
JoggerLogger
Bringing GPS and jogging together

Stig-Erland Hansen
Department of Computing Sciences

Østfold University College
Halden, Norway,

stig.e.hansen@hiof.no

June 2, 2006



Abstract

JoggerLogger is a project where the goal is to enhance the experience of
jogging by using GPS and standard web technology. This has lead to a design
consisting of three parts: a mobile client, a repository and a web client. The
mobile client, which consists of a mobile phone and a GPS receiver, can be
used by joggers to record routes and results. These data can be sent over
the Internet from the mobile client to the repository in order to share them
with others. The information in the repository can be managed and viewed
using the web client.

This design has been realized in a proof-of-concept implementation to
show that such a system is feasible to develop. The mobile client is imple-
mented using J2ME, and the repository and the web client is implemented
using J2EE.

Keywords jogging, GPS, Java, J2EE, J2ME, mobile phones, Hibernate,
Spring



Contents

Abstract i

1 Introduction 1

2 Background 3
2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 FRWD . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Trac Trac . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Sportsim . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Programming methodology . . . . . . . . . . . . . . . . . . . . 4
2.3 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Mobile phones . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.3 WMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.4 Google maps . . . . . . . . . . . . . . . . . . . . . . . 6

3 Design 8
3.1 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Create a route . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.2 Find a route and run it . . . . . . . . . . . . . . . . . . 9
3.1.3 Virtual race . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Mobile client . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.1 Create a new route . . . . . . . . . . . . . . . . . . . . 11
3.3.2 Run a route . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.3 Run a route against a virtual opponent . . . . . . . . . 12
3.3.4 Communication with the repository . . . . . . . . . . . 12

3.4 Web client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.1 Account management . . . . . . . . . . . . . . . . . . . 13
3.4.2 Find routes . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.3 Replay runs . . . . . . . . . . . . . . . . . . . . . . . . 14

i



3.5 Additional features . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.1 Training plans . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.2 Automatic route creation . . . . . . . . . . . . . . . . . 14
3.5.3 Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.4 Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Implementation 17
4.1 Mobile client . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Technological considerations . . . . . . . . . . . . . . . 18
4.1.2 User interaction . . . . . . . . . . . . . . . . . . . . . . 19
4.1.3 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.4 Improvements . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1 Technological considerations . . . . . . . . . . . . . . . 31
4.2.2 User interaction . . . . . . . . . . . . . . . . . . . . . . 32
4.2.3 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.4 Improvements . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Web client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.1 User interaction . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Testing 42
5.1 Test objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Test group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Test procedure and tasks . . . . . . . . . . . . . . . . . . . . . 43

5.3.1 Create a route . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.2 Run a route . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.3 Race against an opponent . . . . . . . . . . . . . . . . 45

5.4 Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusion 48

List of figures 52

List of tables 53

ii



Chapter 1

Introduction

Jogging is a simple exercise form for people of all ages in all countries. No
equipment is needed since it is as simple as moving from one place to another
by using one’s legs. This simplicity can result in jogging being monotonous
and boring. Still, there are countermeasures that can be applied to prevent
this, and in the writer’s opinion, there are especially two countermeasures
which are important.

First, having some form of competition can make the jogging experience
better by motivating the jogger to make an extra effort. One of the most
common competition methods is to jog against someone else, and this method
can be highly effective in motivating joggers. However, in order for it to be
effective, the joggers should have similar fitness levels. If there are great
disparities in the fitness levels, it is likely that either the joggers end up
running by themselves or one of them jogging at slower pace than he or
she is capable of. Another problem with this competition method is that
the jogger must find someone to compete against which is not possible for
everybody.

If the jogger does not have somebody to jog against, he or she can use
another common competition method of jogging against oneself by timing
each run. This method is effective for comparing results after finishing a
run, but the end time is hard to use during a race to find out how the
current performance compares with previous runs. In conclusion, the two
competition methods discussed in this paragraph and the previous, which
also probably are the two most common competition methods, have problems
that can make them hard or impossible to use.

Second, varying the routes that are jogged can make it more exciting than
jogging the same old routes. In addition, varying routes may be necessary
because of uncontrollable circumstances that makes one or more routes in-
accessible. For example, it is not a pleasant experience to run in the woods

1



if it rains heavily. In this kind of weather, it is probably better to run in
a different terrain. However, the problem is to have good routes to choose
between.

Both of these two countermeasures have their set of problems as described
above, but all of them can be solved by creating a worldwide, publicly avail-
able online repository of jogging routes and results. In this way, joggers can
share their routes and results with others, and get access to a wide range of
routes to run and results to compete against. This paper will present this
system in detail and how it can be implemented using Global Positioning
System (GPS) receivers, mobile phones and standard web technology. The
working title of this system is JoggerLogger.

This paper is divided into 5 chapters. Chapter 1 is this chapter which
gives an introduction to jogging and problems with it. Chapter 2 gives an
overview of related work, the programming methodology and the different
technologies used in this project. Chapter 3 details the design of the system,
while chapter 4 describes how the different parts of the design were actually
implemented as a proof of concept. Chapter 5 explains how the testing of
the implementation was performed and which discoveries that were made.
The paper ends with chapter 6, the conclusion.

2



Chapter 2

Background

In this chapter, the necessary background information for this project will
be given by first introducing similar and related work, second by outlining
the programming methodology used, and third by giving a short description
of all the different technologies that were utilized.

2.1 Related work

A lot of work has already been done in the area of GPS and jogging which has
resulted in commercial products. Three of these products will be presented
below. Interestingly, they have sightly different focuses and concentrate on
different aspects of jogging.

2.1.1 FRWD

FRWD[1] is a GPS recorder that records the following variables of a run:
route, location, speed, distance, heart rate, altitude, temperature and air
pressure. The information can be viewed either on a mobile phone or on a
computer by installing software delivered by FRWD Technologies Ltd. The
software for the mobile phone enables the user to view the performance infor-
mation from FRWD during a run. For example, it is possible for the user to
view his or her current heart rate and speed. The software for the computer,
on the other hand, makes it possible to replay and analyze the performance
of one or several ended runs. In addition, the user can share his or her results
with others by sending an email.

To summarize, this product supplies a tool for joggers to evaluate their
own performance during and after a run has ended. However, the notation of
sharing routes through a central repository is not the focus of this product.

3



2.1.2 Trac Trac

Trac trac[2] is a system for logging the movement of participants of activities
like team building or a sports event. This is done by equipping each partic-
ipant with a light-weight combined GPS and GPRS receiver that sends its
position to a server. The position of each participant can be viewed either
in real time or after the activity has been completed through a Java applet
in a web browser.

This system is targeted towards big sports arrangements and corpora-
tions that do team building, and it is not for personal use. It has already
been used in big events like the Berlin marathon and Nordic Orienteering
Championships.

2.1.3 Sportsim

Sportsim[3] is a little different than the other systems described above since
it does not deliver any performance information during a run to either the
jogger or other people that are interested. In fact, the system is not concerned
with how the actual logging of the movement is done, and the user is free to
choose the GPS unit as long as it has the ability to log movement and transfer
the log to the computer. Instead, the focus of the system is to interpret these
logs and replay them on a computer while displaying information about the
performance like speed and distance.

In addition, the system enables the user to create shared races where
everybody can join as long as they have physical access to the route of the
race. The shared race can either be an actual race where the participants
start at the same time, or it can be a virtual race where each participant
runs whenever it is most convenient.

2.2 Programming methodology

The programming methodology used in this project is influenced by eXtreme
programming (XP), but it is does not conform to all of its rules. Some of
the rules are impossible to follow since this is a one man project, while XP is
a programming methodology designed to be used by teams of programmers.
For example, the rule of programming in pairs is impossible to adhere to
when there is only one person programming.

Other rules are impractical to follow to the extent specified by XP. For
instance, the rule of test-driven development and the principle of writing tests
before any code is written will probably take time to adjust to, although it
is a great rule. As a result, a more gentle approach will be taken where

4



some tests are written for the code either before or after the code is actually
written. In this way, it is possible to become familiar with tests and follow
XP more strictly on other projects.

Nonetheless, the rules of the planning game, simple design and small re-
leases are followed more strictly. The planning of the project follows the
planning game rule in both release planning and iteration planning. In re-
lease planning, a plan of the features that should be developed for a given
release will be made where the features are ordered according to the cost and
importance. However, the plan is not constant in any way and may change
during release development.

Many small releases will be developed to avoid setting too high goals that
are not realizable within the time limit of the project. In addition, the design
will be kept simple and according to current requirements instead of focusing
on future requirements which might not be implemented anyway. During the
development of a release, iteration planning will be performed together with
the supervisor for the project at weekly meetings where the progress of the
project is evaluated and the course for next week is laid out.

2.3 Technologies

2.3.1 Mobile phones

The mobile phone as a device has grown tremendously since its initial release.
In the beginning, the mobile phone adhered to the name of being a device
that allows people to talk to other people while being on the move. How-
ever, this is not true any more, and most mobile phones today include many
other features like sending text messages using either Simple Message Ser-
vice (SMS) or Multimedia Messaging Service (MMS), browsing the Internet,
planning the day using the internal calendar, taking pictures and listening to
music. It is even possible for third-party companies to develop applications
for them.

