapter 6. Discussion, Conclusion and Future Work

To reduce time and effort, the virtual model of the room was hard coded into the application in

this first prototype. In later versions, it is recommended to download the 3D models and objects to

the handheld device from the server. This way, the mobile device will have the same and the latest

version of the models as the one running on the server. However, including and modifying virtual

models, with Direct 3D Mobile, during runtime has not been tested in this project, but it is likely

that it can be done, since it is possible in Direct 3D.

6.1.2 Mixed Reality

Augmented or mixed reality (AR) allow to mix or overlap computer generated 2D or 3D virtual

objects on images of the real world. Unlike virtual reality that replaces the physical world, AR

enhances the physical reality by integrating images ogf the physical world in to the virtual model

which become in a sense an equal part of our natural environment [12]. This feature requires a

camera to capture the real world. Due to time limits and difficulties with capturing live stream from

the handheld device’s camera, augmented or mixed reality was not an option in this prototype.

6.1.3 The Positioning System

For indoor use, the system requires an indoor positioning system. Sonitor’s system based on ultra-

sound is unstable and is far from accurate. It must either be stabilized by a better algorithme than

the ones used in this prototype, or alternative positioning systems can be used instead, providing a

better accuracy.

6.1.4 The Orientation

The orientation measured by the gyro has drift problems. The problem occures occasionally and

only affect the yaw angle. This happens when retrieving the gyro-stabilized Euler angles from the

gyro. The Euler angles which do not incorporate any gyroscopic stabilization do not drift. It seems

as if the drift is caused by the gyro while stabilizing the angles. By avoiding the gyro-stabilized

Euler angles and instead do the stabilization in software, the drift problem can be removed.

6.2 Conclusion

The purpose of this project was to develop a prototype for viewing 3D virtual models on a handheld

device, using an attached gyro and positioning system to control the point of view in the model. The

6.3. Future Work 27

prototype was developed for proof of concept.

A working prototype has been developed. It makes use of the indoor positioning system installed

in the robot laboratory, at Østfold University College, a gyro and a handheld computer.

Success criteria were defined for the prototype and used in the evaluation of the system. Not

all were fulfilled because the system had usability problems due to poor accuracy from the posi-

tioning system, drift problems and because the virtual model was too small to be fully evaluated.

These problems have possible solutions which can be implemented in a new prototype. Despite the

problems, the prototype does work and proof the concept. The user experience of the prototype

was intuitive and good. The occured problems was accepted. The user will not mind waiting a few

seconds for update after movement.

The prototype has reached its goal to proof the concept.

6.3 Future Work

This prototype can be developed further in different areas. It can be improved for indoor use, but it

can also be used outside. The next two sub-sections will discuss each of these possibilities, followed

by other usages indepent of location.

6.3.1 Indoor

Depending on which area or what type of room we are in, the system can provide additional informa-

tion in the virtual model. For instance, the model can provide temperature or radiation information

in different areas.

The model viewed on the device screen does not have to be a correct representation of the real

world. The model can differ in color, include other objects or even display a different room. This

feature can be used to:

- try different colors on an object before it is painted in reality

- walk through and evaluate a designed room before it is build

- preview how new inventory will look in a room

28 Chapter 6. Discussion, Conclusion and Future Work

6.3.2 Outdoor

The prototype can be modified and developed further for outdoor use. To do so, the indoor posi-

tioning system must be replaced by an outdoor positioning system. As mentioned in Section 4.1.1,

the GPS has typically an accuracy of a few meters. This can, however, be improved with a variety

of different techniqes. One method is the use of DGPS1 which has a reliable acuracy of 1-3 meters

[13].

Let us now assume that the technical device works properly and describe some scenarios for

outdoor use. Imagine walking by either a construction area or a planned build area for, for instance,

the new opera in town. Would it not be nice to simply download a virtual model of the finnished

construction to your handheld computer so you could walk around and look at a visualization of

the finnished building from your own point of view. This system might be handy for landscape

architects and designers as well as for the public.

Another scenario is to use the system for guiding. By simply viewing a building, you could for

instance get information about its history and its current use.

6.3.3 Device Orientation

Another approach of how to use the system, would be to focus on the device orientation. The hand

and device gesture can be used as application input. For instance, tilting the device could scroll a

document or accelerate or break a car in a driving game.

1Differential Global Positioning System

References

[1] Institute for Energy Technology, “Institute for Energy Technology,” http://www.ife.no/index

html-en?set language=en&cl=en, January 2006.

[2] ——, “Visualisation Technologies Supporting Design, Planning, Operation and Training,”

http://www.ife.no/main subjects new/mto/visualisering, September 2005.

[3] I. sommerville, Software Engineering, 6th ed. England: Addison-Wesley, 2001.

[4] P. K. Pierre N. Robillard and P. d’Astous, Software Enginering Process with the UPEDU.

Boston: Addison-Wesley, 2003.

[5] Ostfold University College, “Ostfold University College,” http://www.hiof.no, May 2006.

[6] Sonitor Technologies, “Sonitor Ultrasound IPS,” http://www.sonitor.com, February 2006.

[7] MicroStrain, “3DM-GX1,” http://www.microstrain.com/3dm-gx1.aspx, 2005.

[8] HandyWave, “HandyPort Bluetooth Adapter,” http://www.handywave.com/index3.htm,

February 2006.

[9] MicroStrain Inc, 3DM-G User Manual, 2003.

[10] Microsoft, “Microsoft Visual Studio .Net C-Sharp,” http://msdn.microsoft.com/msdnmag/

issues/0900/csharp/default.aspx, Desember 2005.

[11] MicroStrain Inc, 3DM-GX1 Data Communications Protocol, March 2006.

[12] I. Popyrev, “Shared space,” http://www.mic.atr.co.jp/∼poup/research/index.html, February

2001.

[13] Kystverket, “Radionavigasjon (DGPS),” http://www.kystverket.no/?aid=9030966, 2006.

29

http://www.ife.no/index_html-en?set_language=en&cl=en
http://www.ife.no/index_html-en?set_language=en&cl=en
http://www.ife.no/main_subjects_new/mto/visualisering
http://www.hiof.no
http://www.sonitor.com
http://www.microstrain.com/3dm-gx1.aspx
http://www.handywave.com/index3.htm
http://msdn.microsoft.com/msdnmag/issues/0900/csharp/default.aspx
http://msdn.microsoft.com/msdnmag/issues/0900/csharp/default.aspx
http://www.mic.atr.co.jp/~poup/research/index.html
http://www.kystverket.no/?aid=9030966

List of Figures

2.1 Device orientation . 4

4.1 Handheld computer Qtek9000 . 12

4.2 Required equipment for gyro connection to handheld computer 12

4.3 Physical connections to the handheld computer 13

4.4 Earth’s coordinate system . 13

4.5 Ultrasound tranceiver tag . 14

4.6 IPS sensors in the robot laboratory, with the tag in the center 14

4.7 Overall device communication for the system . 15

4.8 Point of view translation and rotation . 16

4.9 The robot laboratory with the virtual model of the same area 17

4.10 Interaction . 18

4.11 Overall dataflow for the system . 20

30

List of Tables

5.1 Test results for the success criteria . 22

31

Appendix A

Bluetooth Configuration

A HPS-120 device can only connect to one and one base only.

Hyper Terminal Settings

Baudrate: 9600 bps

Data Bit: 8

Parity Bit: None

Stop Bit: 1

Flow Control: None

Emulation: VT100

Configuration

1. Plug HPS-120 into COM port of PC and power it on.

2. Open the Hyper Terminal and set it up.

3. Press the RST button of HPS-120. If you enter the configuration mode successfully, LNK

LED will be flashing every second.