Furthermore, the adoption of mobile phones has grown tremendously
since the initial release, and it is today widely used “[i]n most of Europe,
wealthier parts of Asia, Africa, the Caribbean, Latin America, Australia,
Canada, and the United States ...” [4]. Thus, applications developed for
mobile phones can reach a lot of people which means that it is possible to
make a lot of money.

5



http://www2.demis.nl/mapserver/request.asp?Service=WMS&

Version=1.1.0&Request=GetMap&

Layers=Countries,Borders,Coastlines&Format=image/gif&

BBox=0,55,40,75&SRS=EPSG:4326&Width=400&Height=400

Figure 2.1: An example of a request to a WMS using the GetMap operation.

2.3.2 GPS

Global positioning System (GPS) is a satellite navigation system originally
built by the United States Department of Defense. It consists of 24 satellites
which orbit the earth and transmit radio signals about their current position
[5]. This information is used by GPS receivers to pin point their position
on the earth by using a technique called trilateration. In order to use trilat-
eration, the GPS receiver must receive signals from four different satellites.
GPS currently offers a accuracy of 4-20 meters, but there other techniques
which can be used to increase this accuracy like DGPS [6].

2.3.3 WMS

Web map service (WMS) is a service which allows images of maps to be
fetched by issuing requests over HTTP[7]. A WMS must support two oper-
ations: GetCapabilties and GetMap. GetCapabilties is used to get detailed
information about a specific WMS such as the different layers it supports.
GetMap, on the other hand, is used to download a image of a map. This
image can be controlled to a high degree by the parameters given to getMap
operation. These parameters include information like the reference system,
the layers to include, the size and format of the image and the size of the
map. An example of a GetMap request can be seen in figure 2.1.

2.3.4 Google maps

Google Maps [8] is a service which makes it possible embed interactive maps
in a web page. The interaction with the map is done by dragging and click-
ing on the map, and interaction is similar to what is possible in a desktop
application. The map can be included on any web page by getting a key
from Google, which currently is free of charge, and adding some HTML and
Javascript to the web page.

In comparison to WMS, Google Maps is a higher level service. It provides
a user interface, but it does not allow the same detailed control over the

6



information that is displayed on the maps as WMS does. In addition, Google
Maps is designed to be included in Web pages, where WMS can be used in
other places as well.

7



Chapter 3

Design

JoggerLogger consists of four parts: the repository, the mobile client, the
web client and a map service of some kind. The repository includes all the
information about the users, routes and results. The mobile client is used
by the jogger to record new routes and results and upload this data to the
repository. The web client makes it possible for joggers to find new routes
and view the routes and results that they have added. The map service
provides both the mobile and the web client with map data. However, the
map service is not directly a part of JoggerLogger, and it will be provided
by an external source; Thus, it will not be further explained in this chapter.
Figure 3.1 illustrates how the different parts relate to each other.

3.1 Scenarios

Three scenarios have been created for this project which describe how the
different parts of the system are connected to each other and how it can be
used by one or more joggers. The first scenario starts by describing how
the creation of routes and results is performed by the jogger. The other two
scenarios describes how this information can be used by others.

3.1.1 Create a route

The sun is shining and John is in the mood for jogging his favorite route. He
puts on his training gear, equips himself with his GPS receiver and mobile
phone with JoggerLogger (mobile client), and goes to the start location of
the route.

Since no one has recorded this route before, he decides to create a new
route. He signals to the mobile client that he is about to start jogging, and

8



Figure 3.1: Overview of the three parts which JoggerLogger consists of.

the mobile client starts to log John’s movement.
John pays no attention to the mobile client until he finally reaches the end

of the route. He picks up the mobile phone and signals that he has reached
the end. The mobile client responds by displaying information about the
run. After viewing this information for a moment, John decides to store the
route and result on the device. In addition, he decides to share his route and
result with others through joggerlogger.org.

3.1.2 Find a route and run it

Mick wants to jog, but he is fed up jogging the same routes all the time
and wants to try something new. Thus, he gets in front of his computer and
visits joggerlogger.org where he logs on to his account. He starts browsing the
different routes which other joggers have added. The browsing is performed
by moving around on a map where all the start locations of the different
routes are placed.

After some browsing, Mick finds the route John added previously and
decides to view the details of it. An outline of the route along with informa-
tion like the length of the route are displayed. This information makes Mick
certain that this is a route he wants to jog. Therefore, he adds the route to
his favorites on his account and logs off.

Then Mick picks up his mobile phone and choses to synchronize with his
account on joggerlogger.org. The mobile client connects to joggerlogger.org
and figures out that a new route has been added which must be downloaded.
After the route has been downloaded, Mick choses to run this route. The
mobile phone displays a map with Mick’s current position and the start

9



location of the route. Mick uses this map to find his way to the start of the
route.

Arriving at the start of the route, Mick starts jogging and signals this to
the mobile phone. The jogging goes fine until one point in the route where
the road split in two directions. Mick trusts his vague memory of the outline
previously viewed online and runs in one of the directions. However, this
direction is wrong. Since the mobile phone knows which direction he really
should be headed, it signals to Mick that he is departing from the route. In
response, Mick picks up his mobile phone to see which direction he really
should be headed.

A similar signal is given to Mick, when he is at the end of the route.
Mick stops and views his performance before saving the result on the mobile
phone. Then Mick decides to synchronize with his online account in order to
share his results with others and compete about the best result.

3.1.3 Virtual race

John logs on to joggerlogger.org to see if there have been some changes. He
notices that Mick has jogged his route and that Mick’s result is better than
his own. This irritates John, and he decides he wants to beat Mick. Thus,
he adds the result as an opponent to his account and downloads this result
using his mobile phone.

Then John goes to the start location of the route, picks up his mobile
phone, chooses the route he is going to run and that Mick is to be his op-
ponent and starts jogging. At first, John runs slower than Mick, and he is
notified of this by the mobile phone at the first check point. In response to
the notification, John increases his pace which results in John being in front
of Mick at the next checkpoint. This position is held by John for the rest of
the run, and John is eager to transfer the result to joggerlogger.org in order
to show Mick who is the best.

3.2 Repository

The three scenarios presented in the previous section showed that sharing
jogging information is an essential part of the system. Sharing is possible
because of the repository where all the information about users, routes and
results are stored. Each user has an account where all the data about the user
is stored. This includes demographic data like name, address, age, location
as well as data like friends (other users of JoggerLogger), favorite routes,
opponents, and routes and results that the user has created.

10



This information is publicly accessible using either the mobile client or
the web client. Both clients will communicate with the server using HTTP
by issuing a get or post request. However, the web client is more tightly
coupled with the repository since it is the repository that deliverers the web
pages that make up the web client.

To sum up, the repository’s main actions consists of either storing or
fetching data from a storage of some kind, most likely a database.

3.3 Mobile client

The mobile client needs two devices to function correctly. The first device is
a mobile phone where the mobile client will run. The second device is a GPS
receiver which will deliver location information to the mobile phone. Both
devices must support bluetooth since this technology is used to connect them
together. In the next sections, the main functionality of the mobile client
will be outlined.

3.3.1 Create a new route

This task is the most basic of all the task in the mobile client, and it will be
be chosen if the route, which the user is going to jog, has not already been
created. Interaction with the client is simple. The jogger must signal to the
client when the jogging starts, and the client will start logging the jogger’s
movement. When the jogger reaches the end of the route, he or she must
notify the client of this, so the client can stop logging. After the run, the user
is presented with details about the run like time used, distance and average
speed. The user is also given the ability to save the route and result locally
on the mobile phone as well as sharing this information by transferring it to
the repository.

3.3.2 Run a route

This task is used by the user if the route that is going to be jogged already
has been created. It is similar to creating a new route and follow the same
steps needed by the user except that the user must specify which route to
run. Since the mobile phone knows the route the user is jogging, it is able
to help him or her in several ways.

First, the mobile client can help the user find the right location of the
route if he or she never has jogged the route before. This is done by displaying
a map on the mobile phone where both the position of the user and the outline

11



of the route is displayed. In addition, the mobile client can prevent the jogger
from starting in the wrong area by only allowing the jogger to start if he or
she is positioned in the start location of the route.

Second, the mobile client can help the user run in the right direction
during a run. This is done, as described in the previous paragraph, by
displaying map to the user with the outline of the route and the current
position of the user. The only problem is that the user probably will be
unwilling to look at the screen at all time during a run. Therefore, the
mobile client will, in addition to displaying the map, signal to the user by
vibrating if he or she starts to run in the wrong direction.

Third, the mobile client knows where the route ends and does not need
the jogger to signal when the route is over. Instead the mobile client will
signal to the jogger when the route has ended by vibrating. This vibration
must be different in intensity and interval than the vibration used when the
jogger is differing from the route; Thus, the user is able to tell them apart.

3.3.3 Run a route against a virtual opponent

The task of running a route against a virtual opponent has the goal of provid-
ing a good competition method for someone that has no one to run against.
The task is similar to running a route except that an opponent must be
chosen in addition to a route. The opponent can either be a previous result
created by the jogger himself or someone else who has jogged the route.