4. Hit the <Enter>key, 5 seconds later.

32

33

5. Change the configuration of HPS-120 with the following commands:

• <N>Set the name of the device

• <M>Set the connection mode to REGISTER and CONNECT mode

• <C>Set the serial port of the device, each device must have a unique serial port number

• <A>Set the remote BD ADDR to the baud address of the handheld computer

• Set the baudrate to 57600 for the server and 38600 for the gyro

• <X>Save and exit the configuration

Appendix B

Server Application Code

1 u s i n g System ;

2 u s i n g System . Data ;

3 u s i n g System . Drawing ;

4 u s i n g System . Text ;

5 u s i n g System . Windows . Forms ;

6 u s i n g M i c r o s o f t . D i r ec tX ;

7 u s i n g M i c r o s o f t . D i r ec tX . Di rec t3D ;

8 u s i n g S o n i t o r ;

9

10 namespace DevoServer2

11 {
12 p u b l i c p a r t i a l c l a s s DevoMobile : Form

13 {
14 p r i v a t e M i c r o s o f t . D i r ec tX . Di rec t3D . Font f o n t ;

15

16 p r i v a t e boo l showmessage = f a l s e ;

17 p r i v a t e s t r i n g t e x t M e s s a g e = ” ” ;

18

19 c o n s t i n t numberOfMeshes = 6 8 ;

20 Mesh [] meshes ;

21

22 Vec to r3 [] meshLoca t i ons ;

23 Vec to r3 [] meshBoundingBoxMinValues ;

24 Vec to r3 [] meshBoundingBoxMaxValues ;

25

26 Mesh a c t i v e M e s h ;

27 Mesh ac t i veMesh2 ;

34

35

28

29 Device d e v i c e ;

30

31 p u b l i c DevoMobile ()

32 {
33 I n i t i a l i z e C o m p o n e n t () ;

34

35 P r e s e n t P a r a m e t e r s p r e s e n t = new P r e s e n t P a r a m e t e r s () ;

36

37 t h i s . Text = ”Devo S e r v e r ” ;

38

39 / / Enable t h e form t o be c l o s e d .

40 / / R e q u i r e d so t h a t Hwnd o f Form changes .

41 t h i s . MinimizeBox = f a l s e ;

42

43 p r e s e n t . Windowed = t r u e ;

44 p r e s e n t . A u t o D e p t h S t e n c i l F o r m a t = DepthFormat . D16 ;

45 p r e s e n t . E n a b l e A u t o D e p t h S t e n c i l = t r u e ;

46 p r e s e n t . SwapEf fec t = SwapEf fec t . D i s c a r d ;

47

48 d e v i c e = new Device (0 , DeviceType . Hardware , t h i s , C r e a t e F l a g s .

S o f t w a r e V e r t e x P r o c e s s i n g , p r e s e n t) ;

49 d e v i c e . D e v i c e R e s e t += new E v e n t H a n d l e r (OnDeviceRese t) ;

50 OnDeviceRese t (n u l l , EventArgs . Empty) ;

51

52 f o n t = new M i c r o s o f t . D i r ec tX . Di rec t3D . Font (dev i ce ,

53 new System . Drawing . Font (” A r i a l ” , 1 0 . 0 f)) ;

54

55 i f (! c o m p o r t S e r v e r . IsOpen)

56 c o m p o r t S e r v e r . Open () ;

57 c o m p o r t S e r v e r . Da taRece ived += ComReadHandler ;

58 }
59

60 p r i v a t e void OnDeviceRese t (o b j e c t s ende r , EventArgs e)

61 {
62 / / Meshes must be r e c r e a t e d whenever t h e d e v i c e

63 / / i s r e s e t , no m a t t e r which poo l t h e y are c r e a t e d i n .

64 meshes = new Mesh [numberOfMeshes] ;

65 meshLoca t i ons = new Vec to r3 [numberOfMeshes] ;

66 meshBoundingBoxMinValues = new Vec to r3 [numberOfMeshes] ;

67 meshBoundingBoxMaxValues = new Vec to r3 [numberOfMeshes] ;

36 Chapter B. Server Application Code

68 a c t i v e M e s h = n u l l ;

69

70 / / Cr ea t e s e v e r a l meshes and a s s o c i a t e d da ta .

71 f o r (i n t i = 0 ; i < numberOfMeshes ; i ++)

72 {
73 G r a p h i c s S t r e a m v e r t e x D a t a ;

74

75 i f (i < 64)

76 {
77 meshes [i] = Mesh . Box (dev ice , 1 f , 1 f , 0 . 0 1 f) ;

78 meshLoca t i ons [i] = new Vec to r3 ((f l o a t) (((i % 8) ∗ 1) +

0 . 5 f) , (f l o a t) (((i / 8) ∗ 1) + 0 . 5 f) , 0 f) ;

79 }
80 e l s e i f (i == 64) / / Draw w a l l s X−a x i s

81 {
82 meshes [i] = Mesh . Box (dev ice , 8 f , 0 . 0 1 f , 8 f) ;

83 meshLoca t i ons [i] = new Vec to r3 (0 f + 4 , 0 f , 0 f + 4) ;

84 }
85 e l s e i f (i == 65) / / Draw w a l l s Y−a x i s

86 {
87 meshes [i] = Mesh . Box (dev ice , 0 . 0 1 f , 8 f , 8 f) ;

88 meshLoca t i ons [i] = new Vec to r3 (0 f , 0 f + 4 , 0 f + 4) ;

89 }
90 e l s e i f (i == 66) / / Draw d e t a i l s on w a l l Y−a x i s

91 {
92 meshes [i] = Mesh . Box (dev ice , 0 . 4 f , 8 f , 0 . 4 f) ;

93 meshLoca t i ons [i] = new Vec to r3 (0 . 2 f , 0 f + 4 , 0 f + 2) ;

94 }
95 e l s e i f (i == 67) / / Draw d e t a i l s on w a l l Y−a x i s

96 {
97 meshes [i] = Mesh . Sphere (dev i ce , 0 . 1 f , 360 , 36) ;

98 meshLoca t i ons [i] = new Vec to r3 (4 f , 4 f , 2 f + 2) ;

99 }
100

101 / / Compute bounding box f o r a mesh .

102 V e r t e x B u f f e r D e s c r i p t i o n d e s c r i p t i o n = meshes [i] . V e r t e x B u f f e r .

D e s c r i p t i o n ;

103 v e r t e x D a t a = meshes [i] . V e r t e x B u f f e r . Lock (0 , 0 , LockFlags .

ReadOnly) ;

37

104 Geometry . ComputeBoundingBox (v e r t e x D a t a , meshes [i] .

NumberVer t ices , d e s c r i p t i o n . Ver texFormat , o u t

meshBoundingBoxMinValues [i] , o u t meshBoundingBoxMaxValues [i])

;

105 meshes [i] . V e r t e x B u f f e r . Unlock () ;

106 }
107

108 d e v i c e . Trans fo rm . P r o j e c t i o n = Ma t r i x . Pe r spec t iveFovRH ((f l o a t) Math

. PI / 4 . 0 F , (f l o a t) t h i s . C l i e n t S i z e . Width / (f l o a t) t h i s . C l i e n t S i z e

. Height , 1 . 0 f , 100 f) ;

109

110 d e v i c e . R e n d e r S t a t e . Ambient = Colo r . White ;

111 }
112

113 p r o t e c t e d o v e r r i d e void OnPain tBackground (P a i n t E v e n t A r g s e)

114 {
115 / / Do n o t h i n g .

116 }
117

118 p r o t e c t e d o v e r r i d e void OnPain t (P a i n t E v e n t A r g s e)

119 {
120 M a t e r i a l m a t e r i a l = new M a t e r i a l () ;

121

122 / / Begin t h e s c e n e and c l e a r t h e back b u f f e r t o b l a c k .

123 d e v i c e . BeginScene () ;

124 d e v i c e . C l e a r (C l e a r F l a g s . T a r g e t | C l e a r F l a g s . ZBuffer , Co lo r . Black ,

1 . 0 f , 0) ;

125

126 / / Draw each mesh t o t h e s c r e e n

127 / / The a c t i v e mesh i s drawn i n red .

128 Colo r c o l o r 1 , c o l o r 2 , c o l o r 3 ;

129 c o l o r 2 = Colo r . FromArgb (2 0 0 , 200 , 200) ;

130 c o l o r 1 = Colo r . FromArgb (2 2 0 , 220 , 220) ;

131 f o r (i n t i = 0 ; i < numberOfMeshes ; i ++)

132 {
133 i f (i % 8 == 0)

134 {
135 c o l o r 3 = c o l o r 1 ;

136 c o l o r 1 = c o l o r 2 ;

137 c o l o r 2 = c o l o r 3 ;

138 }

38 Chapter B. Server Application Code

139 i f (a c t i v e M e s h == meshes [i])

140 m a t e r i a l . Ambient = Colo r . Red ;

141 e l s e i f (ac t i veMesh2 == meshes [i])

142 m a t e r i a l . Ambient = Colo r . Blue ;

143 e l s e
144 {
145 i f (i == 64)

146 m a t e r i a l . Ambient = Colo r . White ;

147 e l s e i f (i == 65)

148 m a t e r i a l . Ambient = Colo r . Snow ;

149 e l s e i f (i == 66)

150 m a t e r i a l . Ambient = Colo r . S i l v e r ;

151 e l s e i f (i == 67)

152 m a t e r i a l . Ambient = Colo r . Yellow ;

153 e l s e
154 {
155 i f (i % 2 > 0)

156 m a t e r i a l . Ambient = c o l o r 1 ;

157 e l s e
158 m a t e r i a l . Ambient = c o l o r 2 ;

159 }
160 }
161

162 d e v i c e . Trans fo rm . World = Ma t r i x . T r a n s l a t i o n (meshLoca t i ons [i])

;

163 d e v i c e . M a t e r i a l = m a t e r i a l ;

164 meshes [i] . DrawSubset (0) ;

165 }
166

167 / / ∗∗∗
168 d e v i c e . Trans fo rm . P r o j e c t i o n = Ma t r i x . Pe r spec t iveFovRH ((f l o a t) Math

. PI / 4 . 0 F , (f l o a t) t h i s . C l i e n t S i z e . Width / (f l o a t) t h i s . C l i e n t S i z e

. Height , 1 . 0 f , 100 f) ;

169

170 / / Time t o p o l l t h e g e t queue

171 DcupApi . Q u e u e S t a t u s qs = DcupApi . CheckTheGetQueue () ;

172 / / i f s t a t u s i s nonzero ,

173 / / we have an incoming message w a i t i n g f o r us

174 i f (qs . s t a t u s != 0)

175 {
176 / / Conver t t h e win32 SYSTEMTIME s t r u c t i n t o a . n e t

39

177 / / DateTime c l a s s

178 System . DateTime t ime = new System . DateTime (qs . t ime . wYear , qs .

t ime . wMonth , qs . t ime . wDay , qs . t ime . wHour , qs . t ime . wMinute , qs

. t ime . wSecond , qs . t ime . w M i l l i s e c o n d s) ;

179

180 ProcessDcupEven t (qs . evn t , qs . msgid , t ime) ;

181 }
182

183 System . T h r e a d i n g . Thread . S l e e p (1 0 0) ;

184

185 Ma t r i x matView = new Ma t r i x () ;

186 i f (mnuFollow . Checked)

187 {
188 / / V e c t o r 3 vFromPt = new V e c t o r 3 (4 f , 4 f , 2 f) ;

189 / / V e c t o r 3 v L o o k a t P t = new V e c t o r 3 (4 f , 0 , 2 f) ;

190 Vec to r3 vFromPt = new Vec to r3 (posX ∗2 , posY ∗2 , posZ ∗2) ;

191 Vec to r3 vLooka tP t = new Vec to r3 (0 , posY ∗ 2 , posZ ∗ 2) ;

192 Vec to r3 vUpVec = new Vec to r3 (0 . 0 f , 0 . 0 f , 1 . 0 f) ;

193

194 matView = M at r i x . LookAtRH (vFromPt , vLooka tP t , vUpVec) ;

195

196 M at r i x r o t a t e X = Ma t r i x . R o t a t i o n A x i s (vUpVec , g y r o R o l l) ;

197 M at r i x r o t a t e Y = Ma t r i x . R o t a t i o n A x i s (new Vec to r3 (1 , 0 , 0) ,

g y r o P i t c h) ;

198 M at r i x r o t a t e Z = Ma t r i x . R o t a t i o n A x i s (new Vec to r3 (0 , 1 , 0) ,

gyroYaw−(f l o a t) Math . PI) ;

199

200 matView . M u l t i p l y (r o t a t e Z) ;

201 matView . M u l t i p l y (r o t a t e X) ;

202 matView . M u l t i p l y (r o t a t e Y) ;

203 }
204 e l s e i f (mnuFloor . Checked)

205 {
206 Vec to r3 vFromPt = new Vec to r3 (4 f , 4 f , 11 f) ;

207 Vec to r3 vLooka tP t = new Vec to r3 (4 f , 4 f , 0 f) ;

208 Vec to r3 vUpVec = new Vec to r3 (−0.4 f , 0 . 0 f , 0 . 5 f) ;

209 matView = M at r i x . LookAtRH (vFromPt , vLooka tP t , vUpVec) ;

210 }
211 e l s e i f (mnuOverview . Checked)

212 {
213 Vec to r3 vFromPt = new Vec to r3 (14 f , 14 f , 5 f) ;

40 Chapter B. Server Application Code

214 Vec to r3 vLooka tP t = new Vec to r3 (2 f , 2 f , 2 f) ;

215 Vec to r3 vUpVec = new Vec to r3 (0 . 0 f , 0 . 0 f , 1 . 0 f) ;

216 matView = M at r i x . LookAtRH (vFromPt , vLookatP t , vUpVec) ;

217 }
218 d e v i c e . S e t T r a n s f o r m (TransformType . View , matView) ;

219

220 / / D i s p l a y gyro da ta

221 i f (mnuGyro . Checked)

222 {
223 f o n t . DrawText (n u l l , ” P i t c h :\ t ” + (i n t) (g y r o P i t c h ∗ 360 / (2 ∗

Math . PI)) + ”\ r \ n R o l l :\ t ” + (i n t) (g y r o R o l l ∗ 360 / (2 ∗ Math

. PI)) + ”\ r \nYaw :\ t ” + (i n t) (gyroYaw ∗ 360 / (2 ∗ Math . PI)) ,

new R e c t a n g l e (1 0 , t h i s . He igh t − 90 , t h i s . Width , t h i s . H e ig h t) ,

DrawTextFormat . NoClip | DrawTextFormat . ExpandTabs |
DrawTextFormat . WordBreak , Co lo r . Red) ;

224 }
225 / / D i s p l a y p o s i t i o n

226 i f (mnuPos . Checked)

227 {
228 f o n t . DrawText (n u l l , ”X:\ t ” + posX + ”\ t ” + p o s X U n c e r t a i n t y +

”\ r \nY :\ t ” + posY + ”\ t ” + p o s Y U n c e r t a i n t y + ”\ r \nZ :\ t ” +

posZ + ”\ t ” + p o s Z U n c e r t a i n t y , new R e c t a n g l e (t h i s . Width −
200 , t h i s . H e i gh t − 90 , t h i s . Width , t h i s . H e ig h t) ,

DrawTextFormat . NoClip | DrawTextFormat . ExpandTabs |
DrawTextFormat . WordBreak , Co lo r . Red) ;

229 }
230 / / D i s p l a y Message

231 i f (showmessage)

232 {
233 f o n t . DrawText (n u l l , t ex tMessage , new R e c t a n g l e (1 0 , 30 , t h i s .