The resulting information is used to give feedback to the user during
the run about the performance compared to the performance of the virtual
opponent. The feedback is given at different check points during the run
by vibrating. Different vibration will be used depending on the position of
the jogger relative to the opponent. For instance, a short vibration is given
if the jogger is in front and longer vibration is used if the jogger is lacking
behind. If this information is not detailed enough, the user can view the
more detailed information presented on the mobile phone.

3.3.4 Communication with the repository

The mobile client and the main repository need to exchange data. The
mobile client has routes and results that the user wants to transfer to the
repository, while the repository has routes and results that the user has
marked as interesting that should be transfered to the mobile client. This
transfer can be carried out in several different ways, and two possibilities
have been discussed in this project.

12



The first method is to transfer the information indirectly by going through
an extra device along the way in addition to the repository and mobile client.
For instance, if a route should be transferred to the repository, it will first be
transferred from the mobile client to a computer and then from the computer
to the repository using the web client. This method is cumbersome and
requires several steps by the user.

The second method is to allow the mobile client and the repository to
communicate directly. This method is much simpler than the first method,
but it may be more expensive since the transfer must be done over GPRS.

A real life implementation of the system could include both of these meth-
ods, enabling users to choose the one that suits them best. However, in this
project, only the last method is used since this is the most interesting of the
two.

3.4 Web client

The web client is the part of JoggerLogger that is used by the jogger to either
evaluate past performance or to plan future runs. This functionality could
have been put into the mobile client as well, but there are two reasons for
not having done so. First, the mobile phone has limitations in both screen
size, transfer speed and transfer cost which makes it hard to implement these
features in a way that gives a good end user experience. Second, planning
new runs and reviewing past results are probably done at home in front of a
computer instead of on the move using a mobile phone.

3.4.1 Account management

The web client enables users to manage their accounts. Personal information
like name, address and age can be changed. Furthermore, other users of
JoggerLogger can be added as friends which the user then can challenge and
receive notification if they add new routes and results. Moreover, favorite
routes and opponents can be added to the account as well as viewing detailed
information about them.

3.4.2 Find routes

The most important task of the web client is probably to help users find
new routes. The different routes are positioned on a map which the user can
explore and easily find new routes in the proximity of where he or she lives.

13



The routes that are interesting can be added to the user’s account and then
later downloaded using the mobile client.

3.4.3 Replay runs

Replaying runs is interesting for joggers who want to evaluate and compare
previous runs with each other. Before starting replaying, the route and runs
which should be replayed must be chosen. The web client will then present
a map over the area of the route, and draw the outline of the route and the
position of the jogger from the different runs on the map. During the replay,
the position of the joggers will be updated, and performance information, like
current speed and number of kilometers left, for each one will be presented.

3.5 Additional features

The description given of the three different parts of the system in the previous
section is the core functionality of the system. However, there are many other
features that could be added to the system as well, but including those in
description would probably make it bigger and harder to follow. In addition,
many of these features are highly experimental and might not be possible
to put into practice. Therefore, a description of some of these features are
included in this section instead, where they can be briefly presented without
giving a deep description about their impact on the system as a whole.

3.5.1 Training plans

The web client could be extended to give the user the ability to create train-
ing plans. These training plans would typically include which routes and
which opponents the user wants to run against at different times. In addi-
tion, the mobile client could be extended so that the training plans could be
downloaded and added to the internal calendar on the mobile phone.

3.5.2 Automatic route creation

The system could use the information about all the routes in the repository
to create new routes. This could be done by connecting different parts of
different routes that intersect with each other. In this way, more interesting
routes could have been made available for joggers to choose between.

14



3.5.3 Tagging

The routes could be made taggable just like links to web pages are taggable
on del.cio.us [9] or pictures are taggable on flickr.com [10]. In this way, it can
be easy for users to find routes with certain types of attributes. However,
the tagging could be drawn even further by enabling tagging of portions of
a route. This information could be used by the automatic creation feature
described in the previous section to create highly customized routes. For
instance, the user specifies the start position, distance and/or other attributes
for the route which he or she will run, and the system creates a route that
best fits these data.

3.5.4 Rating

The user could be given the ability to rate routes in order to make it easier
for users to find the best routes. This feature is fairly standard and just
about any system containing huge amount of user generated content today
has it.

3.6 Applications

Although this project is targeted at joggers, it can be used in any sport which
has the notion of routes. For example, cycling routes or cross-country skiing
routes can be logged in the same way as jogging routes are logged. However, if
this is done without modifications it will become difficult to separate jogging
routes from other routes.

Another usage is to log the route to a specific place and get others to use
this route to locate that place. For example, a person is throwing a party at
a remote location like a cabin out in the middle of woods which it is hard
to find for people unfamiliar with the surroundings. The person who throws
the party can then log the route to his or her cabin from a place which is
easy to find for almost everybody, and share it through the repository. Other
people who will be attending the party can download this route, and use the
mobile client to direct oneself in the right direction.

Generally, the findings discovered in this project can be useful for other
systems as well. There are especially discoveries made in two areas that
probably will be of interest to others. Firstly, discoveries concerned with
logging the movement and creating routes from GPS tracks of users. How
often should the position be logged, how can the log be used to create a route,
and how can this route be used to direct others. Secondly, the discoveries
made when trying to build up the repository of tracks through a community.

15



What is important when trying to build a community, how to attract people
and how to keep them attracted to a product.

16



Chapter 4

Implementation

The implementation of JoggerLogger which will be described in this chapter
is not full implementation that incorporates all the functionality mentioned
in the previous design chapter. A full implementation of JoggerLogger was
strictly not possible within the time limit for this project. Instead, the im-
plementation will merely be a proof of concept where the goal is to show that
it is possible to implement the full system.

A decision was therefore made to focus on the main part of the system,
the mobile client, since the other parts rely on it. The repository rely on
the mobile client to deliver routes and results, and the web client rely on
information in the repository. Still, a light-weight implementation of the
repository and the web client were made in order to show that it is possible
to get the three parts to communicate with each other.

4.1 Mobile client

The implementation of the mobile client includes the main functionality pro-
posed in the design chapter. It supports creating a route, running a route,
racing against an opponent and uploading the routes and results created to
the repository. However, the implementation has still some rough edges and
the error control needs improvements before it can be ready for commercial
use.

In addition, the mobile client communicates with a map service and dis-
plays the map images downloaded to the user. The map service that is
currently used is a WMS from Statkart since WMS allows full control over
the information that is downloaded.

The implementation of the mobile client will be presented in the next
sections. First, it will outline the technological considerations made prior to

17



the actual implementation. Second, it will present the graphical interface
(GUI) and the actions needed by the user. Third, it will explain in detail
how the core parts of the mobile client are implemented. Fourth and lastly,
it will describe which parts of the mobile client that have limitations and
how them can be improved.

4.1.1 Technological considerations

The initial requirement of the mobile client was that it should run on a mobile
phone and be able to communicate with a GPS receiver through bluetooth.
This requirement was relatively wide, and there were a numerous of platforms
available that it would be possible to use. Among these platforms, there were
three that stood out, Opera platform, Python for series 60 and J2ME. Each
of them were evaluated using the following criteria: functionality, ease of use,
my knowledge of the platform, and how well the platform is supported by
different devices.

The Opera platform is built around the mobile version of the Opera In-
ternet browser, and enables developers to write applications using HTML
and Javascript. This platform looks promising. It supports a wide range of
mobile phones, it seems ideal for rapid development and the use of web as
development platform make it possible to leverage knowledge acquired us-
ing the Opera platform when creating ordinary web pages. Nonetheless, the
platform has an Achilles heel, which is the limited functionality.

The most important limitation is that platform does not support blue-
tooth communication, making it impossible for the client to directly commu-
nicate with a GPS receiver. Nevertheless, it is possible to circumvent this
limitation, as done in the project MoBuddy [11], by having another program
running in the background communicating with a GPS and sending this in-
formation to a server which the client later fetches the information from.
This, however, will result in a delay before the client receives the position,
which in this project would make the user experience poorer.

Python for series 60 is exactly what the name suggests: it is a platform
that runs on Series 60 mobile phones that enables developers to write ap-
plications using the programming language Python. The platform support
the functionality needed for this project, and it seems to be effective for
rapid application development considering the dynamic features of Python a
long with its practical and easy to use Application Programming Interfaces
(APIs). However, the platform is only supported by series 60 phones, which
are mostly Nokia phones. In addition, I have never used the platform before,
although I have used Python on several projects.

J2ME is a acronym for Java 2 Platform, Micro Edition, which is basically

18



Figure 4.1: the main screen of the mobile client.

a scaled down version of the standard Java platform specifically targeted at
small devices like mobile phones. The platform follows the same principle as
the other versions of the Java platform does, which is ”write once, run every-
where”. In practice, it is probably more like ”write once, test everywhere”,
but regardless of this the platform has gotten wide adoption by mobile man-
ufacturers and just about every mobile phone created today has support
for it. In addition, the platform supports the functionality needed for this
project, and it has wide tool support, making development easy. Lastly, Java
is my language of choice, and I have already developed small applications for
J2ME, so I am fairly familiar with the platform already.

In conclusion, J2ME was chosen as the platform for implementing the
client for its wide adoption in mobile phones as well as I am more proficient
in the Java language and its tools.