Width , t h i s . H e i gh t) , DrawTextFormat . NoClip | DrawTextFormat .

ExpandTabs | DrawTextFormat . WordBreak , Co lo r . Red) ;

234 }
235

236 / / F i n i s h t h e s c e n e and p r e s e n t i t on t h e s c r e e n .

237 d e v i c e . EndScene () ;

238 d e v i c e . P r e s e n t () ;

239

240 / / Render aga in

241 t h i s . I n v a l i d a t e () ;

242 }

41

243

244 System . IO . P o r t s . S e r i a l P o r t c o m p o r t S e r v e r = new System . IO . P o r t s .

S e r i a l P o r t (”COM1” , 57600 , System . IO . P o r t s . P a r i t y . None , 8 , System . IO .

P o r t s . S t o p B i t s . One) ;

245

246 f l o a t gyroYaw , g y r o P i t c h , g y r o R o l l ;

247

248 p r i v a t e void ComReadHandler (o b j e c t s ende r , System . IO . P o r t s .

S e r i a l D a t a R e c e i v e d E v e n t A r g s e)

249 {
250 t r y

251 {
252 s t r i n g r e a d l i n e = c o m p o r t S e r v e r . ReadLine () ;

253 s t r i n g [] s = r e a d l i n e . S p l i t (’ | ’) ;

254

255 g y r o P i t c h = f l o a t . P a r s e (s [0] . Rep lace (’ . ’ , ’ , ’)) ;

256 g y r o R o l l = f l o a t . P a r s e (s [1] . Rep lace (’ . ’ , ’ , ’)) ;

257 gyroYaw = f l o a t . P a r s e (s [2] . Rep lace (’ . ’ , ’ , ’)) ;

258 a c t i v e M e s h = meshes [i n t . P a r s e (s [3])] ;

259 }
260 c a t c h { }
261 t h i s . I n v a l i d a t e () ;

262 A p p l i c a t i o n . E x i t T h r e a d () ;

263 }
264

265 p r i v a t e void showMessage (s t r i n g message)

266 {
267 t e x t M e s s a g e = message ;

268 showmessage = t r u e ;

269

270 }
271

272 p r i v a t e void DevoMobi le FormClos ing (o b j e c t s ende r ,

FormClos ingEven tArgs e)

273 {
274 c o m p o r t S e r v e r . C lose () ;

275 A p p l i c a t i o n . E x i t () ;

276 }
277

278 p r i v a t e void DevoMobile MouseDown (o b j e c t s ende r , MouseEventArgs e)

279 {

42 Chapter B. Server Application Code

280 / / The t e c h n i q u e used here i s t o c r e a t e a ray t h r o u g h t h e e n t i r e

281 / / l o g i c a l 3d space and t h e n per form a bounding box−ray

282 / / i n t e r s e c t i o n .

283 f o r (i n t i = 0 ; i < numberOfMeshes ; i ++)

284 {
285 Vec to r3 n e a r V e c t o r = new Vec to r3 (e . X, e . Y, 0) ;

286 Vec to r3 f a r V e c t o r = new Vec to r3 (e . X, e . Y, 1) ;

287

288 / / Cr ea t e ray .

289 n e a r V e c t o r . U n p r o j e c t (d e v i c e . Viewport , d e v i c e . Trans fo rm .

P r o j e c t i o n , d e v i c e . Trans fo rm . View , M a t r i x . T r a n s l a t i o n (

meshLoca t i ons [i])) ;

290

291 f a r V e c t o r . U n p r o j e c t (d e v i c e . Viewport , d e v i c e . Trans fo rm .

P r o j e c t i o n , d e v i c e . Trans fo rm . View , M a t r i x . T r a n s l a t i o n (

meshLoca t i ons [i])) ;

292

293 f a r V e c t o r . S u b t r a c t (n e a r V e c t o r) ;

294

295 / / Per form ray−box i n t e r s e c t i o n t e s t .

296 i f (Geometry . BoxBoundProbe (meshBoundingBoxMinValues [i] ,

meshBoundingBoxMaxValues [i] , n e a r V e c t o r , f a r V e c t o r))

297 {
298 / / Per form o p e r a t i o n on d e t e c t i o n o f c l i c k on mesh o b j e c t

299 / / I n t h i s case we d e s i g n a t e t h e mesh as t h e a c t i v e

300 / / mesh and i n v a l i d a t e t h e window so t h a t i t i s redrawn .

301 / / a c t i v e M e s h I n d e x = i ;

302 ac t i veMesh2 = meshes [i] ;

303

304 / / Send a c t i v e mesh t o d e v i c e

305 c o m p o r t S e r v e r . W r i t e L i n e (” a ” + i + ”\ r \n ”) ;

306

307 t h i s . I n v a l i d a t e () ;

308 break ;

309 }
310 }
311 }
312

313 p r i v a t e void mnuFol low Cl ick (o b j e c t s ende r , EventArgs e)

314 {
315 mnuFollow . Checked = t r u e ;

43

316 mnuFloor . Checked = f a l s e ;

317 mnuOverview . Checked = f a l s e ;

318 }
319

320 p r i v a t e void m n u F l o o r C l i c k (o b j e c t s ende r , EventArgs e)

321 {
322 mnuFloor . Checked = t r u e ;

323 mnuOverview . Checked = f a l s e ;

324 mnuFollow . Checked = f a l s e ;

325 }
326

327 p r i v a t e void mnuOverview Click (o b j e c t s ende r , EventArgs e)

328 {
329 mnuOverview . Checked = t r u e ;

330 mnuFollow . Checked = f a l s e ;

331 mnuFloor . Checked = f a l s e ;

332 }
333

334 p r i v a t e void e x i t T o o l S t r i p M e n u I t e m C l i c k (o b j e c t s ende r , EventArgs e)

335 {
336 c o m p o r t S e r v e r . C lose () ;

337 A p p l i c a t i o n . E x i t () ;

338 }
339

340 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ POSITIONING WITH IPS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

341

342 f l o a t posX , posY , posZ ;

343 f l o a t p o s X U n c e r t a i n t y , p o s Y U n c e r t a i n t y , p o s Z U n c e r t a i n t y ;

344

345 f l o a t [] p o s f l o a t X = { 0 , 0 , 0 , 0 , 0 } ;

346 f l o a t [] p o s f l o a t Y = { 0 , 0 , 0 , 0 , 0 } ;

347 f l o a t [] p o s f l o a t Z = { 0 , 0 , 0 , 0 , 0 } ;

348

349 /∗
350 ∗ FUNCTION ProcessDcupEven t

351 ∗
352 ∗ ACCESS p r i v a t e

353 ∗
354 ∗ PURPOSE D i s p a t c h method f o r d i f f e r e n t dcup e v e n t s .

355 ∗
356 ∗ PARAM i n t e v n t Even t

44 Chapter B. Server Application Code

357 ∗ i n t msgid Message i d

358 ∗ DateTime t i m e

359 ∗
360 ∗ FUNCTION CALL −
361 ∗
362 ∗ RETURN −
363 ∗ /

364 p r i v a t e void ProcessDcupEven t (i n t evnt , i n t msgid ,

365 System . DateTime t ime)

366 {
367 i n t i p = 0 ;

368 / / Force d e t e c t i o n o f m i c r o p o s i t i o n when c l u s t e r i s d e t e c t e t

369 i f (e v n t == DcupApi . DBAS CLUSTER DETECTION)

370 e v n t = DcupApi . DBAS MICROPOSITION ;

371

372 sw i t ch (e v n t)

373 {
374 / / Use t h e r i g h t r e t r i e v a l f u n c t i o n t o r e t r i e v e

375 / / t h e da ta . I f a message i s n ’ t r e t r i e v e d ,

376 / / i t w i l l s t a y on t o p o f t h e g e t queue and b l o c k

377 / / o t h e r incoming messages u n t i l i t i s removed by

378 / / t h e garbage c o l l e c t o r , by d e f a u l t xx s e c o n d s .