The device that was used in development was a Nokia N70 mobile phone,
and the mobile client has only been tested on this device. However, in theory,
the mobile client should run on any device which support CLDC 1.1, MIDP
2.0, and JSR 82 (Bluetooth API) and JSR 75(File and PIM API).

4.1.2 User interaction

The mobile client, as most mobile application, have a main screen that en-
ables the user to navigate in the application. This screen is presented in
figure 4.1 where each task is represented as an item in a list. The list con-
sists of the following five tasks: create a route, run a route, race against an
opponent, synchronize and settings. Each of these tasks will be discussed in
the next sections.

19



Figure 4.2: The five steps that are needed to create a route.

Figure 4.3: The initialization step for the task of creating a route.

Create a route

The task of creating a route consists of five steps, as showed in figure 4.2,
which the user needs to do. These steps are similar, but not identical to the
steps needed for the tasks of running a route and racing against an opponent.
Therefore, each of the steps will be explained in detail in this section while
only the differences between the steps are highlighted for the other two tasks.

Initialization In the initialization step, the user needs to specify the name
for the route that will be recorded. The user is presented with a text box
as showed in figure 4.3. This step could actually be moved later in the
interaction model for this task, but the other two tasks need to perform
initialization at this point. As a result, the initialization step is performed
in the same place to keep the interaction model the same, hopefully making
it easier for the user to use the application.

Browsing In the browsing step, the user is presented with a map over the
area where he or she currently is located and he or she is represented as a
circle on this map. This map, which is presented in figure 4.4, can either
be panned or zoomed. Panning is performed by using the directional keys
on the mobile phone and enables the user to see new areas of the map that
currently are not visible. Zooming enables users to either increase or decrease
the level of detail on the map. This is performed by using the zoom in or
zoom out command. However, zooming is constrained by a set of predefined

20



Figure 4.4: The browsing step for the task of creating a route.

zoom levels in order to prevent the map from getting too detailed or too
general.

When the map is panned or zoomed, new areas will present themselves
and the map data for these areas must be downloaded from the WMS. During
the downloading, these new areas will remain black, but each area will be
displayed as soon as the data is downloaded. The inner details of how the
downloading is handled is explained in section 4.1.3, so please refer to this
section for more information.

This step makes it possible for the user to become familiar with the
surrounding if he or she is new to the area. Accordingly, this step is probably
not that useful for users creating a route, but might be useful for users
running routes that have been created by other users.

Logging Logging is the most import step, and it is at this point the track-
ing of the user takes place. This step is started by pressing the start com-
mand. At this point, the location of the jogger will be collected from the
GPS via bluetooth once every five seconds.

When the logging step is entered, the user interaction with the map is
changed from manual to automatic. This means that the user is no longer
able to pan the map. Instead, the application will move the map according to
the movement of the jogger. The reasoning behind the change in interaction
is that the jogger will probably not be interacting with the map at all times
during the jog. Instead, he or she will be more concentrated on the run, but
occasionally looking at the application. Still, the map is zoomable.

In addition, two other changes are made to the GUI as well. First, the
trail of the previous locations of the jogger is drawn on the map. Second, the
time and the distance is showed in the white title line above the map. These
changes can be seen in figure 4.5.

The user can stop the logging by pressing the stop command which will

21



Figure 4.5: The logging step for the task of creating a route.

Figure 4.6: The showing details step for the task of creating a route.

take the user to the next step.

Showing details In this step, the user is presented with details about his
or her run. The details about the run is kept relatively simple, and the user
can only see the time used, the overall distance and the average speed, as
showed in figure 4.6.

Saving This step involves, not surprisingly, the task of saving the informa-
tion about the route and result that was created in the logging step. During
saving, a progress bar, which can be seen in figure 4.7, is presented to the
user which shows that saving is taking place. In addition, the user has the
ability to cancel the saving by pressing the cancel command.

Run a route

The task of running a route is identical to the task of creating a route except
that the route is already created. The information of the route is used by
the application to enhance the user experience. Still, the enhancements are
small, and the six steps explained in previous section remain more or less

22



Figure 4.7: The saving step for the task of creating a route.

Figure 4.8: The initialization step for the task of running a route.

the same. Therefore, the explanation of the six steps will only include the
enhancements that are made to them.

Initialization In this step, the user has to choose which route to run.
This is performed by selecting one of the routes in the list of all the available
routes, as figure 4.8 shows. This step differs completely from the same step
for the task of creating a route where the user had to specify the name of
the route.

Browsing This step is virtually the same as previously explained except
that the outline of the route is showed as well. In this way, it is possible for
the user to find the start of the route from the current location by using the
map.

Logging This step is the same as the step explained for creating a route
since it was not possible within the time limit for the project to include the
proposed functionality of automatic stopping and off course notification.

23



Figure 4.9: The logging step for the task of racing against an opponent.

Details This step is identical to the same step previously explained for the
task of creating a route, so please refer to this task for more information.

Saving This step is identical to the same step presented for creating a route
except only the result of the run is saved since the route already exist.

Racing against an opponent

The task of racing against an opponent is like the task of running a route
except that the user jogs against someone. This means that the steps that
both tasks consist of share a lot of similarities. In fact, the tasks are so
similar that the steps browsing, details and saving are identical. Therefore,
an explanation of these steps will not repeated in the following section when
the different steps are presented.

Initialization The initialization that is needed before racing against an
opponent is to choose the route to run and the opponent to run against.
Both of these actions are performed by selecting the route and the opponent
from a list of the available routes and results. This is performed in the same
manner as a route is selected in initialization step for the task of running a
route.

Logging In the logging step, the application presents and supplies the user
with information about the opponent in three different ways. The first infor-
mation is highly visual, and the opponent is positioned and rendered on the
map in the same manner as the user is. This can be seen in figure 4.9 where
the user is green and the opponent is purple. The position of the opponent is
updated according to the time elapsed; Thus, the user is able to see whether
the opponent is in front or lacking behind.

24



Figure 4.10: The mobile client synchronizing with the repository.

The second information is statistical, and it consists of the difference in
time and distance between the user and the opponent. This information is
displayed in the second line in white title line. The numbers in the first
column are the difference in time and the numbers in the second column are
the difference in distance. These numbers are negative if the user is lagging
behind, and they are positive if the user is in front of the opponent.

Although visual information may be interesting, the user will probably
not be looking at the screen frequently or at all. Accordingly, the application
provides non-visual information as well by using vibration to notify the user
about how the performance is compared to the opponent. A long vibration
is given if the user is behind the opponent, and a short vibration is given if
the user is in front. The notification is given at intervals according to the
distance jogged where the current implementation uses an interval of every
100 meters.

Synchronization

Synchronization with the server is performed almost without interaction from
the user. The only step needed is for the user to choose synchronization in
the main screen. The user is then presented with the screen in figure 4.10
which tells the user which route or result that is currently being transferred.
If the user by any chance wants to cancel, he or she can press the cancel
command.

Currently there is a lack of flexibility since the user must send over all
routes and results which have not been previously transferred to the repos-
itory. An improvement to be made here is to present a list of these routes
and results to the user, giving he or she the ability to choose exactly which
to send over. The selection can be made easy by providing convenience func-
tions that select all and deselect all.

25



Figure 4.11: The list of settings that can be configured in the mobile client.

(a) (b)

Figure 4.12: The editors for textual settings (a) and bluetooth services set-
tings (b)

Settings

The mobile client has a set of settings like most applications does. The set-
tings are organized in a list, and a setting can be changed, as illustrated in
figure 4.11, by first selecting the specific setting and pressing the change com-
mand. This will result in the specific editor for this setting being displayed.
Currently, there are only two editors: a text area, which is used for settings
containing textual information (see figure 4.12(a)); and a bluetooth service
editor, which is used for selecting a bluetooth service (see figure 4.12(b)).
The text area editor is used for the setting name, while the bluetooth service
editor is used for setting the GPS service that should be used.

4.1.3 Details

The description of the underlying details of the implementation will only
be given of the core parts of the mobile client. This is because a detailed
description of all parts of the mobile client would be too extensive to include

26



in this paper as well as the different parts are not equally important or
interesting.

Synchronization

The current implementation supports only one part of the synchronization.
This means that it is only possible to send routes and results from the mobile
client to the repository and not from the repository to the mobile client.

The sending of routes and results from the mobile client to the repository
is performed using post requests over hypertext transfer protocol (HTTP).
The mobile client will start by iterating over all the routes that have not
already been transferred to the repository and it will send one route at a
time. The information that is sent for each route is the route name, the
time created, and the different coordinates that make up the route. The
repository will try to store this information. If the repository is successful
in storing the route or if the route already exists, the id of the route in the
repository is returned. If, on the other hand, the repository fails to save the
route for some reason, the text: ”failed” is returned.

The client will naturally take different actions depending on the response
received. If the response is the id of the route, this is saved in a file on the
client in order to mark the route as saved. In addition, the id is needed when
the results of the route are going to be transferred. However, if the response
is failed, the client will skip the next step of transferring the results of the
route.