379 / / t h e r e f o r e , make s u r e t o c a l l t h e a p p r o p r i a t e

380 / / f e t c h f u n c t i o n or use DropPacket i f you aren ’ t

381 / / i n t e r e s t e d i n t h e p a c k e t

382 case DcupApi . DBAS POLL :

383 / / a p o l l r e p l y from a d e t e c t o r

384 DcupApi . D b a s P o l l p o l l D a t a = DcupApi . F e t c h D b a s P o l l (msgid ,

o u t i p) ;

385 break ;

386 case DcupApi . DBAS MICROPOSITION :

387 / / A t a g has been d e t e c t e d on a s p e c i f i e d

388 / / d e t e c t o r , and a 3D p o s i t i o n has been found

389 / / as w e l l

390 / / For a 3D p o s i t i o n i n g sys tem , t h i s i s

391 / / t h e major e v e n t t o r e a c t on

392 DcupApi . D b a s M i c r o P o s i t i o n mposData = DcupApi .

F e t c h D b a s M i c r o P o s i t i o n (msgid , o u t i p) ;

393

394 / / Oppdater p o s i t i o n

395 p o s X U n c e r t a i n t y = mposData . t a g P o s U n c e r t a i n t y X ;

45

396 p o s Y U n c e r t a i n t y = mposData . t a g P o s U n c e r t a i n t y Y ;

397 p o s Z U n c e r t a i n t y = mposData . t a g P o s U n c e r t a i n t y Z ;

398 i f ((p o s X U n c e r t a i n t y != 1000 && mposData . tagPosX > 0) | |
(p o s X U n c e r t a i n t y < 0 . 1 && Math . Abs (posX − mposData .

tagPosX) > 20 && mposData . tagPosX > 0))

399 {
400 p o s f l o a t A d d (’X’ , mposData . tagPosX) ;

401 posX = posGetMean (’X’) ;

402 }
403 i f ((p o s Y U n c e r t a i n t y != 1000 && mposData . tagPosY > 0) | |

(p o s Y U n c e r t a i n t y < 0 . 1 && Math . Abs (posY − mposData .

tagPosY) > 20 && mposData . tagPosY > 0))

404 {
405 p o s f l o a t A d d (’Y’ , mposData . tagPosY) ;

406 posY = posGetMean (’Y’) ;

407 }
408 i f ((p o s Z U n c e r t a i n t y != 1000 && mposData . t agPosZ > 0) | |

(p o s Z U n c e r t a i n t y < 0 . 1 && Math . Abs (posZ − mposData .

t agPosZ) > 20 && mposData . t agPosZ > 0))

409 {
410 p o s f l o a t A d d (’Z ’ , mposData . t agPosZ) ;

411 posZ = posGetMean (’Z ’) ;

412 }
413

414 / / Send p o s i t i o n

415 c o m p o r t S e r v e r . W r i t e L i n e (” p | ” + posX + ” | ” + posY + ” | ” +

posZ + ”\ r \n ”) ;

416

417 break ;

418

419 d e f a u l t :

420 / / We ’ re n o t i n t e r e s t e d i n t h i s packe t ,

421 / / drop i t on t h e f l o o r

422 t r y { DcupApi . DropPacke t (msgid) ; }
423 c a t c h { }
424 break ;

425 }
426 }
427

428 p r i v a t e void m n u P o l l I P S C l i c k (o b j e c t s ende r , EventArgs e)

429 {

46 Chapter B. Server Application Code

430 showMessage (” IPS P o l l e d ”) ;

431 }
432

433 p r i v a t e void p o s f l o a t A d d (char akse , f l o a t v a l u e)

434 {
435 sw i t ch (akse)

436 {
437 case ’X’ :

438 p o s f l o a t X [4] = p o s f l o a t X [3] ;

439 p o s f l o a t X [3] = p o s f l o a t X [2] ;

440 p o s f l o a t X [2] = p o s f l o a t X [1] ;

441 p o s f l o a t X [1] = p o s f l o a t X [0] ;

442 p o s f l o a t X [0] = v a l u e ;

443 break ;

444 case ’Y’ :

445 p o s f l o a t Y [4] = p o s f l o a t Y [3] ;

446 p o s f l o a t Y [3] = p o s f l o a t Y [2] ;

447 p o s f l o a t Y [2] = p o s f l o a t Y [1] ;

448 p o s f l o a t Y [1] = p o s f l o a t Y [0] ;

449 p o s f l o a t Y [0] = v a l u e ;

450 break ;

451 case ’Z ’ :

452 p o s f l o a t Z [4] = p o s f l o a t Z [3] ;

453 p o s f l o a t Z [3] = p o s f l o a t Z [2] ;

454 p o s f l o a t Z [2] = p o s f l o a t Z [1] ;

455 p o s f l o a t Z [1] = p o s f l o a t Z [0] ;

456 p o s f l o a t Z [0] = v a l u e ;

457 break ;

458 }
459 }
460

461 p r i v a t e f l o a t posGetMean (char akse)

462 {
463 sw i t ch (akse)

464 {
465 case ’X’ :

466 re turn ((p o s f l o a t X [0] + p o s f l o a t X [1] + p o s f l o a t X [2] +

p o s f l o a t X [3] + p o s f l o a t X [4]) / 5) ;

467 case ’Y’ :

468 re turn ((p o s f l o a t Y [0] + p o s f l o a t Y [1] + p o s f l o a t Y [2] +

p o s f l o a t Y [3] + p o s f l o a t Y [4]) / 5) ;

47

469 case ’Z ’ :

470 re turn ((p o s f l o a t Z [0] + p o s f l o a t Z [1] + p o s f l o a t Z [2] +

p o s f l o a t Z [3] + p o s f l o a t Z [4]) / 5) ;

471 }
472 re turn 0 ;

473 }
474 }
475 }

Appendix C

Mobile Application Code

1 u s i n g System ;

2 u s i n g System . Drawing ;

3 u s i n g System . Windows . Forms ;

4 u s i n g M i c r o s o f t . WindowsMobile . D i r ec tX ;

5 u s i n g M i c r o s o f t . WindowsMobile . D i r ec tX . Di rec t3D ;

6

7 namespace DevoMobile

8 {
9 c l a s s Devo : Form

10 {
11 p r i v a t e M i c r o s o f t . WindowsMobile . D i r ec tX . Di rec t3D . Font f o n t ;

12

13 c o n s t i n t numberOfMeshes = 6 8 ;

14 Mesh [] meshes ;

15

16 f l o a t posX , posY , posZ ;

17 f l o a t p o s X U n c e r t a i n t y , p o s Y U n c e r t a i n t y , p o s Z U n c e r t a i n t y ;

18

19 Vec to r3 [] meshLoca t i ons ;

20 Vec to r3 [] meshBoundingBoxMinValues ;

21 Vec to r3 [] meshBoundingBoxMaxValues ;

22

23 Mesh a c t i v e M e s h ;

24 Mesh ac t i veMesh2 ;

25 i n t a c t i v e M e s h I n d e x ;

26

27 Device d e v i c e ;

48

49

28

29 p u b l i c Devo ()

30 {
31 P r e s e n t P a r a m e t e r s p r e s e n t = new P r e s e n t P a r a m e t e r s () ;

32

33 t h i s . Text = ”Devo Mobile ” ;

34

35 / / Enable t h e form t o be c l o s e d .

36 / / R e q u i r e d so t h a t Hwnd o f Form changes .

37 t h i s . MinimizeBox = f a l s e ;

38

39 p r e s e n t . Windowed = t r u e ;

40 p r e s e n t . A u t o D e p t h S t e n c i l F o r m a t = DepthFormat . D16 ;

41 p r e s e n t . E n a b l e A u t o D e p t h S t e n c i l = t r u e ;

42 p r e s e n t . SwapEf fec t = SwapEf fec t . D i s c a r d ;

43

44 d e v i c e = new Device (0 , DeviceType . D e f a u l t , t h i s , C r e a t e F l a g s . None

, p r e s e n t) ;

45

46 d e v i c e . D e v i c e R e s e t += new E v e n t H a n d l e r (OnDeviceRese t) ;

47 OnDeviceRese t (n u l l , EventArgs . Empty) ;

48

49 f o n t = new M i c r o s o f t . WindowsMobile . D i r ec tX . Di rec t3D . Font (dev i ce ,

new System . Drawing . Font (” A r i a l ” , 1 0 . 0 f , F o n t S t y l e . R e g u l a r)) ;

50

51 i f (! c o m p o r t S e r v e r . IsOpen)

52 c o m p o r t S e r v e r . Open () ;

53 c o m p o r t S e r v e r . Da taRece ived += ComReadHandler ;

54 }
55

56 p r i v a t e void OnDeviceRese t (o b j e c t s ende r , EventArgs e)

57 {
58 / / Meshes must be r e c r e a t e d whenever t h e d e v i c e

59 / / i s r e s e t , no m a t t e r which poo l t h e y are c r e a t e d i n .

60 meshes = new Mesh [numberOfMeshes] ;

61 meshLoca t i ons = new Vec to r3 [numberOfMeshes] ;

62 meshBoundingBoxMinValues = new Vec to r3 [numberOfMeshes] ;

63 meshBoundingBoxMaxValues = new Vec to r3 [numberOfMeshes] ;

64 a c t i v e M e s h = n u l l ;

65

66 / / Cr ea t e s e v e r a l meshes and a s s o c i a t e d da ta .

50 Chapter C. Mobile Application Code

67 f o r (i n t i = 0 ; i < numberOfMeshes ; i ++)

68 {
69 G r a p h i c s S t r e a m v e r t e x D a t a ;

70

71 i f (i < 64)

72 {
73 meshes [i] = Mesh . Box (dev ice , 1 f , 1 f , 0 . 0 1 f) ;

74 meshLoca t i ons [i] = new Vec to r3 ((f l o a t) (((i % 8) ∗ 1) +

0 . 5 f) , (f l o a t) (((i / 8) ∗ 1) +0 .5 f) , 0 f) ;

75 }
76 e l s e i f (i == 64) / / Draw w a l l s X−a x i s

77 {
78 meshes [i] = Mesh . Box (dev ice , 8 f , 0 . 0 1 f , 8 f) ;

79 meshLoca t i ons [i] = new Vec to r3 (0 f +4 , 0 f , 0 f +4) ;

80 }
81 e l s e i f (i == 65) / / Draw w a l l s Y−a x i s

82 {
83 meshes [i] = Mesh . Box (dev ice , 0 . 0 1 f , 8 f , 8 f) ;

84 meshLoca t i ons [i] = new Vec to r3 (0 f , 0 f +4 , 0 f +4) ;

85 }
86 e l s e i f (i == 66) / / Draw d e t a i l s on w a l l Y−a x i s

87 {
88 meshes [i] = Mesh . Box (dev ice , 0 . 4 f , 8 f , 0 . 4 f) ;

89 meshLoca t i ons [i] = new Vec to r3 (0 . 2 f , 0 f + 4 , 0 f + 2) ;

90 }
91 e l s e i f (i == 67) / / Draw d e t a i l s on w a l l Y−a x i s

92 {
93 meshes [i] = Mesh . Sphere (dev i ce , 0 . 1 f , 360 , 36) ;

94 meshLoca t i ons [i] = new Vec to r3 (4 f , 4 f , 2 f + 2) ;

95 }
96

97 / / Compute bounding box f o r a mesh .

98 V e r t e x B u f f e r D e s c r i p t i o n d e s c r i p t i o n = meshes [i] . V e r t e x B u f f e r .

D e s c r i p t i o n ;

99 v e r t e x D a t a = meshes [i] . V e r t e x B u f f e r . Lock (0 , 0 , LockFlags .

ReadOnly) ;

100 Geometry . ComputeBoundingBox (v e r t e x D a t a , meshes [i] .

NumberVer t ices , d e s c r i p t i o n . Ver texFormat , o u t

meshBoundingBoxMinValues [i] , o u t meshBoundingBoxMaxValues [i])

;

101 meshes [i] . V e r t e x B u f f e r . Unlock () ;

51

102 }
103

104 d e v i c e . Trans fo rm . P r o j e c t i o n = Ma t r i x . Pe r spec t iveFovRH ((f l o a t) Math

. PI / 4 . 0 F , (f l o a t) t h i s . C l i e n t S i z e . Width / (f l o a t) t h i s . C l i e n t S i z e

. Height , 1 . 0 f , 100 f) ;

105

106 d e v i c e . R e n d e r S t a t e . Ambient = Colo r . White ;

107 }
108

109 p r o t e c t e d o v e r r i d e void OnPain tBackground (P a i n t E v e n t A r g s e)

110 {
111 / / Do n o t h i n g .

112 }
113

114 p r o t e c t e d o v e r r i d e void OnPain t (P a i n t E v e n t A r g s e)

115 {
116 M a t e r i a l m a t e r i a l = new M a t e r i a l () ;

117

118 / / Begin t h e s c e n e and c l e a r t h e back b u f f e r t o b l a c k .

119 d e v i c e . BeginScene () ;

120 d e v i c e . C l e a r (C l e a r F l a g s . T a r g e t | C l e a r F l a g s . ZBuffer , Co lo r . Black ,

1 . 0 f , 0) ;

121

122 / / Draw each mesh t o t h e s c r e e n

123 / / The a c t i v e mesh i s drawn i n red .

124 Colo r c o l o r 1 , c o l o r 2 , c o l o r 3 ;

125 c o l o r 2 = Colo r . FromArgb (2 0 0 , 200 , 200) ;

126 c o l o r 1 = Colo r . FromArgb (2 2 0 , 220 , 220) ;

127 f o r (i n t i = 0 ; i < numberOfMeshes ; i ++)

128 {
129 i f (i % 8 == 0)

130 {
131 c o l o r 3 = c o l o r 1 ;

132 c o l o r 1 = c o l o r 2 ;

133 c o l o r 2 = c o l o r 3 ;

134 }
135 i f (a c t i v e M e s h == meshes [i])

136 m a t e r i a l . Ambient = Colo r . Red ;

137 e l s e i f (ac t i veMesh2 == meshes [i])

138 m a t e r i a l . Ambient = Colo r . Blue ;

139 e l s e

52 Chapter C. Mobile Application Code

140 {
141 i f (i == 64)

142 m a t e r i a l . Ambient = Colo r . White ;

143 e l s e i f (i == 65)

144 m a t e r i a l . Ambient = Colo r . Snow ;

145 e l s e i f (i == 66)

146 m a t e r i a l . Ambient = Colo r . S i l v e r ;

147 e l s e i f (i == 67)

148 m a t e r i a l . Ambient = Colo r . Yellow ;

149 e l s e
150 {
151 i f (i % 2 > 0)

152 m a t e r i a l . Ambient = c o l o r 1 ;

153 e l s e
154 m a t e r i a l . Ambient = c o l o r 2 ;

155 }
156 }
157

158 d e v i c e . Trans fo rm . World = Ma t r i x . T r a n s l a t i o n (meshLoca t i ons [i])

;

159 d e v i c e . M a t e r i a l = m a t e r i a l ;

160 meshes [i] . DrawSubset (0) ;

161 }
162

163 / / ∗∗∗
164 d e v i c e . Trans fo rm . P r o j e c t i o n = Ma t r i x . Pe r spec t iveFovRH ((f l o a t) Math

. PI / 4 . 0 F , (f l o a t) t h i s . C l i e n t S i z e . Width / (f l o a t) t h i s . C l i e n t S i z e

. Height , 1 . 0 f , 100 f) ;

165

166 / / S e t t h e v iew m a t r i x .