Transferring a result follows the same steps as saving a route. First, the
result is transferred to the repository, the repository either responds with the
id of the result in the repository or the text failed. If the id is returned, this
is stored on the client, while if it fails the mobile client tries to send the next
result.

The marking of the routes and results are performed to minimize the
traffic between the mobile client and the repository by only sending routes
and results not already sent. However, marking is not necessary to prevent
the repository from being cluttered up with duplicate routes and results since
it is able to spot this.

Fetching location information

At first, the intent was to use the Location API for J2ME (JSR 179) to
fetch location information since it supported all of the functionality needed
for this project and more. However, the Location API is an optional part
of J2ME and very few mobile phones on the market today support it. Still,

27



the Location API is not dead and it is getting more adoption. This can be
seen in the recent update of the API to version 1.0.1 [12] and that Nokia,
the biggest mobile company in the world, supports the Location API in
their third edition the Nokia Series60 developer platform[13]. This is not of
much help when the mobile phone used in development for this project only
supports Nokia Series60 second edition. As a result, the Location API could
not be used and the functionality of fetching the location information had to
be implemented.

A decision was made to make the implementation a clone of the areas of
the Location API which provided the functionality needed for this project.
This decision was made for two reasons. First, the Location API specifica-
tion could be followed and no time had to be used in designing the overall
structure of the implementation. Second, it would be possible to swap the
implementation with the Location API in the future when it has gotten wide
adoption.

The main class in the implementation is the LocationProvider, and it
basically includes all the code that fetch location information from the GPS.
However, the class is a scaled down version of its counterpart in Location
API and supports only three methods. These are getLastKnownLocation,
which returns the lastKnownLocation; getLocation, which returns a Loca-
tion within the time limit specified; setLocationListener, which registers a
LocationListener that will be notified of the current location at the specified
interval.

The LocationProvider class is implemented using two threads. The first
thread is the reading thread which is responsible of communicating with the
GPS through bluetooth. It will continually read the NMEA sentences sent
from the GPS, extract the location information from them and update the
last known location accordingly. If the connection to the GPS is lost for
some reason, the thread will sleep for 5 seconds before it reconnects to the
GPS. The second thread is the listener thread which will notify the registered
LocationListener at a specified interval of the what the current location is.
If the last known location is too old, it will mark the location as invalid.

Managing and visualization of maps

The managing and visualization of map information as well as managing
and visualization of route, jogger and opponent tracks are handled by the
RouteCanvas class which will be explained below. Some information about
this class has already been given since this is the class that the user sees
and interact with in the browsing and logging steps when creating a route,
running a route and racing against an opponent. However, the inner details

28



and the design choices made in implementation has not yet been explained,
and this will be the focus for this section.

Early on in the implementation of the RouteCanvas, there was a desire to
use the Game API in MIDP 2.0 and its LayerManager class and Layer class
to display map images, the outline of a route and the position and the track of
a jogger and an opponent. At first, the intent was to create three subclasses
of the abstract Layer class: one customized for the map, one customized for
the route, and one customized for the results. However, this was impossible
because it turned out that the constructor of the Layer class had package
visibility, meaning only classes in the same package are allowed to extend it.

The next idea was to shoehorn the needed functionality into the two sub-
classes of the Layer class that already existed: Sprite and TiledLayer. The
plan was to use a TiledLayer class for the map information and three Sprite
classes for the route, jogger and opponent information. In order for this to
be possible, the images that make up the Sprites had to be created on the
mobile phone since the images change during a run. Furthermore, they had
to be transparent, so that the different layers could be rendered on top of
each other. Thus, the plan would be possible if it had been possible to create
mutable transparent images in MIDP 2.0. However, in MIDP 2.0 it is appar-
ently only possible to create either a mutable opaque image, or an immutable
transparent image. As a result, the idea of using the LayerManager class and
the Layer class was dismissed.

Still, the time invested in looking into the LayerManager and the Layer
class was not a total waste since many of their principles are used in the
actual implementation of the RouteCanvas. For instance, the notation of
tiles is borrowed from the TiledLayer class, and the whole world map is
sliced into tiles. However, this does not mean that all of this data is visible
to the user or kept on the mobile phone at all time.

The area that is visible to the user is called the view port, a term borrowed
from the LayerManager class, and this area is moved by the user when he or
she pans. This will result in new tiles becoming visible, but the map data for
these tiles might not be available for two reasons. Either the data has not
been downloaded yet from a WMS, or it has been deleted from the cache used
by RouteCanvas since the cache can only hold data for a specific number of
tiles. In addition, the whole cache will be cleared if the zoom level is changed
because this will change the level of details of the images.

The RouteCanvas uses a cache of four tiles where each tile has the same
size as the view port. The reasoning behind these choices was to keep things
simple and the set up has been successful in practice. However, in theory, the
RouteCanvas should be able to support tiles and a cache of different sizes.
The only limitation is that the current implementation does not support a

29



big sized cache well. This is because a new thread is spawned when a new tile
needs to be downloaded. As a result, it is possible to have the same number
of threads running as the size of the cache.

A better implementation would be to have a thread pool where the
threads either wait for a task or performs one. For instance, the pool could
be initialized to four threads that are allowed to download images from the
WMS. In this way, the number of threads that are running at all time is
limited, and a new thread does not have to be spawned for each task.

On top of the tiled map, the outline of the route, the jogger and the
opponent are rendered. These parts are positioned according to the map, so
that they are rendered in the right positions. The actual rendering of all the
data happen in the following order: the map, the outline of the route, the
jogger and the opponent.

4.1.4 Improvements

There are four improvements that is known about at this point, but there
may be more. The first three are improvements needed to include all the
functionality proposed in the design chapter. The last improvement, on the
other hand, is needed to make the user experience of the mobile client better.

Automatic stopping of the mobile client must be included when the mobile
client knows which route the jogger jogs. This can be implemented in two
steps. The mobile client first checks if the jogger has jogged a distance
approximately as long as the distance of the route. This is necessary since
the stop location may be crossed more than once. Then the mobile client
checks if the current location is in the area of the stop location, and if it is
the logging is stopped.

The mobile client must notify the user if he or she is diverging from the
route which is being jogged. This can be performed by checking whether a
circle, with the location of the user as center and radius of for instance 25
meters, is intersecting with one of the line segments that form the route. If
there is no intersection, the user is off course and he or she is notified by
vibration. This calculation method will only work for small line segments,
as in this application, since the curvature of earth can be disregarded.

The mobile client must also support downloading of route and result
information from the repository. This can be performed by the mobile client
sending a timestamp of when it most recently downloaded information from
the repository. The repository will check which routes and results that have
been added since and return ids for them along with a timestamp of when
the request was made. These ids will then be used by the client in order to
download only the newly added routes and results.

30



Error handling must be better on the mobile client and this apply es-
pecially to errors connected to fetching location information from the GPS
receiver. In the current implementation, the user will receive no notification
if the GPS is either unreachable or if the GPS is not able to determine the
current location.

4.2 Repository

The implementation of the repository has support for storing and fetching
basic information about routes, results and joggers. This information actu-
ally includes more than what is needed by the mobile client and web client
in the current implementation. Still, there are areas of the repository that
lack much of the functionality described in the design chapter. These areas
are mostly connected to the limited functionality of the web client which the
repository is responsible for serving with web pages and performing actions
in response to input from the user.

A more detailed description of the implementation of the repository will
be given in the next sections. First, an explanation is presented of why
the technology used in implementing the repository was chosen. Then a
short description is given of how the user will come in contact with the
repository. Next, the overall architecture of the whole implementation is
presented along with how the different parts of it is implemented. In the
end, the improvements needed to be made to the implementation of the
repository is outlined.

4.2.1 Technological considerations

There were basically two different technologies that were possible to use in the
implementation of the repository considering my knowledge of programming
languages and web development. These two were PHP: hypertext preproces-
sor (PHP) and Java. PHP is the one of the two that I have used the most
for web applications previously. It is easy to use and it is fast to develop and
create web pages. However, the PHP code can easily become unstructured if
the developer is not careful. In this area, Java is probably a better choice. In
addition, Java has a wide range of frameworks that make the structuring and
separation of the different parts even easier. However, there may be similar
frameworks for PHP, but I am not accustomed to any of them. As a result,
Java was chosen for its structural strengths and its good framework support.

The implementation of the repository was tested on the servlet engine
Tomcat 5.5 and the Rational database management system (RDBMS) Post-

31



Figure 4.13: The different layers that form the repository and how they are
connected each other.

greSQL 8.1 . However, it should run in any servlet container which support
servlet version 2.4 and Java Server Pages (JSP) version 2.0. In addition, it
should be possible to change the RDBMS by making some small changes to a
set of configuration files as long as the RDBMS has support for transactions.

4.2.2 User interaction

The user only interacts with the repository indirectly using either the mobile
client or the web client. The mobile client communicates with the repository
when performing synchronization. The web client, on the other hand, is
more tightly coupled to the repository, since it is the repository that actually
delivers the web pages which make up the web client.

4.2.3 Details

The repository consists of four different layers as illustrated in figure 4.13.
These four layers are the domain model layer, the persistence layer, the
business layer and the presentation layer. The domain model layer contains
the classes that are needed to hold the information about the routes, results
and joggers in the repository.

This layer is used by the other three layers to exchange data between each
other and perform actions on this data. The persistence layer is responsible
for persisting and fetching information from a persistence storage. However,
this layer does not include business and transactional logic, this is instead
added by the business layer. The presentation layer uses the business layer

32



to fetch the information that should be presented to the user or to store the
information entered by the user.

Each layer communicates with each other using interfaces instead of
classes. As a result, the underlying implementation of each layer can be
swapped without affecting the other layers. Currently, there is only one im-
plementation of each layer and these implementations will be discussed in
the next sections.

Domain model layer

The domain model layer contains five classes that are needed to represent the
information in the repository. These five classes are Jogger, Route, Result,
Coordinate and Location. How each of these classes relate to each other is
illustrated in figure 4.14.

The Jogger class is used to represent the users of JoggerLogger, and each
instance will contain the following demographic information: first name, last
name, username and password. The demographic data could have been ex-
panded, but none of the other layers need this information in this light weight
implementation. Furthermore, each jogger will be connected to a set of routes
and results through the properties routes, results, favorite routes and oppo-
nents. The first two are the routes and results which the jogger has added
to the repository. While the other two are the routes and results the jogger
finds interesting and wants to transfer to a mobile phone using the mobile
client.

The route class is used to represent the routes that have been created, and
each instance will have a name, a creation time as well as a list of coordinates
that form the outline of the route. The list is ordered, so that each coordinate
has an index of which item it is in the list along with positional information
in the form of longitude, latitude and altitude. In addition, each route will
have a set of results which have been achieved by the users jogging the route.

An instance of the result class consists of information about one of the
results in the repository. It will contain when the result was created and an
ordered list of the locations the jogger visited during the creation of the result.
Since the list is ordered, the Location class, like the coordinate class, includes
an index property. In addition, the Location class includes information about
the position and the time the position was collected.

Persistence layer

The persistence layer has three interfaces, RouteDao, ResultDao and Jog-
gerDao, which specifies how the domain model objects can be persisted and

33



Figure 4.14: UML diagram of the domain model layer in the repository.

34



fetched from a persistent storage. The actual implementation of these inter-
faces and the layer as a whole are done using a object/relational mapping
(ORM) tool called Hibernate [14].

Hibernate, as all ORM solutions, allows an object model to be persisted
and fetched from a RDBMS by mapping classes to relations [15]. However,
the problem with this mapping is that relations and classes do not map
one to one, meaning that some conversion must be done between the two
representations. The great thing about Hibernate and other ORM solutions
are that they can handle this conversion so that the developer can concentrate
on other tasks.

Hibernate also supports various RDBMS and makes it easy to change
which one that is used by making small changes to a configuration file. In
the current implementation, the RDBMS PostgreSql is used since it is open
source and supports the needed functionality of transactions.

Business layer

The business layer consists of three interfaces, RouteService, ResultService
and JoggerService, which specify the same methods as the interfaces in the
persistence layer. This is because the same actions should still be possible
only that business and transaction logic are added to them. In the current
implementation of this layer, each service class composes its DAO counterpart
and adds transactional support to the methods. As a result, it is possible to
make several method calls across different service objects atomic, meaning
either all methods are performed or none at all. This is performed by using
the Spring framework [16] in two ways.

First, Spring is used to populate the different fields of the service objects
with instances of the DAO counterparts. This action is called wiring, which
is a part of the core functionality of Spring, and allows developers to use
dependency injection. Dependency injection basically means that instead of
an object populating a field itself, some other object performs this task [17].
In this way, it is easy to swap one implementation of one of DAO interfaces
with another one.

Second, aspect oriented programming (AOP) in Spring is used to add
transactional support to the service classes. “... AOP decomposes programs
into aspects or concerns”, which “... enables modularization of concerns
such as transaction management that would otherwise cut across multiple
objects.” [18]. As a result, functionality can be added to classes without
making any changes to the actual source code of these classes. In Spring,
AOP is configured using a XML file.

35



Presentation tier

The presentation layer uses the Spring MVC framework, which is a part of
the Spring framework used in the business layer. This framework enables
developers to create web applications by taking advantage of Spring’s wiring
functionality and the Model-View-Controller (MVC) design pattern.

MVC is a popular design pattern for graphical user interfaces and splits
the presentation into three parts: the Model, the Controller, and the View.
The model represents the information in the application, the view renders this
information by using the model and the controller changes this information
by performing actions on the model according to the input received from the
user [19]. The advantage of using this pattern is that the model can be easily
reused and that it is easy to add more views.

The implementation of this design pattern for the repository will be ex-
plained in the following paragraphs.

Model The model consists of seven classes all in all. The first five classes
are the classes in the domain model layer. It is possible to use them since
the only requirement for the model objects in Spring MVC are that they
conform to the Java beans standard of defining properties using get and set
methods. The last two classes are the RouteCommand and ResultCommand
which are used to convert coordinates and locations entered as text to actual
Coordinate and Location objects.

Controller The controller is limited in functionality and consists of only
four controllers. These are the AddRouteController, which allows a user to
add a route; the AddResultController, which allows a user to add a result;
the ListRoutesController, which lists all the routes; and the GetRouteCon-
troller, which displays a Route. More controllers needs to be implemented for
a full implementation, but these four controllers are enough to support syn-
chronization using the mobile client and validate that this synchronization
actually succeeded.

View The view actually consists of two different kinds of views which both
use JSP as view technology. The first is used for the mobile client when syn-
chronization is performed. In this layer, ”failed” will be displayed if the Ad-
dRouteController or AddResultController do not succeed in adding a route
or result and id of the route or result is displayed otherwise. The view for the
other two controllers is empty, since they should not be used by the mobile
client. The second is used to create web pages for the different controllers,

36



and these web pages make up the web client. How these web pages look and
how the user can interact with them will be discussed in section 4.3.1.

4.2.4 Improvements

The improvements needed to the repository are mostly connected to the pre-
sentation layer. The presentation layer must be expanded to include more
controllers and views that incorporate the functionality of the web client.
However, it may be necessary of changing some of the other layers if presen-
tation layer needs some functionality that are not available yet.

4.3 Web client

The web client is the part of JoggerLogger that has received the least at-
tention since it is the least needed part. This can be seen in the number
of features it includes. Still, the web client has served its purpose of show-
ing that it is possible for the mobile client to transfer information to the
repository and then later view this information in the web client.

Much of the information in the web client is shown on a map which is
fetched from the map service: Google Maps [20]. This service includes more
functionality out of the box than WMS. However, the fine grained control
available with WMS is not present in Google Maps, but this is not needed
in the web client at this point or may not be needed at at all.

In the next section, the GUI of the web client is presented before the
improvements needed to the web client are discussed.

4.3.1 User interaction

The user can perform four actions in the current implementation of the web
client. These are adding a route, adding a result, list routes and view a route,
and a description of all of these actions will be presented in the next sections.

Add route

The user is able to add a route through the web page presented in figure 4.15.
This web page has three input fields for the name of the route, the creation
time, and the coordinates that form the route. If the format of some of the
fields are wrong an error message is shown to the right of the field.

This page is mostly created for debugging purposes to check if it possible
to store a route in the repository. In a full implementation of the web client,

37



Figure 4.15: The web page for adding a route.

this page would probably use a file field where the user could upload a route
file instead of entering it manually.

Add result

The task of adding a result is similar to adding a route, and much of the
information presented in the previous section apply to this action as well.
The only exception is that the web page include some other fields which are
presented in figure 4.16. The user must enter the creation time of the result,
the route it belongs to and the locations of its track.

List routes

The user is presented with a map where the start location of all the routes in
the repository are marked. In addition, all the routes are listed in the right
column. This is illustrated in figure 4.17. The user can view a route either by
clicking on one of routes in the right column or on the link presented when
clicking on one of markings in the map.

View a route

The user is presented with a map over the area of the route. The outline of
the route is drawn on the map, and the top 10 results are listed in the right

38



Figure 4.16: The web page for adding a result.

Figure 4.17: The web page which lists all the routes in the repository.

39



Figure 4.18: The web page which presents one of the routes in the repository.

column, as shown in figure 4.18.

Improvements

The web client needs a lot of improvements in order to add support for the
functionality presented in the design chapter. It supports almost all the
functionality of finding routes. The only part that is missing is for the user
to be able to add the routes to their favorites in their account. On the other
hand, the other two actions of managing account information and replaying
results are not supported at all and must be added.

4.4 Summary

JoggerLogger has been realized partly in a proof of concept implementation
since a full implementation was not possible in the available time. The main
part of the system, the mobile client, has received the most attention, and
it supports almost all of the planned functionality. This includes creating a
route, running a route, and racing against an opponent as well as one-way
synchronization.

On the other hand, the implementation of the other parts lack much of the
proposed functionality and were developed mainly to show that it is possible
to transfer routes and results from the mobile client to the repository. Storing

40



and retrieving jogging information is supported by the repository, but much
of the functionality needed by the web client is not included. The web client
has received the least attention of the three parts, and it is only possible to
see which routes and results that are stored and add routes and results.

In conclusion, the proof of concept implementation has served its purpose
and showed that it is technological feasible to implement JoggerLogger.