167 GetGyroAxis () ;

168 System . T h r e a d i n g . Thread . S l e e p (1 0) ;

169

170 Ma t r i x matView ;

171 Vec to r3 vFromPt = new Vec to r3 (posX ∗ 2 , posY ∗ 2 , posZ ∗ 2) ;

172 Vec to r3 vLooka tP t = new Vec to r3 (0 , posY ∗ 2 , posZ ∗ 2) ;

173 / / V e c t o r 3 vFromPt = new V e c t o r 3 (4 f , 4 f , 2 f) ;

174 / / V e c t o r 3 v L o o k a t P t = new V e c t o r 3 (0 , 4 f , 2 f) ;

175

176 Vec to r3 vUpVec = new Vec to r3 (0 . 0 f , 0 . 0 f , 1 . 0 f) ;

177 matView = M at r i x . LookAtRH (vFromPt , vLookatP t , vUpVec) ;

53

178

179 Ma t r i x r o t a t e X = M at r i x . R o t a t i o n A x i s (vUpVec , g y r o R o l l) ;

180 Ma t r i x r o t a t e Y = M at r i x . R o t a t i o n A x i s (new Vec to r3 (1 , 0 , 0) ,

g y r o P i t c h) ;

181 Ma t r i x r o t a t e Z = M at r i x . R o t a t i o n A x i s (new Vec to r3 (0 , 1 , 0) ,

gyroYaw−(f l o a t) Math . PI) ;

182 matView . M u l t i p l y (r o t a t e Z) ;

183 matView . M u l t i p l y (r o t a t e X) ;

184 matView . M u l t i p l y (r o t a t e Y) ;

185

186 d e v i c e . S e t T r a n s f o r m (TransformType . View , matView) ;

187

188 f o n t . DrawText (n u l l , ”X:\ t ” + posX / / + ”\ t ” + p o s X U n c e r t a i n t y + ”\
r\nY :\ t ” + posY / / + ”\ t ” + p o s Y U n c e r t a i n t y + ”\ r\nZ :\ t ” + posZ , / /

+ ”\ t ” + p o s Z U n c e r t a i n t y , new R e c t a n g l e (1 0 , t h i s . He ig h t − 90 ,

t h i s . Width , t h i s . He ig h t) , DrawTextFormat . NoClip | DrawTextFormat .

ExpandTabs | DrawTextFormat . WordBreak , Color . Red) ;

189

190 f o n t . DrawText (n u l l , ” P i t c h :\ t ” + (i n t) (g y r o P i t c h ∗ 360 / (2 ∗
Math . PI)) + ”\ r \ n R o l l :\ t ” + (i n t) (g y r o R o l l ∗ 360 / (2 ∗ Math . PI))

+ ”\ r \nYaw :\ t ” + (i n t) (gyroYaw ∗ 360 / (2 ∗ Math . PI)) , new

R e c t a n g l e (t h i s . Width −150 , t h i s . He igh t − 90 , t h i s . Width , t h i s .

He ig h t) , DrawTextFormat . NoClip | DrawTextFormat . ExpandTabs |
DrawTextFormat . WordBreak , Co lo r . Red) ;

191

192 / / F i n i s h t h e s c e n e and p r e s e n t i t on t h e s c r e e n .

193 d e v i c e . EndScene () ;

194 d e v i c e . P r e s e n t () ;

195

196 / / Render aga in

197 t h i s . I n v a l i d a t e () ;

198 }
199

200 / / T h i s method d e m o n s t r a t e s p i c k i n g .

201 p r o t e c t e d o v e r r i d e void OnMouseDown (MouseEventArgs e)

202 {
203 / / The t e c h n i q u e used here i s t o c r e a t e a ray t h r o u g h t h e e n t i r e

204 / / l o g i c a l 3d space and t h e n per form a bounding box−ray

205 / / i n t e r s e c t i o n .

206 f o r (i n t i = 0 ; i < numberOfMeshes ; i ++)

207 {

54 Chapter C. Mobile Application Code

208 Vec to r3 n e a r V e c t o r = new Vec to r3 (e . X, e . Y, 0) ;

209 Vec to r3 f a r V e c t o r = new Vec to r3 (e . X, e . Y, 1) ;

210

211 / / Cr ea t e ray .

212 n e a r V e c t o r . U n p r o j e c t (d e v i c e . Viewport , d e v i c e . Trans fo rm .

P r o j e c t i o n , d e v i c e . Trans fo rm . View , M a t r i x . T r a n s l a t i o n (

meshLoca t i ons [i])) ;

213

214 f a r V e c t o r . U n p r o j e c t (d e v i c e . Viewport , d e v i c e . Trans fo rm .

P r o j e c t i o n , d e v i c e . Trans fo rm . View , M a t r i x . T r a n s l a t i o n (

meshLoca t i ons [i])) ;

215

216 f a r V e c t o r . S u b t r a c t (n e a r V e c t o r) ;

217

218 / / Per form ray−box i n t e r s e c t i o n t e s t .

219

220 i f (Geometry . BoxBoundProbe (meshBoundingBoxMinValues [i] ,

meshBoundingBoxMaxValues [i] , n e a r V e c t o r , f a r V e c t o r))

221 {
222 / / Per form o p e r a t i o n on d e t e c t i o n o f c l i c k on mesh o b j e c t

223 / / I n t h i s case we d e s i g n a t e t h e mesh as t h e a c t i v e

224 / / mesh and i n v a l i d a t e t h e window so t h a t i t i s redrawn .

225 a c t i v e M e s h I n d e x = i ;

226 a c t i v e M e s h = meshes [i] ;

227 t h i s . I n v a l i d a t e () ;

228 break ;

229 }
230 }
231 }
232

233 s t a t i c vo id Main ()

234 {
235 A p p l i c a t i o n . Run (new Devo ()) ;

236 }
237

238 p r i v a t e void I n i t i a l i z e C o m p o n e n t ()

239 {
240 t h i s . SuspendLayout () ;

241 / / Devo

242 t h i s . AutoScaleMode = System . Windows . Forms . AutoScaleMode . I n h e r i t ;

243 t h i s . C l i e n t S i z e = new System . Drawing . S i z e (2 4 0 , 320) ;

55

244 t h i s . Cont ro lBox = f a l s e ;

245 t h i s . KeyPreview = t r u e ;

246 t h i s . L o c a t i o n = new System . Drawing . P o i n t (0 , 0) ;

247 t h i s . MinimizeBox = f a l s e ;

248 t h i s . Name = ”Devo” ;

249 t h i s . TopMost = t r u e ;

250 t h i s . WindowState = System . Windows . Forms . FormWindowState . Maximized

;

251 t h i s . C l o s i n g += new System . ComponentModel . C a n c e l E v e n t H a n d l e r (t h i s

. Devo Clos ing) ;

252 t h i s . KeyDown += new System . Windows . Forms . KeyEventHandler (t h i s .

Devo KeyDown) ;

253 t h i s . ResumeLayout (f a l s e) ;

254 }
255

256 p r i v a t e void Devo Clos ing (o b j e c t s ende r , System . ComponentModel .

Cance lEven tArgs e)

257 {
258 d e v i c e . D i spose () ;

259 comportGyro . C lose () ;

260 A p p l i c a t i o n . E x i t () ;

261 }
262

263 System . IO . P o r t s . S e r i a l P o r t comportGyro = new System . IO . P o r t s .

S e r i a l P o r t (”COM8” , 38600 , System . IO . P o r t s . P a r i t y . None , 8 , System . IO .