41



Chapter 5

Testing

Usability testing was performed on the mobile client of JoggerLogger with
the goal of finding areas that are problematic for the user and how they might
be improved. The focus was to determine if it would be possible for a jogger
to use the mobile client when jogging without help from others. It was tested
on three joggers of varying in age, sex, mobile and computer experience, and
led to a set of discoveries and improvements which will be detailed later in
this chapter.

All parts of the JoggerLogger system should have been tested in order
to see if they work in a satisfactory manner. However, this is not possible
since the whole JoggerLogger system is not fully implemented, and there is
limited time available. Therefore, a decision was made to test only one part
of the system, the mobile client.

Choosing to test the mobile client instead of the other parts of the system
was easy to make for three reasons. First, it is the part of the system that
is most important, so if this part is not working properly this will make the
other parts almost useless. Second, this part has almost been fully imple-
mented where the implementation of the other parts still lack much more
of the planned functionally. Third, the limitations of mobile phones in form
of limited screen size and cumbersome input methods, makes the need for
testing even more important than for applications running on a computer.

The user group for the mobile client as well as the JoggerLogger system
as a whole is joggers of all ages. The only requirement for the user is that he
or she has basic skills in using the platform where the different clients run.
For the mobile client this means that the user must be able to navigate in
the mobile phone and write text.

42



5.1 Test objectives

The main objective of the test is to determine whether the three main tasks
in the mobile client, creating a route, running a route, racing against an
opponent, are easy to use. However, this objective is too general, making
it difficult to determine exactly which areas that are easy to use and which
areas that need improvements. Thus, the main objective has been split into
the following sub objectives:

• Is the user able to zoom and pan the map presented?

• Is the user able to start the logging of the mobile client?

• Is the user able to understand the information presented in the title
line in the upper area of the mobile client?

• Is the user able to understand the vibration scheme while racing?

• Is the user able to stop the logging of the mobile client?

5.2 Test group

The test group consists of three joggers who vary in sex, age, computer expe-
rience and mobile experience. Thus, the test group represents the user group
of the mobile client and JoggerLogger in a sufficient manner, although it
would be preferable with a bigger test group if more time had been available.
The actual characteristics of the three participants can be seen in table 5.1
below.

5.3 Test procedure and tasks

Before the test was performed, each person was given some background in-
formation about the test and the mobile client. First, the test person was
informed about the objectives of the test, how the test would be conducted
and how the results would be collected and presented. The goal was to put
the test person at ease by explaining that the goal was not to test them, but
the mobile client. Second, the test person was given a short introduction to
the mobile client and the goals that it tries to achieve.

During the test, each test person was studied by an observer who took
note of different discoveries. However, the observer did not interact with
the test person in any way unless the test person had problems that would

43



Table 5.1: Characteristics of the test group

Characteristic Choices
Test

persons

Sex
Male 2
Female 1

Age
<20
20-40 2
41-60 1
>60

Computer
Experience

inexperienced 1
normal 2
experience

Mobile phone
experience

inexperienced 1
normal 2
experience

make it impossible to continue the test without help. In this way, the test
environment would closely mirror the reality where the user is left more or
less alone, and the results could be compared more closely since the test
environment was kept as neutral as possible.

After the test, the observer had an informal talk with the test person.
This talk was used to get more information about the discoveries made during
the test, and to receive feedback about which parts of the mobile client that
could be improved.

The actual test consisted of three tasks that the test person had to per-
form. The tasks were bound to the three main actions in the system which
are creating a route, running a route, and racing against an opponent. How
these tasks were structured will be presented in the next sections.

5.3.1 Create a route

In this task, the test person was asked to create a route by following the
five steps explained in the implementation chapter. The test person was to
start by choosing to create a route in the main screen, and then choose an
appropriate name for the route. Next, the test person would start jogging
and inform the application of this. During the jogging, the test person was
asked to look at the screen occasionally, so that it would be possible to ask
questions about the information that was presented. When the test person

44



reached the end of the route, he or she was to inform the mobile client of
this. Lastly, the test person would save the route and result that had been
created.

5.3.2 Run a route

In this task, the test person was to run a route that had already been created.
Before starting to run, the test person was to pan the map to see the whole
outline of the route that was presented on the map. In addition, he or she
was to zoom in and zoom out of the map. Then, the test person would jog
the route, informing the mobile client of when he or she started and reached
the end. This task was ended by the test person saving the result.

5.3.3 Race against an opponent

In the third task, the test person would run against himself or herself. This
meant the test person would select the route and one of the results which
had been recorded in the two previous tasks. Again, the test person was to
start jogging and inform the application of this. However, this time the test
person was asked to look closely at the screen, and see if he or she was able
to determine what the different pieces of information were. The next steps
that had to be conducted by the test person, which were the same as the
steps for the other two tasks, were informing the application that the run
had ended and saving the result.

5.4 Test results

All of the test persons managed to create a route. There were no problems
in specifying the name of the route, start and stop the logging and save the
route and result. However, two of the test persons were unsure if the mobile
client had started logging or if they had to. This problem was resolved by
both when they noticed the text ”not started” in the title line.

The second task was successfully completed by all test persons. They
seemed more confident and hesitated less when performing the different ac-
tions. This might be a result of the test persons remembering what they did
in the previous task. However, one of the test persons had problems with
stopping the logging. Not because the test person did not remember what
to do, but because he or she believed the mobile client used the information
it had about the route to stop the logging automatically when reaching the
end.

45



In addition, the test persons had problems with panning and zooming
the map that was presented. One of the test persons tried to pan the map
after the mobile client had started logging, and did not understand that the
mobile client handled the panning instead of the user itself. The problem
with zooming in and out of the map was based on the fact that the test
persons believed the button in the middle of the directional buttons is used
for this tasks. Still, all of the test persons were able to figure out that the
zoom in and zoom out commands should be used instead.

The third task was completed by all test persons just like the other tasks.
All the test persons managed to interact and understand the information
displayed about the difference in time and distance. Nevertheless, two of the
test persons had problems determining which of two circles displayed on the
map that were the jogger and the opponent.

5.5 Improvements

The results from the test were promising and most of the mobile client was
easy to use. However, there were some areas that were discovered that could
be improved. These improvements are presented and discussed in the next
paragraphs.

1. The positioning of the map in the browsing and logging step should
probably be changed, so that user, and not the mobile client, controls
whether the positioning is handled by the user or the mobile client.
This can be done by adding commands that toggle the interaction mode
and presenting information that shows which interaction mode that is
currently used. As a result, the user has better control over the mobile
client and does not have to be confused of the mobile client changing
the interaction mode automatically.

2. The representation of the jogger and opponent should be changed in
order to present which direction they are headed and to better show
which of the two is the jogger and which is the opponent. Direction
can be easily visualized by representing the jogger and the opponent as
triangles which point in the direction they are moving. On the other
hand, it is more difficult to propose a change in the representation that
will make it easier to see which is whom. One possibility is to number
them, so that the jogger is always number one and the opponent is
number two. However, this can be misunderstood as the position they
have compared to one another. Another solution, is to write in the title
line that purple is the opponent and green is the jogger.

46



3. The mobile client should be able to stop automatically when running a
route and racing against an opponent. This functionality has already
been explained in the design chapter, but there was no time to include
it in the proof of concept implementation.

4. The mobile client should probably include a better visualization of
whether logging has been started or not. This can be done by removing
all the information that is not important in browsing like time and
distance. As a result, the text: ”status: Not started” could be made
bigger and easier for the user to see.

To sum up, the usability test showed that the three main tasks, creating a
route, racing a route and running against an opponent, works in satisfactory
manner, and the tests persons were able to perform all of them. However,
the test persons had several problems with each task and there are room
for improvements. These improvements include automatic stopping of the
logging, more control of the positioning of the map and better visualization
of the jogger, opponent and whether the logging has been started.

47



Chapter 6

Conclusion

The goal of this project has been to use GPS and standard web technology in
order to enhance the jogging experience. This has been proved to be possible
from a technological view point through the proof-of-concept implementation
of JoggerLogger. It basically showed that it is possible to create routes
and results on a mobile phone by fetching location information from a GPS
receiver, and share these routes and results by transferring them over the
Internet to a publicly, available repository.

In addition, the proof-of-concept implementation and the usability test
performed on it showed that it is possible to implement the project so that
it is understandable for the user. This was achieved by focusing on the user
through out the whole development and being aware of the limitations of
the different platforms used. Especially the limitations of mobile phones was
taken into consideration in order to keep the GUI as clean and understandable
as possible.

Still, there is one concern of JoggerLogger that has not been addressed
at all and this is if it will be attractive for people to use. Answering this
with a definitive yes or no is impossible without performing extensive market
research. Instead, I will present the three reasons why I think this system
has great potential.

First, there are a lot of people that jog and train, probably more now than
ever before considering the increased focus training and dieting has gotten
in media in recent years. As a result, there are a lot of people than can be
attracted to such a system.

Second, there are many commercial solutions offering similar functionality
to joggers already. Thus, it is reasonable to believe that this something
joggers actually want. This is further strengthen by Nokia’s recent release of
the Nokia 5500 Sport mobile phone which is targeted at joggers [21].

Third and lastly, mobile phone technology evolve rapidly and mobile

48



phones include more and more technology found in other devices. GPS is
an example of such a technology which will be included, and some mobile
phones include it already. With the inclusion of GPS in the mobile phones,
the JoggerLogger system would be more attractive since a separate device
does not have to be purchase and carried around during running. In this
way, the threshold of trying the mobile client is less and the user experience
will be better.

To sum up, it is technologically possible to implement JoggerLogger and
to do so in a way that is understandable. In addition, it is reasonable to
believe that joggers will be attracted to it. However, the description of
the project has only scratched the surface of what is possible with today’s
technology and this will only increase in the future with the rapid growth of
mobile, web and location technology.

49



Bibliography

[1] “frwd technologies - sports technology - training tool - outdoor
computer - heart rate monitors - running computer - etusivu,” FRWD
Technologies Ltd, Mar 2006. [Online]. Available: http://www.frwd.fi

[2] “Tractrac,” Trac Trac, Mar 2006. [Online]. Available: http:
//www.tractrac.com/

[3] “Sportsim - share and experience,” Sportsim, Mar 2006. [Online].
Available: http://www.sportsim.com

[4] “Mobile phone - wikipedia, the free encyclopedia,” Federal Aviation
Administration, May 2006. [Online]. Available: http://en.wikipedia.
org/wiki/Mobile phone

[5] P. H. Dana, “Global positioning system overview,” The University
of Colorado at Boulder, May 2006. [Online]. Available: http:
//www.colorado.edu/geography/gcraft/notes/gps/gps f.html

[6] “Nationwide differential global positioning system program fact sheet,”
Federal Aviation Administration, May 2006. [Online]. Available:
http://www.tfhrc.gov/its/ndgps/02072.htm

[7] OpenGIS Web Map Server Implementation Specification, Open
Geospatial Consortium, Inc., May 2006. [Online]. Avail-
able: http://portal.opengeospatial.org/files/index.php?artifact id=
14416&passcode=x3vuw4b3hu7p1n8y08ae

[8] “Google maps,” Google, May 2006. [Online]. Available: http:
//maps.google.com/

[9] “del.icio.us,” Yahoo, May 2006. [Online]. Available: http://del.icio.us/

[10] “Welcome to flickr - photo sharing,” Yahoo, May 2006. [Online].
Available: http://flickr.com/

50

http://www.frwd.fi
http://www.tractrac.com/
http://www.tractrac.com/
http://www.sportsim.com
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Mobile_phone
http://www.colorado.edu/geography/gcraft/notes/gps/gps_f.html
http://www.colorado.edu/geography/gcraft/notes/gps/gps_f.html
http://www.tfhrc.gov/its/ndgps/02072.htm
http://portal.opengeospatial.org/files/index.php?artifact_id=14416&passcode=x3vuw4b3hu7p1n8y08ae
http://portal.opengeospatial.org/files/index.php?artifact_id=14416&passcode=x3vuw4b3hu7p1n8y08ae
http://maps.google.com/
http://maps.google.com/
http://del.icio.us/
http://flickr.com/


[11] A. E. Hansen, “Mobuddy - making mobile messaging easy and
fun,” Østfold University College, May 2006. [Online]. Available:
http://freja.hiof.no/digmap/resources/mbuddy poster.pdf

[12] “Jsr 179 location api for j2meversion 1.0.1,” Nokia Corporation, May
2006. [Online]. Available: http://www.forum.nokia.com/info/sw.nokia.
com/id/f1957ea1-5a79-406e-be49-306cfd15d2da.html

[13] “S60 2nd/3rd edition: Differences in features v1.3,” Nokia
Corporation, May 2006. [Online]. Available: http://www.forum.nokia.
com/info/sw.nokia.com/id/36e49fcd-b9d5-4c5f-985c-f4ec5ae76dc2/
S60 2nd 3rd Ed Differences in Features v1 3 en.pdf.html

[14] “hibernate.org - hibernate,” JBoss Inc., May 2006. [Online]. Available:
http://www.hibernate.org/

[15] HIBERNATE - Relational Persistence for Idiomatic Java, JBoss Inc.,
May 2006. [Online]. Available: http://www.hibernate.org/hib docs/v3/
reference/en/html single/

[16] “springframework.org,” springframework.org, May 2006. [Online].
Available: http://www.springframework.org/

[17] M. Fowler, “Inversion of control containers and the dependency
injection pattern,” May 2006. [Online]. Available: http://www.
martinfowler.com/articles/injection.html

[18] R. Johnson, J. Hoeller, A. Arendsen, C. Sampaleanu, R. Harrop,
T. Risberg, D. Davison, D. Kopylenko, M. Pollack, T. Templier,
and E. Vervaet, Spring - Java/J2EE Application Framework,
springframework.org, May 2006. [Online]. Available: http://www.
springframework.org/docs/reference/

[19] “Java blueprints - j2ee patterns,” Sun Microsystems, Inc, May
2006. [Online]. Available: http://java.sun.com/blueprints/patterns/
MVC-detailed.html

[20] “Google maps,” Google, May 2006. [Online]. Available: http:
//maps.google.com/

[21] “Nokia 5500 sport: Smartphone with a six-pack,” Nokia Corporation,
May 2006. [Online]. Available: http://press.nokia.com:80/PR/200605/
1050231 5.html

51

http://freja.hiof.no/digmap/resources/mbuddy_poster.pdf
http://www.forum.nokia.com/info/sw.nokia.com/id/f1957ea1-5a79-406e-be49-306cfd15d2da.html
http://www.forum.nokia.com/info/sw.nokia.com/id/f1957ea1-5a79-406e-be49-306cfd15d2da.html
http://www.forum.nokia.com/info/sw.nokia.com/id/36e49fcd-b9d5-4c5f-985c-f4ec5ae76dc2/S60_2nd_3rd_Ed_Differences_in_Features_v1_3_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/36e49fcd-b9d5-4c5f-985c-f4ec5ae76dc2/S60_2nd_3rd_Ed_Differences_in_Features_v1_3_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/36e49fcd-b9d5-4c5f-985c-f4ec5ae76dc2/S60_2nd_3rd_Ed_Differences_in_Features_v1_3_en.pdf.html
http://www.hibernate.org/
http://www.hibernate.org/hib_docs/v3/reference/en/html_single/
http://www.hibernate.org/hib_docs/v3/reference/en/html_single/
http://www.springframework.org/
http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html
http://www.springframework.org/docs/reference/
http://www.springframework.org/docs/reference/
http://java.sun.com/blueprints/patterns/MVC-detailed.html
http://java.sun.com/blueprints/patterns/MVC-detailed.html
http://maps.google.com/
http://maps.google.com/
http://press.nokia.com:80/PR/200605/1050231_5.html
http://press.nokia.com:80/PR/200605/1050231_5.html


List of Figures

2.1 An example of a request to a WMS using the GetMap operation. 6

3.1 Overview of the three parts which JoggerLogger consists of. . 9

4.1 the main screen of the mobile client. . . . . . . . . . . . . . . 19
4.2 The five steps that are needed to create a route. . . . . . . . . 20
4.3 The initialization step for the task of creating a route. . . . . . 20
4.4 The browsing step for the task of creating a route. . . . . . . . 21
4.5 The logging step for the task of creating a route. . . . . . . . . 22
4.6 The showing details step for the task of creating a route. . . . 22
4.7 The saving step for the task of creating a route. . . . . . . . . 23
4.8 The initialization step for the task of running a route. . . . . . 23
4.9 The logging step for the task of racing against an opponent. . 24
4.10 The mobile client synchronizing with the repository. . . . . . . 25
4.11 The list of settings that can be configured in the mobile client. 26
4.12 The editors for textual settings (a) and bluetooth services set-

tings (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.13 The different layers that form the repository and how they are

connected each other. . . . . . . . . . . . . . . . . . . . . . . . 32
4.14 UML diagram of the domain model layer in the repository. . . 34
4.15 The web page for adding a route. . . . . . . . . . . . . . . . . 38
4.16 The web page for adding a result. . . . . . . . . . . . . . . . . 39
4.17 The web page which lists all the routes in the repository. . . . 39
4.18 The web page which presents one of the routes in the repository. 40

52



List of Tables

5.1 Characteristics of the test group . . . . . . . . . . . . . . . . . 44

53


	Abstract
	Introduction
	Background
	Related work
	FRWD
	Trac Trac
	Sportsim

	Programming methodology
	Technologies
	Mobile phones
	GPS
	WMS
	Google maps


	Design
	Scenarios
	Create a route
	Find a route and run it
	Virtual race

	Repository
	Mobile client
	Create a new route
	Run a route
	Run a route against a virtual opponent
	Communication with the repository

	Web client
	Account management
	Find routes
	Replay runs

	Additional features
	Training plans
	Automatic route creation
	Tagging
	Rating

	Applications

	Implementation
	Mobile client
	Technological considerations
	User interaction
	Details
	Improvements

	Repository
	Technological considerations
	User interaction
	Details
	Improvements

	Web client
	User interaction

	Summary

	Testing
	Test objectives
	Test group
	Test procedure and tasks
	Create a route
	Run a route
	Race against an opponent

	Test results
	Improvements

	Conclusion
	List of figures
	List of tables