P o r t s . S t o p B i t s . One) ;

264

265 f l o a t gyroYaw , g y r o P i t c h , g y r o R o l l ;

266 f l o a t oldYaw , o l d P i t c h , o l d R o l l ;

267

268 void GetGyroAxis ()

269 {
270 i f (! comportGyro . IsOpen)

271 comportGyro . Open () ;

272 b y t e [] bs = new b y t e [1 1] ;

273 i n t bsCount = 0 ;

274 i n t c = 1 4 ;

275 t r y

276 {
277 comportGyro . Wr i t e (((char) c) . T o S t r i n g ()) ;

278 f o r (i n t i = 0 ; i < 1 1 ; i ++)

56 Chapter C. Mobile Application Code

279 {
280 i n t i n p u t = comportGyro . ReadByte () ;

281 bs [i] = (b y t e) i n p u t ;

282 bsCount ++;

283 }
284 comportGyro . R e a d E x i s t i n g () ;

285 }
286 c a t c h { }
287

288 i f ((i n t) bs [0] == c && bsCount > 8)

289 {
290 g y r o R o l l = (f l o a t) ((((i n t) bs [1] << 8) + (i n t) bs [2]) ∗ 2 ∗

Math . PI / 65536) ;

291 g y r o P i t c h = (f l o a t) ((Math . PI ∗ 2) − ((((i n t) bs [3] << 8) + (

i n t) bs [4]) ∗ 2 ∗ Math . PI / 65536)) ;

292 gyroYaw = (f l o a t) (((((i n t) bs [5] << 8) + (i n t) bs [6]) ∗ 2 ∗
Math . PI / 65536)) ;

293 }
294

295 / / Send gyro da ta t o s e r v e r

296 i f (! c o m p o r t S e r v e r . IsOpen)

297 c o m p o r t S e r v e r . Open () ;

298 t r y { c o m p o r t S e r v e r . W r i t e L i n e (g y r o P i t c h + ” | ” + g y r o R o l l + ” | ” +

gyroYaw + ” | ” + a c t i v e M e s h I n d e x) ; }
299 c a t c h { }
300 }
301

302 /∗ ∗∗∗∗∗∗∗∗ POSITION ∗∗∗∗∗∗∗∗∗ ∗ /

303

304 System . IO . P o r t s . S e r i a l P o r t c o m p o r t S e r v e r = new System . IO . P o r t s .

S e r i a l P o r t (”COM0” , 57600 , System . IO . P o r t s . P a r i t y . None , 8 , System . IO .

P o r t s . S t o p B i t s . One) ;

305

306 p r i v a t e void ComReadHandler (o b j e c t s ende r , System . IO . P o r t s .

S e r i a l D a t a R e c e i v e d E v e n t A r g s e)

307 {
308 s t r i n g r e a d l i n e = ” ” ;

309 t r y

310 {
311 r e a d l i n e = c o m p o r t S e r v e r . R e a d E x i s t i n g () ;

312

57

313 i f (r e a d l i n e [0] . E qu a l s (’ a ’) && r e a d l i n e . Length >= 2)

314 {
315 ac t i veMesh2 = meshes [i n t . P a r s e (r e a d l i n e . S u b s t r i n g (1))] ;

316 }
317

318 i f (r e a d l i n e [0] . E qu a l s (’ p ’) && r e a d l i n e . Length >= 2)

319 {
320 s t r i n g [] s = r e a d l i n e . S p l i t (’ | ’) ;

321 posX = f l o a t . P a r s e (s [1] . Rep lace (’ , ’ , ’ . ’)) ;

322 posY = f l o a t . P a r s e (s [2] . Rep lace (’ , ’ , ’ . ’)) ;

323 posZ = f l o a t . P a r s e (s [3] . Rep lace (’ , ’ , ’ . ’)) ;

324 }
325 }
326 c a t c h { }
327 }
328

329 p r i v a t e void Devo KeyDown (o b j e c t s ende r , KeyEventArgs e)

330 {
331 i f ((e . KeyCode == System . Windows . Forms . Keys . E n t e r))

332 {
333 d e v i c e . D i spose () ;

334 comportGyro . C lose () ;

335 A p p l i c a t i o n . E x i t () ;

336 }
337 }
338

339 f l o a t [] yawFloa t = { 0 , 0 , 0 , 0 , 0 } ;

340 f l o a t [] p i t c h F l o a t = { 0 , 0 , 0 , 0 , 0 } ;

341 f l o a t [] r o l l F l o a t = { 0 , 0 , 0 , 0 , 0 } ;

342

343 p r i v a t e void gyroAdd (char akse , f l o a t v a l u e)

344 {
345 sw i t ch (akse)

346 {
347 case ’Y’ :

348 yawFloa t [4] = yawFloa t [3] ;

349 yawFloa t [3] = yawFloa t [2] ;

350 yawFloa t [2] = yawFloa t [1] ;

351 yawFloa t [1] = yawFloa t [0] ;

352 yawFloa t [0] = v a l u e ;

353 break ;

58 Chapter C. Mobile Application Code

354 case ’P ’ :

355 p i t c h F l o a t [4] = p i t c h F l o a t [3] ;

356 p i t c h F l o a t [3] = p i t c h F l o a t [2] ;

357 p i t c h F l o a t [2] = p i t c h F l o a t [1] ;

358 p i t c h F l o a t [1] = p i t c h F l o a t [0] ;

359 p i t c h F l o a t [0] = v a l u e ;

360 break ;

361 case ’R ’ :

362 r o l l F l o a t [4] = r o l l F l o a t [3] ;

363 r o l l F l o a t [3] = r o l l F l o a t [2] ;

364 r o l l F l o a t [2] = r o l l F l o a t [1] ;

365 r o l l F l o a t [1] = r o l l F l o a t [0] ;

366 r o l l F l o a t [0] = v a l u e ;

367 break ;

368 }
369 }
370

371 p r i v a t e f l o a t gyroGetMean (char akse)

372 {
373 sw i t ch (akse)

374 {
375 case ’Y’ :

376 re turn ((yawFloa t [0] + yawFloa t [1] + yawFloa t [2] +

yawFloa t [3] + yawFloa t [4]) / 5) ;

377 case ’P ’ :

378 re turn ((p i t c h F l o a t [0] + p i t c h F l o a t [1] + p i t c h F l o a t [2] +

p i t c h F l o a t [3] + p i t c h F l o a t [4]) / 5) ;

379 case ’R ’ :

380 re turn ((r o l l F l o a t [0] + r o l l F l o a t [1] + r o l l F l o a t [2] +

r o l l F l o a t [3] + r o l l F l o a t [4]) / 5) ;

381 }
382 re turn 0 ;

383 }
384 }
385 }

	Abstract
	Preface
	Introduction
	Background
	Motivation
	Scenario
	Chapter Summary

	Methodology
	Prototyping
	An Iterative Process
	Required System Functionality
	Success Criteria
	Chapter Summary

	Design and Implementation
	Hardware
	Technical Devices
	Gyro and Device Orientation
	Indoor Positioning System
	Overall Device Communication

	Software
	Visualizing in Three Dimensions
	The Virtual Model
	Interaction
	The Server Application
	The Mobile Application
	Dataflow

	Chapter Summary

	Evaluation
	Testing for the Success Criterias
	Prototype Limitations
	The Virtual Environment
	Usability
	Chapter Summary

	Discussion, Conclusion and Future Work
	Discussion
	The Virtual Model
	Mixed Reality
	The Positioning System
	The Orientation

	Conclusion
	Future Work
	Indoor
	Outdoor
	Device Orientation

	References
	List of Figures
	List of Tables
	Bluetooth Configuration
	Server Application Code
	Mobile Application Code

